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This was the first Oberwolfach conference on Functional and Complex Analytic Methods
in the Theory of Linear Partial Differential Equations. It ,vas organized by R. ~1eise

(Düsseldorf), B.A. Taylor (Ann Arbor) and D. Vogt (Wuppertal).

To the organizers as weIl as to the participants opinion this conference has been"""'very
successful. The 24 talks in ,,"hich excellent recent research results ",-ere exhibited have
been throughout on a high scientific level and of a very good quality of presentation.
~1ain topics were:

• Problems of surjectivity and existence of continuous right inverses for linear partial
differential operators, systems of partial differential equations1 convolution operators
and restriction oper~tors under various regularity conditions.

• Linear and geometrie aspects of. the' theory of analytie and pIurisubharmonic func­
tions \vith applications to surjectivity problems of linear partial differential equa­
tions, Phragmen-Lindelöf conditions on algebraic varieties.

Moreover, there were contributions to the theories of hyper- and microfunctions, interpo­
lation of analytic functions, pseudoconcave .manifolds, nonlinear Schrödinger equations,
special functions, fundamental solutions, products of algebras and .of weighted function
spaces.

Due to the restricted number of talks there was enough time for critical and frui t­
ful discussions, which was appreciated b'y the participants and led to further research
progress. Moreover, the pleasant atmosphere provided by the staff of the Mathematisches
ForSchungszentrum Oberwolfach contributed a lot to the success of the conference.
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Vortragsauszüge

K.D. Bierstedt : (joint work with Silke Holtmanns)

An operator representation for weighted spaces oi vector valued holomorphic functions

Let G denote an open subset of CN and V a Nachbin familyon G whicb induces a
topology stronger than that of uniform convergence on the compact subsets of G. For tbe
weighted space HV(G) of holomorphic functions with O-growth conditio~ and for any
quasibarrelIed locally convex space E, we prove the topological isomorphism

HV(G, E~) = L,b(E, HV(G)).

A similar, hut technically more complicated isomorphism for \veighted spaces CV(X)
of continuous functions is also derived. This generalizes some results in joint papers of
the author with J. Bonet [Results Math. 14 (1988)], J. Bonet and A. Galbis [Michigan
Math. J. 40 (1993)], and J. Bonet and J. Schmets [Note Mat. 10 (1990)], and it should
be compared \vith the c-product representations for the corresponding spaces HVo(G, E)
(resp., C\!Q(X, E)) ofholomorphic (resp., continuous) functions with o-growth conditioDS.
Finally, \ve sho\v the topological isomorphism

J. Bonet : (joint \vork \vith _Ä.. Galbis and S. ~1omm)

Convolution operators on spaces of ultradifferentiahle functions

Let G(w) = E(w) (an) be tbe space of ultradifferentiable function . of Beurling type associated
with a quasianalytic weight w. Let Jl E Glw). The Fourier-Laplace transform of Jl is
denoted by jt. The surjectivity of tbe convolution operator -Tp : G(w) ~ G(w) associated
\vith J.L is characterized in terms of several equivalent slo\vly decreasing conditions on. {L.
Tbis is applied to obtain tbe following results: Let w ~ (1 be weights.

(1) Tp lew) ::> c(G') if and only if Tl' is surjective on G(G')'

(2) &(17) is contained in tbe range of every ultradifferentiable operator on E(w) if and only
if there are C > 0, R > 0 such that for all R ;:: Ro we have

. f w(S) < C u(R)
In 5 - R·
S>R log(R) log(a(R»)

The corresponding results for the Rou;nieu classes [tu} are obtained.

(3) Contrary to wbat is known to happen in the non-quasianalytic case, there exist a
quasianalytic weight w and J.l E c(w) such that Tp G(w) does not contain the space
A(IRn) of real analytic functions.
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R.W. Braun: üoint work with R. Meise and B.A. Taylor)

Phragmen-Lindelöf conditions: A characterization for a class of graph varieties

For a homogeneous polynomial Pm of degree m in n variables the partial differential
operator P(D) = Pm(D) - i8/8xn+l is investigated. It is shown that P(D) can only
have a continuous linear right inverse on COO (JRn+l) if the localization of Pm in each real
root is square-free. In three variables, this leads to the following theorem: P(D) has
a continuous linear right inverse on Coo(R4) if and only if Pm has real coeflicients and
DO elliptic factors, and for each real 6 #: 0 with Pm(6) = 0 the polynomial Pm is locally
hyperbolic in 8 and (Pm)s is square-free. From the point of view of Phragmen-Lindelöf
conditions, this means that a characterization is given of those homogeneous polynomials
Pm in three variables for which the variety of Pm + 1 satisfies a elose analogue of the
classical Pbragmen-Lindelöf prineiple in tbe plane.

s. Dierolf: (joint work with Khin Aye Aye and K.H. Schröder)

Semidirect products of groups and algebras

l\10tivated by the concept of a (top.) group X, "rhich is the (top.) semidirect. produet
of anormal subgroup G and a subgroup H, which ,vas introduced by vV. Roelcke in the
seventies, we call a (top.) algebra A the (top.) semidireet product of an ideal C and a
subalgebra B, if the map C x B --t A, (e, b) t-t e + b~ is bijective (resp. top.).
vVe introduce a general method to construct such semidirect products, ,vhieh inc1udes the
adjunction of a unit element and direct -products as special cases. A.nother special ease is
the semidirect produet C X s C of an algebra C ,vith itself; given algebra topologies ~, 6
on C, tbe semidirect product (C X S C, ~ x 6) is a topologieal algebra iff 6 ::J 'I (provided
C has a unit element). ~

From this observation \ve derive a short exact sequence of eommutative algebras
\

o --+ (C,'I') --t (C X S C, 'I' x 6) --t (C,6) 4- 0,

endowed ,vith Banach space topologies, whieh is topologieaUy exact as a sequence of Ba­
nach spaees, such that (C, t.r), (C,6) are Banach algebras but multiplication in
(C x s C, 'I' x 6) is not continuous.

e P. Domaliski: (based on a joint paper with Mikael Lindström)

Interpolation of analytic fUßctions with restrieted gro,vth

Let lI) be the unit disc on the complex plane and let v : ID> --+ lR.t be a strictly positive
continuous function tending to zero at tbe boundary which is radial (i.e., v(z) = v(lzl)
and ~f moderate decay (Le., infnEN v~~~~;n:;) > 0). We eonsider a Banach space of analytie
funetions of the form: .

H:(ID» := {f E H(lD» : IIfllv:= sup If(z)lv(z) < oo}.

l\ sequence (zn) S; D is called a set of interpolation (linear interpolation, sampling, resp.)
iff the map T: H:'(~) -+ l~, T(f) = (f(zn»nEN, is surjective (has a continuous lin­
ear right inverse, is an isomorphism into, resp.) where l: := {x = (xn) : IIIUv:=
sUPnEN Ixnlv(zn) < oo}.
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We give sufficient conditions and necessary conditions for a sequence to be a set of (linear)
interpolation or of sampling. In some cases we obtain characterizations. In particular, \ve
show that sets of interpolation are stable with respect to small (in the pseudohyperbolic
metric) perturbations. They are also uniformly discrete .with respect to the same metric.

Tbe results strengthen some earlier results of K. Seip aod they are based on an observa­
tion that in some cases the faster tbe weight v tends to zero at the boundary the more
interpolation sequences exist.

U. Franken:

Extension 9f real analytic data on a characteristic hypersurface

We let P(D) be a linear partial differential operator with constant coefficients in the
variables Xl, ... , X n , H :== {X E :Rn : X n = O} and let Pm denote the principal part of
tbe associated polynomial P. We w~ll cbaracterize an extension property for real analytic
data on H. To be more precise we \vill show that there exists. R 2: 1 such that for each
f E A(H n BR ) with P(D) f = 0 there exists 9 E Aw(Bd with P(D) 9 = 0 such that
flBlnH = glBtnH if and only if Pm satisfies tbe Petrowsky condition, Le. for each {' E lRn- 1

the polynomial r ~ Pm ((,', r) either vanishes identically or has only real roots. Here B R

denotes the unit ball of radius R > 0 and center 0, Adenotes the class of real analytic
functions and Au., denotes the dass of partially real analytic functions in the variables
Xl, . . ~ ,Xn-l ""hieh are {w}-ultra-differential with respeet to the 'variable Xn'

L. Frerick :

Extension operators for spaces of CXl-functions

Let KeRn be compaet. vVe assume that K is Coo-determining, Le. whenever f E
E(JRr1) := {g : Rn ~ C: 9 is arbitrary often differentiable} vanishes on K, then also aU
its derivatives ßO/, Q' E "N(), vanishes on K.

We consider thc question~ when there exists an operator E from the space c(K) of aU
COO-functions on K into E(lRn ) such that E(f)IK = / for aU f E E(K).

\Ve give a characterization for the existence of such an extension operator in the spirit
of Pa,vlucki and Plesniak, ,vhich reads as folIows: {(K) admits an extension operator if _
only if there exist () E (0, 1), p E No such that for an Q' E Nö there exists T > 1 such that •
for a11 k there is Ck > 0 such that for a11 P E C[XI, ... ,Xn], deg(P) :5 k and a11 Xo E K:

18° P(xo)1 :5 Ck sup IP(x)1 9 inf l;IIPII~(9z )nK p.
zEK 12:e>O E ~ 0 ,

Here denotes 11'IIB~(zo)nK,p tbe p-th quotient norm w.r.t. the set {x E K : IIx-xoll oo :5 €}.
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H. Komatsu:

Suppleness cf sheaves of microfunctions associated with ultradistributions

A sheaf J of vector spaces is said to be supple if

holels for any elosed sets A and B in U. Here JA (U) denotes the space of sections over U
with support in A.

Vve sketch a proo! of the follo\ving theorem (due to Bengel-Schapira (1979) for distribu­
tions and to Eida (1989) for ultradistribntions) nnder the framework of our definition of
microfunctions (Lecture Hotes in Math 1495 (1991)].

Theorem The sheaf C· 01 microfunctions associated with ultradistributions 01 class *
is supple.

~ ,f-lt~ ..~~

An immediate consequence is Martineau's edge-of-the-wedge theorem in each cl~s *.

~II. Langenbruch :

Surjective partial differential operators on spaces of real anal:ytic functions

Let A(O) be the space of real analytic functions defined on an open set n c ]Rn. Let
P(D) be a partial differential operator with constant coefficients and principal part Pm'
The localizations of Pm at 00 are defined by

where Pm(x) := (La IP~Q)(x)12)l/2.

Dur main result is the follo,ving:

Theorem Let P(D) : A(f!) -t A(O) be surjective, n := {x E ]Rnl(x, N} < O}. Then we
have fOT any Q E L(Pm ) : "V x E Rn, 0 "17 E :IR : Q(x+irN) f. 0 if N is noncharacteristic
forQ. .

By a result of Andreotti/Nacinovich this can be extended to convex open sets n.
The proof relies on the existence of fundamental soiutions for P(D) \vhich are real analytic
on large compact sets and on extension of regularity for the solutions of P(D).
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P. Laubin :

Cornplex canonical transformations in partial differential equations

Representation of distributions or hyperfunctions in the complex domain as boundary
values of holomorphic functions in a strictly pseudoconvex open subset of cn is a classical
tool in linear PDE. We review two particular representations which are global and almost
explicit. We then describe the construction of local transformations of this kind which
can be adapted to the geometry of a given linear PDE. We give an application to the
lagrangian structure of the solution of a boundary value problem.

O. Liess :

Hyperfunctions, Fourier transfonns and duality

Let l : Rn --+ lI4 be sublinear and denote for € > 0 by L2(~, l, -e) the L'foc functions
f so that f e-I(Re()+ellm(1 E L 2 (CJ). If B(U) denotes the hyperfunctions on U c Rn, \ve
denote by F-l : L2(~, l, -e) --+ B(lxl < c:) the map (calIed "inverse Fourier transfonn'~)

defined by the fonnal integral

(1)

{' ( e-i(x,()-lx-YI2v'(l+'''+(~/2 u(x) dx dy.
J'yl<B J1xl-5:A

It is inverse to p-l in the sense that (F'oc,A,B F-I f - f)«() is exponentially decreasing
and F-1F1oc,A,B U - u is real analytic. Starting from all this, one can sho,v that B/ A (the
germs of hyperfunctions, modula the real analytic functions at 0) can be identified with
the set of linear continuous functionals on the spaces

For thc regularization of (1) cf. [1].
If \ve fix c > 0 and denote by V(c) ={(: 11m (I < c IRe (I}, then the contribution of the

~ region cn \ V(c) to u is real analytic. Consider next tbe space A(V(c), F l(Re (), E 11m (I)
offunctions analytic on V(c) so that f eFI(Re()-ellm(1 E L 2 (V(c». F-l(fllRn) can be given
a meaning as in (1). If f E A(V(c), l, -E), then F-l f is real analytic for lxi> c. Next fix
c < B < A. \tVhen u E B(lxl < A) is real analytic for lxi> E, we denote by F'oc,A,B u«()
the function

E-1,e,c = {f : F'oc,A,B f E A(V(c), -I, c)}.

[1] O. Liess: Higher microlocalization and propagation of singularities. Proc. N.A.S.I
on "Microlocal Analysis and Spectral Theory".
1996, Kluver Acad. Publ. 1997, 61-91.
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R. Meise: (joint work with R.W. Braun and B.A. Taylor)

Homogeneous polynomials P for which (P + Q)(D) admits a continuous linear right

inverse for all perturbations Q

The proof of the following result was presented:

Theorem For a homogeneous polynomial Pm 01 degree m ~ 2 in n ~ 2 complex vari­

ables, the following assertions are equivalent:

(1) (Pm + Q)(D) : COO(JR'I) -+ COO (JR'1) admits a continuous linear right inverse for

each polynomial Q 01 degree le.ss than m.

(2) gradPm(x) :F 0 tor each x E Rn \ {O}, Pm is real up to a complex factor and no

irreducible factor 0/ Pm is elliptic.

Tbe theorem extends an earlier sufficient condition of !\1eise, Taylor and Vogt (see J. AMS

11 (1998), 1-39). ~.

S. l\1omm :

Elliptic partial differential equations for real analytic functions

For KeRN convex, compact with K=f; 0, A(K) denotes the space of all real analytic

functions on K. For a given constant coefficients linear partial differential operator P(D),

\ve ask whether P(D) : A(K) -+ A(K) admits a continuous linear right inverse. Contrary

to the case of COO(K) (instead of A(K)), it happens that for certain K the operator

P(D) : A(K) --7 A(K) does not have a continuous linear right inverse. For example,

Ll: A(K) -+ A(K) has a continuous linear right inverse if and only if 8K E CI,'I.

Ta prove this, we evaluate - applying Lundin's description of the pluricomplex Green

functioD of K - an abstract criterion which is given in terms ofextremal plurisubharmonic

function and which is derived from results of Vogt, Zahariuta, Kiselman, Lempert.

M. Nacinovich :

\\Teak unique continuation in abstract I-pseudoconcave eR manifolds

Let M be an abstract, i.e. not necessarily locally embeddable eR manifold, \vhich is

assumed to be strictly I-pseudoconcave. The eR structure is defined by a formally

integrable distribution .,.0,1 (M) of smooth complex valued vector fields, of rank n, such

that 2n < dima M, .,.o,I(M) n .,.o,l(M) = {O}. Strict one-pseudoconcavity is a condition

on the commutators [L, I] with L E rO,1 (M) which ensures tbe subelliptic t-estimate foor

functions: E IILi ull2 > C lIull~ - c Ilutfg 'tu E CöeO) if n is arelatively compact open
- 2

domain in M.

'Then the weak unique continuation principle holds for solutions u of the differential in­

equality:

(*) V L E TO,I(M) u, Lu E L~oc{M), lu(x)1 $ kL(X) (Lu(x)( a.e. in M
\vith kL E Lt:e(M).
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This means that, if n c M is connected and u = 0 a.e. on 0 i- wopen C n, then
u = 0 a.e. in n. The proof r~quires first to reduce to uniqueness for a noncharacteristic
Cauchy problem for (*), next to settle this point by Carleman-type estimates. The
result can be extended to higher degrees forms in the eR complex, by strenghtenin'g the
pseudoconcavity assumption. .

V. Palamodov :

Special functions of several variables

A general approach to the theory of higher special functions will be discussed.

Aseries of special singular functions of several variables is constructed by means of im- ..
proper integrals over versal families of·algebraic hypersuffaces. This gives a natural gen- •
eralization of Gauss hypergeometric functions as well as Airy-type integrals.

lvI. Poppenberg : Qoint 'work \vith H. Lange and H. Teismann)

Smooth solutions for a class of nonlinear Schrödinger equations

In some domains of elassieal and quantum physics a set ofevolutionary nonlinear Sehrödin­
ger equations of type

(1)

(\vhere V is a given spaee dependent potential, /, h are real funetions and K, is areal
parameter) play an important röle. In this leeture the simplest case of an equation of
type (1) is considered, namely the ,,,"hole space Cauchy problem

(2)

Equation (2) may be called the 'superfluid film equation' of fluid mechanics and plasma
physies (cf. S. KuriharaJ Large-~mplitude quasi-solitons in superHuid films, J. Phys. Soc.
Japan 50, 1981, 3262-3267, or E.vV. Laedke, K.H. Spatsehek, L. Stenfto, Evolution the­
orem for a elass of perturbed envelope soliton solutions, J. Math. Phys. 24, 1983, 2764­
2769). Equations of type (1), (2) ~re also eonsidered in the theory of Heisenberg ferro­
magnets and in dissipative quantum meehanics.

The mathematical difficulties with (1), (2) are various. The nonlinearity appears in the
highest order space derivatives. Hence classical energy methods (which can e.g. be applied
in tbe ease of the weIl studied semilinear Schrödinger equations) faH, and a problem called
'Ioss of derivatives' occurs. The existence of semigroups for the linearized problem is by
no means obvious since the linearized equation is not dissipative. Up to now even the
IDeal weIl posedness of (1), (2) seemed not to be known.

Tbe purpose of this leeture is to prove the loeal weIl posedness of (2) for smooth solutions.
Tbe proof is based on new techniques on Nash-Moser type implicit function theorems for
Frechet spaces combined with linear semigroup theory. The smoothness is a result of
using the space HOC defined as the interseetion of all Sobolev spaces Hk. A erucial part
of tbe proof consists in showing the necessary Nash-Moser estimates for the solutions of
tbe corresponding linearized inhomogeneous equation.

8
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1\1.8. Ramanujan : Uoint work with S. Buckley and D. Vukotic)

Bounded and compact coefficient multipliers between Bergman and Hardy spaces

'Ve investigate the boundedness and compactness of the coefficient multiplier operators
between various Bergman spaces AP and Hardy spaces Hq, thus extending and comple­
menting ~ome recent works by various authors.

\Ve study the coeflicients of Al functions and some new characterizations of the multipliers
between the Hardy and Bergman spaces ,vith exponents 1 or 2 are also derived. We
characterize the compact multipliers from HI to J(l aod from Al to A2, aod compute
the essential norm of certain multiplier operators. We show that if p > 1, then there are
bounded non-compact multiplier operators from AP to Aq if aod ooly if P :5 q.

J. Schmets : (based on a joint research with M. Valdivia)

About analytic extension of Whitney jets

Let F be a c10sed subset of rand E(F) designate the Frechct space of the vVl;li'tney jets
on F. Then the vVhitney theorem says that the continuous linear restrietion map

is surjective. In 1961, ß/Iityagin has proved that

(a) if n = 1 and F = {O}, R has Da continuous linear right inverse;

(b) if n = 1 and F = [O~ 1], R has a continuous linear right inverse.

Since then several authors have given examples of sets F for ,vhich R has or has not a
continuous linear right inverse. On the other hand, by use of the Vogt-vVagner splitting
theorem, Tidten has proved that R has a continuous linear right inverse if a~9 only if
E(K) is jsomorphic to a subspace of 5, Le. if and only if E(K) has the property' (DN).

In fact the vVhitney theorem is more precise since it says that cvery 'Vhitney jet on F is
the image by R of a C:JO(:lRn )-function ,vhich is analytic on Rn \ F. Tbe main result ofe Bull. Polish Ac. Sc. Math. 45 (1997}, 359-367 states that

Theorem Let K be a compact subset 0/ JR11.

(a) Every Whitney jet on K is the image by R 01 a BCOO(JR" )-function which is analytic
onr \K.

(b) TI there is a continuous linear extension map Irom E(K) into COO (JR1l), then there
also is a continuous linear extension map E from E(K) into BCOO(lR':) such that
Ecp is analytic on r \ K fOT every <p E E(K).

9
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H.S. Shapiro :

Fock space techniques for linear holomorphic partial differential equations

The Fock space Fn is the Hilbert space of entire functions f on cn such that 1/12 e-1z12

is integrable (,v.r.t. volume measure), and has been studied for a variety of reasons. Our
motivation is that one can rather easily derive some apriori estimates for differential op­
erators using this norm, which enable one to prove solvability of boundary value problems
having holomorphic (Fock space) data, within Fock space. Such results are rare, hut of
some interest in that tbey exhibit situations where tbe solution does not pick up singu­
larities. It is hoped this may shed some light on tbe mechanism by wbich singularities are
generated.

B.A. Taylor : (joint"vork ,vith R. Braun aod R. Meise)

Estimates for extremal pIurisubbarmonic functions

It is an open problem to characterize the algebraic varieties V on cn ,vith the property
(SRPL):
Tbe extrerr.3.1 plurisubharmonic function

UlRn(Z, V) = sup{u(z): upsh on V, u(z) ~ Izi +o{lzl), u(z):::; 0, for z E VnlRn
}

satisfies an estimate
UJRn(Z, V) ::; A Izi + B.

vVe give SOUle oe,," results for this problem, including the

Theorem Let V = {P(z) = O} where P(z) = Pm(z) + lower order terms, and Pm is a
homogeneous polynomial on C" such that

(1) Pm has real coefficients and the zero set 01 each Qj{z) in the irreducible lactorization
Pm(z) = Ilj=l Qj(z) satisfies dimlR{Qj{z) = O} n Rn = n - 1.

(2) There are no repeated lactors in the irreducible lactorization 01 Pm'

(3) The lower degree terms in P(z) also have real coefficients.

Then V satisfies (SRPL).

The conditions ofthe Theorem are not necessary as shown by the example, due to D. Bain­
brigde,

V == {(s, Wb W2): (S2 - W~)2 = W2(W~ - w~)}

which satisfies (SRPL).

10
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D. Vogt: Uoint work with P. DomaIiski)

Splitting of Distributional Complexes

For topological exact complexes

o~ E ~ Eo~ EI 24 E2 ~ •• "

where E/c ~ 1Y ~ (s')N for every k, the following theorem was presented

Theorem 1 Every such complex splits for k ~ 1, i. e. T/c has a right inverse im T/c ~ E
for every k ~ 1.

If the complex is finite (i.e. E/c = 0 for k ~ ko) and algebraically exact with continuous
T/c then it is topologically exact, hence splits for k 2: 1.

If E = ren, E), n c IR" open, E a translation-invariant sheaf on Rn, e.g. if Ta is a
constant coefficient differential map, or a convolution map tben we have ~:..:..

Theorem 2 The complex splits at k = 0 iff E is strict.

These results extend results of Palamodov on differential complexes and are closely related
to works of ~1eise, Taylor and Vogt on right inverses of partial differential operators.

P. Wagner:

Representation of a fundamental solution of N. Zeilon's operator by elliptic functions

Tbe Herglotz-Petro\vsky formulae yield an expression by an (n - 1)-fold integral for a
fundamental solution of a homogeneous linear partial differential operator with constant
coefficients in n variables. For n = 3 and elliptic operators, these formulae where derived
by I. Fredholm and applied to construct explicitly a fundamental solution of the operator
a:+~+ag in terms ofelliptic integrals. N. Zeilon applied Fredholm's theory iri:i913 to the
non-elliptic operator Eft + ~ + 8f, but ,vithout obtaining an explicit final result. Though
not being an '~evolution operatorn

, this last operator admits fundamental solutions \vith
conical lacunae, and as such it has been recently considered by R. Meise et aI. in theire investigations of continuous linear right inverses of linear partial differential operators.

In my talk, I would first discuss ·the analytic wave front set and the existence of lacunae
for fundamental solutions of homogeneous operators, and then derive an explicit represen­
tation of a fundamental solution of 0: + ~ + a: by elliptic functions, thereby completing
N. Zeilon's result.

J. Wengenroth :

Projective spectra of 'weighted (LB)-function spaces

In tbe first part of the talk, the definition of the projective limit funetor Proj and its
derivative Proj I as \vell as notion of being of strong (P)-type are explained. For projec­
tive spectra of (LB)-spaces, strong (P)-type and vanishing of Prol are characterized by
theorems due to Palamodov, Retakh, Vogt, Frerick aud Wengenroth.
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In the seeond part, these eharaeterizations are evaluated for speetra of weighted Köthe
function spaces Proj ind Lp(dnN) in terms of the weight functions. Finally, a relation to the
projective description for ,veighted (LF)~paces of holomorphic funetions is explained.

v. Zahariuta : (joint work with P. Chalov and M. Dragilev)

Linear topological invariants and isomorpbism of pairs of Köthe spaces

In tbe frame of tbe study of the isomorphie elassifieation problem for pairs of Köthe
spaces, tbe following special class of pairs is eonsidered tboroughly: F = F(A, a) .=
(K(exp( -~ai))' K(exp(-~ai + Ai))), a = (ai)' A = (Ai)' Cli t 00, 0 < Ai < 00. This class
contains same interesting concrete pairs, for example, pairs of spaces of analytic functions _
(A(Do), A(D1)), Do C D1 C cn. The main tool is so..called m-rectangle charal teristics ..
~,a)(o,c; 'T, t), which ealculate ho,v many points (;\, ai) are in the union of m rectangles
Pt = (6k,ck] X (Tk' t], k = 1, ... , m, 6 = (6k), C= (ck), T = (Tk), t = (tk).

The system of these characteristics (~,a»)mEN is shown to be a complete invariant ,vith
respeet to quasidiagonal isomorphisms (with an appropriate definition of the equivalency
(J.t~,a») ~ (~,ä»)).

By the use of eompound invariants it is sho,vn also that any individual characteristic ~,a)
is a linear topological invariant on this dass.

As an application it is provcd that there are continuum pair\vise non-isomorphie pairs
(A(Do), A(Dd), if Do C D 1 runs the set of pairs of bounded complete n-circular domains
in cen.

Berichterstatter: L. Frerick
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