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Die Tagung fand unter der Leitung von Herrn F. Bogomolov (Courant), Herrn S. Kol-
lar (Utah), Frau M. Teicher (Bar Ilan) und Herrn M. Zaidenberg (Grenoble) statt. Die
Teilnehmer kamen aus Deutschland, den USA, Russland, Frankreich, Israel und anderen
Lindern. Sie vertraten einen breiten Themenkreis aus dem Gebiet der Fundamental-
gruppen in der Geometrie, und es wurde vor allem jungen Mathematikern die Gelegen-
heit geboten, ihre Forschungsergebnisse einem interessierten Fachpublikum vorzustellen.
Ein nicht allzu dicht gedringtes Programm und die angenehme Atmosphére des Instituts
begiinstigten den informellen Ideenaustausch und die angeregte Unterhaltung unter den
Teilnehmern.
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FUNDAMENTAL GROUPS AND GALOIS THEORY
Shreeram S. Abhyankar!

During my Ph.D. work, my guru Zariski advised me to use Chevalley’s local rings to
algebracize Jung’s surface desingularization of 1908 for carrying it over from the complex
domain to the case of positive characteristic. In my 1955 American Journal paper, I
concluded that this cannot be done because in that case the algebraic local fundamental
group above a normal crossing of the branch locus need not even be solvable. In my 1957
American Journal paper, by taking a section of the unsolvable surface covering, I was led
to a conjecture about the structure of the algebraic fundamental group of an affine curve.
After some initial work by myself, Nori and Serre, this conjecture was settled affirmatively
by Raynaud and Harbater in their 1994 papers in volumes 116 and 117 of Inventiones
Mathematicae. A chatty discussion of the curve case, including references, can be found in
my 1992 paper on “Galois theory on the line in nonzero characteristic” in volume 27 of the
AMS Bulletin, and also in my 1996 paper on “Factorizations over finite fields” in Number
233 of the LMS Lecture Note Series. In my 1997 paper on the “Local fundamental groups
of algebraic varieties” in volume 125 of AMS Proceedings, this led me to explicitize the
conjectures about higher dimensional algebraic fundamental groups which were implicit in
my American Journal papers of 1955 and 1959-60. Leaving aside the global conjectures
implicit in the 1959-60 papers, here I shall comment on the local conjecture implicit in the
1955 paper.

So let N,‘;',, represent a neighborhood of a simple point on a d- dimensional algebraic
variety, over an algebraically closed field k of characteristic p, from which we have deleted
a divisor having a t-fold normal crossing at the simple point. Also let wﬁ(N,"‘,,)_ be the
corresponding algebraic local fundamental group, by which we mean the set of all Galois
groups of finite unramified local Galois coverings of Nf, .- Finally let P,(p) be the set of all
finite groups G such that G/p(G) is an abelian group generated by ¢ generators; here p(G)
denotes the subgroup of G generated by all of its p-Sylow subgroups; in case of p = 0 we
take p(G) = 1. Now we may state:

Local Conjecture. For d > 2 and t > 1 we have n5(Ng,) = Pu(p).

&

Algebraically speaking, let R be the formal power series ring R
k[[X1,...,X4]], let I be the quotient field k((X1,...,Xq4)) of R, let Q be an algebraic
closure of I, and let € be the set of all J € ) such that X, R, ..., X,R are the only height- . -
one primes in R which are possibly ramified in J. We may now identify 75(Ng,) with the
set of all Galois groups Gal(J, I) with J varying in .
In the 1955 paper I proved the inclusion 75(Ng,) C N{, and by examples showed that, -
assuming p to be nonzero, wf,‘(N,‘,‘, .) contains unsolvable groups. By refining these examples,
in the 1997 paper I showed that nﬁ(N,gt) contains GL(m, g) for every integer m > 1 and
every power ¢ > 1 of p.

1E-mail: ram@cs.purdue.edu
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In a recent discussion, David Harbater has raised the question whether every member of
w5(Ng,) actually belongs to P/(p), where P;(p) is the set of all G in Py(p) for which p(G)
has an abelian supplement in G, i.e., an abelian subgroup of G which together with p(G)
generates G. To examine Harbater’s question, I asked Gernot Stroth to make me some
examples of groups in P;(p) which are not in P{(p). Here are some of the beautiful examples
produced by Stroth for t = 3, for which I have been scanning (so far unsuccessfully) the
existence or nonexistence of suitable local coverings.

The first set of Stroth groups G are for p = 3, and they are G = E + GL(2,3), where
* denotes central product, and where E is either the dihedral group Dg of order 8 or the
quaternion group Qg of order 8. Moreover, GL(2,3) can be replaced by its flat version
GL*(2, 3) by which we mean the other group which, like GL(2, 3), is a nonsplit central Z,
extension of PGL(2,3). Similarly, for any prime power ¢ = 3(4) of any odd prime p, we
get four Stroth groups by replacing GL(2, 3) by the unique group H (or its “flat version”
H") such that SL(2,9) < H < GL(2, q) with [H : SL(2,¢)] = 2. Turning to p =2, we get
Stroth groups G = F * GL(3,4) where F is an extra-special group of order 27, i.e., Fisa
nonsplit central Z; extension of 22 with Z(F) = Z; note that there are two versions of F,
depending on whether it has ouly elements of order 3 (quaternion type) or also elements
of order 9 (dihedral type); again, instead of GL(3,4) we can take its flat version GL*(3,4).

SOLVABLE KAHLER GROUPS
Donu Arapura

Two related theorems, due to Madhav Nori and the author, were discussed. A weak
form of the first theorem states the following: Let 7 be the fundamental group of normal
complex algebraic variety and n a positive integer. Let I' = m/D"r where D" is the nth
derived subgroup. Then if T is solvable and admits an faithful representatior into some
Gin(Q), it is virtually nilpotent. For the second theorem 7 is the fundamental group of a
Zariski open subset of a compact Kahler manifold and I' = #/D"#. If T is polycyclic then
it is virtually nilpotent. As a corollary, it follows that a polycyclic Kahler group must be
virtually nilpotent. The proof of the first theorem is arithmetic, while that of the second
is Hodge theoretic.

ABELIAN CONNECTEDNESS OF COMPACT KAHLER MANIFOLDS
Frederic Campana

Let G be the class of virtually abelian finitely generated groups (i.e. finitely generated
with a subgroup of finite index which is abelian). Let X be a compact Kahler manifold.
Say that X is G-connected if any generic two points z,y of X are contained in a compact
complex analytic subset Z of X such that for any irreducible component Z; of Z, one has:
m(Z:)x = Im(m(Z;) = m(X)) is in G (with Z; the normalization of Z;).

Theorem. If X (compact Kihler) is G-connected, then m(X) € G.
3
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This result fails severely in the non-Kahler case and holds for other classes G (of fi-
nite, virtually nilpotent, virtually polycyclic groups). It was conjectured by Oguiso and
Zaidenberg.

FUNDAMENTAL GROUPS OF DISCRIMINANT COMPLEMENTS
Jim Carlson

What follows is a description of joint work with Daniel Allcock and Domingo Toledo.

The family of all hypersurfaces {X;} in complex projective space of degree d and di-
mension n is parameterized by a projective space PV. Let A be the discriminant locus of
this family: the set {t € P" | X, is singular}. Let ® = m(P¥ — A) be the fundamental ‘ -
group of the space of smooth hypersurfaces. Since the natural monodromy representation
p: ® — Aut(H"(X,)) is nontrivial in almost all cases, say, d > 3, we know that ® is
nontrivial. In fact, a result of Beauville (1986) shows that for d > 3, (d,n) # (3,0),(3,2),
the monodromy group I' = p(®) is a lattice in the group G = Aut(H"(X,)), which is
noncompact. (A lattice is such that G/ has finite volume). Now consider the kernel of
the monodromy representation, which we denote by K. Dolgachev and Libgober (1981)
showed that for d = 3, n = 1, the case of cubic curves, that K is a finite group. In
alg-geom/9708002 we prove the following result:

Theorem. ( —, Toledo ) Ford > 3, n # 0,1, the kernel of the monodromy representation
is large. i

By definition a large group is one that admits a homomorphism to a noncompact almost
simple Lie group H with Zariski-dense image. Such groups are infinite and, by a theorem
of Tits, contain a free subgroup of rank 2. The idea of the proof is to construct, for each
X, a cyclic cover Y; of projective space branched along X;. The family of ¥;’s has its
own monodromy representation g/, and we show that under the stated hypotheses, ¢/(K)
is Zariski-dense. In the case of cubic surfaces, d = 3 and n = 2, we can show more: that
K is not finitely generated. This result follows from the main result of alg-geom/970916,
which has appeared in C. R. Acad. Sci. Paris 326:

Theorem. (Allcock, —, Toledo) The moduli space of marked cubic surfaces is biloho-
morphic to (B* — H)/T, where B* is the unit ball in complez four-space, T is a group of
complez reflections acting on it, and H is the collection of reflection hyperplanes for I.

A cubic surface is marked by a choice of a system of six skew lines. ' i
Using the above theorem one shows that the kernel K is equivalent modulo finite groups
to m(B* — H): the groups are related by maps with finite kernel and cokernel. Such
groups have the same rational homology. Since H is an infinite collection of hyperplanes, -
the result follows. The identification of the moduli space with a Zariski-open subset of
the ball quotient is given by the period map for triple covers of P* branched along a cubic
surface.
Note that the “hyperbolic hyperplane arrangement” H contains points where four hy-

perplanes cross at right angles. From this one sees that K contains free abelian subgroups
4 .
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of rank four. Consequently K, unlike the Torelli group for Riemann surfaces of genus two,
studied by G. Mess, is not a free group.

COHOMOLOGY OF FIBER-TYPE ARRANGEMENTS
Daniel C. Cohen? 3

An arrangement of complex hyperplanes A is a finite collection of codimension one affine
subspaces of Euclidean space €!. The cohomology of the complement, M = M(A) =
€ \ Uyea H, with coefficients in a local system L arises in a number of contexts—

. generalized hypergeometric functions, Knizhnik-Zamolodchikov equations, representations
. of braid groups, etc.—and has been the subject of considerable recent interest (see, for
instance, [1, 9, 5], and see Orlik and Terao [7] as a general reference for arrangements). For
complex local systems satisfying certain genericity conditions, work of Esnault, Schecht-
- man and Viehweg [6] shows that the cohomology of the complement is isomorphic to that
' of the Orlik-Solomon algebra (defined below), viewed as a complex with appropriate differ-
ential. It is then natural to ask: What is the relation between the two ¢ohomology theories
should these genericity conditions fail? I will give an answer to this question for the class

of fiber-type arrangements (and complex local systems of rank one).

Write A = {H\,..., H,}, and choose linear polynomials f; with H; = ker f;. The Orlik- °
Solomon algebra, A = @:ﬂ A9, is the graded C-algebra generated by the differential forms ~**-
a;j =dlog(f;). It is well-known that the algebra A is isomorphic to the cohomology algebra
of the complement M of A, and that A is determined by combinatorial data, see [2, 7).

Let A = (A1,...,An) € C* be a “weight” vector. Associated to A, we have a repre-
sentation'p : (M) — C given by p(g;) = exp(—2wi);) for any meridian g; about the
hyperplane H; of A, an associated local system of coefficients £ on M, and a distinguished
element w = Y. Aja; in A'. Right-multiplication by w defines a map u(}) : A7 — A
Clearly, pop =0, so (A®, u*(A)) is a complex. As noted above, if A is sufficiently generic,
the cohomology H*(M;L) of M with coefficients in £ is isomorphic to H*(A®, u*(})),
see [6], [8]. For arbitrary A, it is known that oo =

rank HY(A, p) < rank H(M, L) < rank H(M, C).

The first of these inequalities was communicated to me by S. Yuzvinsky. The second may
be obtained using stratified Morse theory [3, 4], and resolves a question raised by Aomoto

Ry
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. . and Kita [1].

. For arrangements of fiber-type, more can be said. An arrangement A in ! is linearly
fibered if there is a choice of coordinates (x,z) = (z1,-...,%¢, 2) so that the restriction,

~ p, of the projection C*! = ¢, (x,z) — X, to the complement M(A) is a fiber bundle
projection, with base p(M(A)) = M(B), the complement of an arrangement B in ¢*, and
fiber the complement of finitely many points in C. An arrangement is fiber-type if sits atop
a tower of linearly fibered arrangements. By a classical result of Fadell and Neuwirth, the

2Partially supported by grant LEQSF(1996-99)-RD-A-04 from the Louisiana Board of Regents.
3E-mail: cohen@math.lsu.edu; URL: http://math.lsu.edu/ cohen
5

DFG Deutsche
Forschungsgemeinschaft ©



UFG

Deutsche
Forschungsgemeinschaft

braid arrangement Ay, with complement the configuration space of ¢ ordered points in C,
is the prototypical example of a fiber-type arrangement.

The fundamental group, G = Fy, % - - - X Fy,, of the complement of a fiber-type arrange-
ment A admits the structure of an iterated semidirect product of finitely generated free
groups, and the complement M (A) is a K(G,1)-space. Given such a group, A. Suciu and
I construct a finite free resolution (C,(G), A,) of the integers over the group ring ZG in
[5]. This resolution may be used to compute the (co)homology of M with coefficients in
an arbitrary local system.

Let t = (1,...,t;) € (C*)" be a point in the complex torus. Associated to t, we have a
representation p : G — C* given by p(g;) = t; (as above, g; is a meridian about H; € A),
which endows C with the structure of a G-module, and induces a local system £ on M. For
any t, the homology of M with coefficients in £ is naturally isomorphic to the homology
of the chain complex C,(G) ®z¢C.

Denote the terms and boundary maps of this chain complex by (C,, 8.(t)). The terms

C, = Cy(G) ®z¢ C are finite dimensional complex vector spaces. The boundary maps
0,(t) may be viewed as “evaluations” of those of the resolution C,(G) in the following
way. If the matrix of A, is 7 x s, then 8,(t) : (C*)" — Mat,»,(C) is the (smooth) map
which takes a point t and yields the evaluation 5(A,), where p denotes the extension of
the representation p to (matrices with entries in) the group ring ZG. View the differentials
of the Orlik-Solomon algebra complex (A®, u*(A)) as maps p9(A) : € — Mat,y,(C). The
complexes C, and A* are related by the following result.

Theorem. Let A be a fiber-type arrangement, and for each g, let 6,()\) denote the deriva-
tive of the map Jy(t) at the point (1,...,1) € (C')". Then the system of vector spaces and
linear maps (C., §,(A)) is a chain complez, which is dual to the Orlik-Solomon algebra com-
plez (A*, 4*(A)) of A. In other words, for each q, A7 = C,, and the map p9(A) : Aq = Agna
is the transpose of the map 8441(A) : Cop1 = Cq, pI(A) = [6+1(A)]7-
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VON NEUMANN INVARIANTS FOR COHERENT ANALYTIC SHEAVES
Philippe Eyssidieuz

In order to study the group of L, holomorphic sections of the pull-back to the universal
covering space of an holomorphic vector bundle on a compact complex manifold, it is useful
to have a cohomological formalism, generalizing Atiyah’s L, index theorem [1]. The goal
of this talk is to outline the construction of such a formalism.

" To each coherent analytic sheaf F on a n-dimensional complex space X ) and each
Galois infinite unramified covering 7 : X — X, whose Galois group is denoted by T', L,
cohomology groups, denoted by H3(X, F) are attached, such that:
- 4 1. The H] ()-( F) underly a cohomological functor on the abelian category of coherent
. analy'tlc sheaves on X.
9. If F is locally free, HY(X, F) is the group of L, holomorphic sections of the pull-back
to X of the holomorphic vector bundle underlying F.
3. HY(X,F) belongs to a category of [-modules on which a dimension functlon dimr 1
with real values is defined. i 1
4. Atiyah’s L, index theorem holds: ‘

n n .
> (-1)?dimp HY(X, F) = Y _(~1)°dim H{(X, F)
q=0 =0 .

The L,-cohomology on the Galois covering X = X of a coherent analytic sheaf F on
X is the ordinary cohomology of a sheaf on X obtained by an adequate completion of
the tensor product of F by the locally constant sheaf on X associated to the left regular
representation of the discrete group Gal(X/X) in the space of L, functions on Gal(X/X).

H3(X, F) actually belongs to a very nice abelian category of I'-modules, introduced by
M.S. Farber and W. Liick [2] to give a new interpretation of Novikov-Shubin invariants.
We sketch a proof of this fact in the smooth projective space. This enables us to construct,
in addition to Von Neumann dimension, other invariants measuring the non-Hausdorffness
of this topological vector space. R

REFERENCES
[1] M. Atiyah, Elliptic operators, discrete groups and Von Neumann algebras, Soc. Math. Fr. Asterisque

) . 32-33, 1976, 4372 |
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i
!
i 7
!
b
,
)
DFG Deutsche
Forschungsgemeinschaft ©




BOUNDARY MANIFOLDS OF ALGEBRAIC PLANE CURVES AND LINE
ARRANGEMENTS

Eriko Hironaka

Let C C P? be an algebraic plane curve in the complex projective plane. The goal of
my research is to study the fundamental group and homotopy type of the complement
E; = P?\ C and compare it to combinatorial and geometric information about C and its
singularities.

The combinatorial information of C is captured in the decorated incidence graph of C.
The incidence graph is the bipartite graph ¢ with curve-vertices vc, one corresponding
to each irreducible curve C C C, and point-vertices v,, one corresponding to each singular
point p € Sing(C). A point-vertex v, and a curve-vertex vc are attached by edges e;, one
for each branch b of C at p. The decorated incidence graph (I'¢,T) is the incidence graph
T¢ together with local information attached to the vertices and edges: if C is an irreducible
component of C, then 7T (v¢) is the genus of C; if p is a singularity on C, then T (vp) is the
link type of the algebraic link associated to (C, p); and if b is a branch of C at p, then 7 (e;)
is a connected component of the link 7 (v,).

Two algebraic plane curves C; and C, are combinatorially equivalent if there is an iso-
morphism of graphs

¢ : FC] - FC:
such that 7(v) = T(¢(v)) and T(e) = T(¢(e)), for each vertex v and edge e. The curves
C: and C; are topologically equivalent if there is a homotopy equivalence of pairs

(P%,C1) ~ (P2, Cy).

A jeneral problem is to determine when a given decorated incidence graph can be realized,

whether it can be realized in two or more topologically distinct ways (giving what is known

as a Zariski pair), and what properties the realization spaces have.

As a tool for approaching this problem, we study the boundary 3-manifold M associated
to an algebraic plane curve. The boundary 3-manifold of C is the boundary of a regular
neighborhood of C in P2. 1t is not hard to show that the fundamental group and homotopy
type of M are determined by (T¢, 7). Furthermore, M and its fundamental group can
be realized as a graph manifold and a graph of groups over I'¢ in the sense of Waldhausen
and Serre.

Our goal is to describe the homotopy type of the complement E; = P? \ C explicitly
in terms of M, and extra data. This extra data is necessary because of the existence of
Zariski pairs, shown by Zariski and later by several authors. The simplest example is the
case when C = L is a finite union of planar lines. The combinatorial type of £ is then
determined by Iz, since the only singularities of £ are the points of multiple intersection,
and if d lines of £ come together at the point p, then 7(v,) is the positively oriented
d-component Hopf link. .

Descriptions of the homotopy type of the complement of a real line arrangement £ (where
L is defined by real equations) by Libgober, Orlik, Salvetti and Falk imply the following

result.
8
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Theorem 1. The homotopy type of E. is determined by I'z and an ordering of the edges
emanating from each vertez.

Work of Rybnikov gives an example of combinatorially equivalent complex line arrange-
ments whose complements have non-isomorphic fundamental group. However, to the au-
thor’s knowledge, there are still no known examples of two combinatorially equivalent real
line arrangements whose complements have different homotopy type.

In a recent preprint, we give a new proof of Theorem 1. We exhibit the boundary
manifold M, as a graph manifold over the incidence graph Iz, then explicitly find a
“lifting”

f : Fc - M C,
‘ taking each vertex in I'; to the corresponding vertex manifold in M, such that E. is
homotopy equivalent to the space
Mc/f(Tc),

given by collapsing the image of f(I'c) to a point. Here, for e an edge in Iz, f(e) need |
not be homotopic to a path in the edge manifold of M, corresponding to e. We give the |
homotopy class of the map f explicitly in terms of the incidence graph 'z endowed with |
orderings on the edges emanating from each vertex of I'c. These orderings depend on the |
slopes of the lines and on the image of the points of intersection under a 1-dimensional

linear projection.

HARMONIC MAPS AND REPRESENTATIONS OF FUNDAMENTAL
GROUPS

Jirgen Jost .
(Joint work with Kang Zuo) :

Given a representation p of the fundamental group m(X) of a compact Kéhler manifold
in a linear algebraic group G defined over C or a p-adic field, one constructs a p—equxvanant |
harmonic map : |
u: X3 G/K or A(G), |

where in the archimedean case, G/K is the symmetric space associated to G, and in
the nonarchimedean one, A(G) is a Euclidean Bruhat-Tits building on which G operates
. isometrically. The strategy then is to exploit properties of u in order to draw conclusions
about p. u is pluriharmonic by work of Siu and Sampson and defines a holomorphic
foliation by work of Jost-Yau.
In the archimedean case, one pulls back convex functions form G/K to produce plurisub-
harmonic functions on X, and in the nonarchimedean as well as in the Euclidean case where
u is'the Albanese map, one pulls back holomorphic 1-forms.
If the representation is generically large, one produces in this manner a semi-Kéhler
form on X that is positive definite on a Zariski open set. A vanishing theorem for

L?—cohomology is used to show that in that situation, H® (X V)=0 for 0 <i<dimcX.
9
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Combined with Atiyah’s L?—index theorem, this implies Kollar’s conjecture that x(Kx) >
0 assuming that 7;(X) admits a generically large representation as described above.

REPRESENTATIONS OF BRAID GROUPS AND MAPPING CLASS
GRCUPS APPEARING IN CONFORMAL FIELD THEORY

Toshitake Kohno

Geometrically, conformal field theory is formulated as a vector bundle over the moduli
space of Riemann surfaces equipped with a projectively flat connection. Let £ be a compact
Riemann surface of genus g with marked points p;,---,p,. We fix a positive integer &,
| affine Lie algebra g, integrable highest weight modules of level k #,,, 1 < j < n, and
‘ local coordinates at p;,---,p,. We denote by M, the space of meromorphic functions
on ¥ with poles at py, - - - , pa, which acts diagonally on ®}_,H,; by Laurent expansion at
D1, ** ,Pn- The space of conformal blocks is by definition g

Ha(p) = Homg(p) (®7=1Ha,;,C)

which forms a vector bundle over the moduli space of Riemann surface of genus g with
n marked points. A projectively flat connection is defined by means of the action of the
Virasoro algebra. B
In the case g = 0, we have an embedding
i* : Ha(p) - Hom, (®;-‘=1K\,.,c) ,

and for a section ¥ of the above vector bundle over the configuration space of n points, we
can show that ’

ARET0)

— LY

sz
is again a section. Here LE’{ denotes the action of the Virasoro operator L_; on the j-th
component. This construction gives us an explicit form of the connection, which is called
the Knizhnik-Zamolodchikov connection.

As the monodromy of Knizhnik-Zamolodchikov connection, we get an irreducible unitary
representation of the braid group. In the case of higher genus, we obtain a projective
representation of the mapping class group. This representation was used by the author
to give a Heegaard splitting formula of the Witten invariant of 3-manifolds. In the case
g = sl3(C), we can apply a method of abelianization of the conformal field theory using
Prym variety due to T. Yoshida to show that the monodromy group is finite.

-
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ON A CHISINI CONJECTURE
Vik.S. Kulikov

Let B C P2 be an irreducible curve over C with ¢ ordinary cusps and n nodes, as the
only singularities. Put deg B = 2d, and let g be the genus of its desingularization. The
curve B is the discriminant curve of a generic morphism f : S — P2, deg f > 3, if:

(i) S is a non-singular irreducible projective surface;

(i%) f is unramified over P? \ B;
(#44) f*(B) = 2R+ C, where R is irreducible and non-singular, and C is reduced;
(i) fir : R = B is the normalization of B.

Chisini’s Conjecture asserts that for the discriminant curve B of a morphism f of deg f > 5
this generic morphism is unique up to equivalence.

We prove that if B is the discriminant curve of a morphism f of

4(3d+g—1)
(2B@d+g-1)-¢)’ s
then, for B, the generic morphism f is unique, i.e., Chisini’s Conjecture holds.for B.

This inequality holds for almost all generic morphisms. More precisely, let S be a
projective non-singular surface and L an ample divisoron S, f : S — P? a generic morphism
given by a three-dimensional subsystem {E} C |[mL|, m € Q, and B its discriminant curve.
Then there exists a constant m, (depending on S and L) such that, for B, the generic
morphism f is unique if m > m.

As a consequence we prove that if the canonical bundle Ks of S is ample, f is a generic
morphism such that f~!'(P!) = mKs, m € N, then, for B, the generic morphism f is
unique. :

deg f >

HOLOMORPHIC FUNCTIONS OF SLOW GROWTH ON COVERING
SPACES OF PROJECTIVE MANIFOLDS :
4

g
U

Finnur Ldrusson

Let Y — M be an infinite covering space of a projective manifold M C P¥ of dimension
n > 2. Let C be the intersection with M of at most n— 1 generic hypersurfaces of degree d

- in P¥. The preimage X of C in Y is a connected submanifold. Let ¢ : Y — [0, 00) be the

smoc thed distance from a fixed point in Y in a metric pulled up from M. Let Oy(X) be
the Lilbert space of holomorphic functions f on X such that f2e~? is integrable on X, and
define O4(Y) similarly. We get a continuous linear restriction map p : Oy(Y) = Oy(X).

Theorem. p is an isomorphism for d large enough.

As an application, we obtain new examples of Riemann surfaces and domains of holo-
morphy in C* with corona.

4E-mail: larusson@uwo.ca
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In some sense, the Theorem reduces the problem of constructing holomorphic functions
on Y to the 1-dimensional case. There, we have the following result.

Theorem. Let X be a Galois covering space of a compact Riemann surface with a non-
elementary hyperbolic covering group. Then either
1. every positive harmonic function on X is the real part of a holomorphic function, or
2. if u > 0 is the real part of an H' function on X, then the boundary decay of u at a
zero on the Martin boundary of X is no faster than its radial decay.

In case (1), X is HP-convez for each p < oco.

The condition in (2) is a geometric obstruction to a harmonic #? function being the real
part of a holomorphic function, which arises simply and naturally in higher-dimensional
settings. Here, however, it is the only obstruction.

How severe is the hyperbolicity restriction? Olshanskii has proved that almost every
finitely presented group is hyperbolic. Is the same true for fundamental groups of pro;ectwe
manifolds?

Papers are available on the Web at

http://www.math.uwo.ca/ larusson.

COHOMOLOGY OF LOCAL SYSTEMS ON THE COMPLEMENTS TO
PLANE CURVES AND POSITION OF SINGULARITIES

Anatoly Libgober

The purpose of this talk is to discuss several invariants of fundamental groups of the
complements of plane algebraic curves and describe them in terms of the local type and
position of singularities in P2. Let C C 2 be a curve with 7 components. Characteristic
variety V;(C) can be defined as a subvariety of the torus of local systems on the complement
to C (i.e. Hom(m (2 —C),C")) consisting of local systems £ such that dim H'(C*-C, £) >
i. Characteristic varieties are invariants of m(C2 — C) and can be calculated via Fox
calculus. We show that the local type of singularities of C and geometry of the subset of
P? consisting of singularities of C determine the characteristic varieties in an explicit way.
More precisely the local type of singularities of C defines a natural partition of the unit
cube U C ' into a union of polytopes (polytopes of quasiadjunction) so that each face A
of such polytope defines in a natural way the ideal sheaf Ty C Op: such that the support
of Op2/T, is the singular locus of C. Face A called i-contributing if:

1. it belongs to a hyperplane dz, + - - - + d,z, = £(A) for some integer £(A) depending

on the face A (here d,, ... ,d, are the degrees of components of C);

2. dim B (%, Ia (3 ds — 3 - £(4))) = .

Theorem. Let U — (C*)" be the ezponential map
(515--- +8r) = (exp2msy,... ,exp 2ws;).
12
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Then the closure of the image of each i-contributing face of quasiadjunction is a component
of characteristic variety V;(C). Moreover, all components of characteristic variety Vi(C)
can be obtained in this way.

Example. Let C = C,UC; be a union of two irreducible nonsingular curves such that the
only singularities of C are ordinary tacnodes. Partition into polytopes of quasiadjunction
contains two polytopes:

1
a = {(z,y)IO <z,0<y,z+y< E}
1
A2= {(zfy)lz+y 2 '2':1: < 1:!/ < l}

where the face of quasiadjunction is given by z + y = =. It is contributing if and only if

for some k one has d;, = 2k, d; = 2k and dim H'(Z(d — 3 - k)) # 0 where Z is the ideal of
the union of singular points of C; U C;.

These results generalize previous description of the Alexander polynomi‘;l.s of plane
curves in terms of ideals of quasiadjunction [Proc. Symp. of Pure Math., 1983, vol.
40, A. Libgober, Alexander invariants of plane algebraic curves].

LIOUVILLE TYPE PROPERTIES AND AUTOMORPHISM GROUPS
Viadimir Lin

The classical Liouville theorem says that C* carries no nonconstant bounded holomorphic
functions. More generally, any holomorphic function of polynomial growth on C* is a
polynomial. The same is true for harmonic functions on R*. By Liouville type properties
of complex (or Riemannian) manifolds I mean the properties of similar nature. I wish to
explain certain relationship between Liouville type properties of a complex (or Riemannian)
manifold X and the “reachness” of the action of its automorphism group Aut®X.

The following simple fact illustrates the idea: if the natural action of AutX in X is
2-transitive then X is Liouville (that is, it carries no nonconstant bounded holomorphic
functions). The conclusion holds true under the following weaker condition: the diagonal
Aut X-action A in X x X,

A: AutX 3 g+ [X x X 3 (z,y) — (92, 9y) € X x X],

admits a dense orbit T". Indeed, if f: X — C is holomorphic and bounded, then the function

F(z,y) & SUPgeauw x | f(9z) — f(gy)| is bounded, continuous, and plurisubharmonic on
X x X; it is A-invariant and hence constant on T'. Density of I' and the evident relation
F(z,z) =0 imply F = 0 and, thereby, f = const.

Consider a subgroup G C Aut X (a typical case when X comes together with certain

automorphism group G C Aut X is the case of a Galois covering X — Y). The natural
13
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G-action in X is cocompact if G(K) = X for some compact K C X (this is weaker than
transitivity condition G(a single point set) = X).

Theorem 1. A complez space (or Riemannian manifold) is Liouville whenever it admits
a cocompact action of a virtually nilpotent group.

For Riemannian manifolds this theorem is due to Y. Guivarch (1981) and (in more
general form) to T. Lyons & D. Sullivan (1983). Holomorphic version appeared in my
paper (1986).

Example. a) X =H={2€C| Imz>0},G={z— az+b| a>0,be R} = Aff ,(R) (a
two-step—solvable group). G is transitive in H; thus, H carries no nonconstant G-invariant
functions. However, H is not Liouville. Actually, H is even Carathéodory hyperbolic, that
is, bounded holomorphic functions separate points of H.

b) Let A € SL (3; Z) be a matrix with one real eigenvalue @ > 1 and two nonreal eigenvalues
B, B. Let a = (a1, az, as) and b = (by, by, b3) be a real and a complex eigenvectors of A
corresponding to o and 3 respectively. Take X = H x C and consider the subgroup G C
Aut X generated by the following four automorphisms g;: go(z, w) = (az, fw), g;j(z,w) =
(z+aj,w+b;), 1<j<3, (z,w)eX=HxC

G is a two-step—solvable polycyclic group, and X — X/G is a polycyclic Galois G-
covering over a smooth compact complex surface Z £ X/G, which is one of the Inoue
surfaces.

These examples show that for groups G “bigger” than virtually nilpotent Theorem 1
falls (even in the simplest case of Galois G-coverings over compact manifolds). However,
certain weaker Liouville type properties are held for relatively big groups even under weaker
transitivity type conditions.

Let X be a complex space (or Riemannian manifold), BO(X) be the space of all bounded
holomorphic (respectively harmonic) functions on X, and P(X) be the convex cone of all
bounded continuous plurisubharmonic (respectively subharmonic) functions on X. G acts
in BO(X) and P(X) (G> g~ [f— f9); f9z) = f(9z)). An element g € G is a
f-period if f9 = f. G-action in X is P(X)-ergodic if P(X) does not contain nonconstant
G-invariant functions. (By the maximum principle, a cocompact action is P(X)-ergodic.)

Theorem 2 (V. L., 1986). Let G be amenable and G-action in X be P(X)-ergodic. Let
s € G, f € BO(X), and [s, h] = shs™'h~! be a f-period for each h € H in some finite indez
subgroup H C G, Then s is a f-period. In particular, each s € G whose conjugacy class
sC = {gsg™!| g € G} is finite acts trivially in BO(X), that is, f* = f for all f € BO(X). Q

Corollary. Let an amenable group G with nontrivial center act on a Carathéodory hy-
perbolic complex space X. Then the quotient space X/G (if it ezists in complez category)
cannot be a Zariski open subset of a compact complez space. In particular, if such G acts -
in a bounded domain U C C*, the quotient U/G cannot be a quasiprojective variety.

The proof of Theorem 2 involves some special G-invariant probability measure p (related
to the element s and the function f € BO(X) under consideration) on the Stone-Cech

compactification 3G of G, and then the corresponding space L,(fG, ).
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G. Margulis (1986) noted that all statements of Theorem 2 remain true for arbitrary,
not necessary amenable, group G whenever its action in X is cocompact; his argument is
based on a special form of the Harnack inequality related to the G-action.

Some parts of Theorem 2 were recently generalized as follows:

Theorem 3 (V. L. & M. Zaidenberg, 1998). Suppose that either G is amenable and its
action in X is P(X)-ergodic or the G-action in X is cocompact. Then any FC-hypercentral
element s € G acts trivially in BO(X).

Theorem 4 (V. L. & M. Zaidenberg, 1998). Let X — Y be a Galois G-covering over a
compact Riemannian or Kéhler manifold Y. If G is an estension of a FC-hypernilpotent
group by a Varopoulos group, then X is Liouville.

On the other hand, the following result (strengthemng a theorem of T. Lyons & D.
Sullivan) is valid:

Theorem 5 (V. L. & M. Zaidenberg, 1998). Every compact Riemann surface Y of genus
g > 2 admits a Carathéodory hyperbolic metabelian covering X — Y. i

<
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DEGENERATING FAMILIES OF BRANCHED COVERINGS OF THE
COMPLEX PROJECTIVE LINES AND BALLS

Makoto Namba °

1 It is known that a finite branched covering of a given complex manifold M is determined
uniqu 2ly (up to isomorphisms) by its branch locus and (permutation) monodromy repre-
senta.ion. However it is a difficult problem to determine the covering from them concretely
(algebraically, analytically), even if M = P! the complex projective line. We introduce two
kinds of pictures, a Klein picture and a Riemann picture, each of which determines the
covering topologically for the cases M =P! and M = A(0,a) = {z € C | |z| < a}, a ball.
Let X — P! be a branched covering of P! of degree d, where X is a compact Riemann
surface. We denote by By = {qi,...,¢.} and ®; the branch locus and the monodromy

SE-mail: namba@math.wani.osaka-u.ac.jp
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representation of f respectively. ®; is determined uniquely up to its representation class
(2/)-

Let T be a simple oriented loop in P! passing through the points gy, ..., ¢, in this order
surrounding a domain 2 clockwisely. We regard 2 and P! - as a continent and an ocean
respectively. We pull T, 2 and P! — Q back over f and get a checked pattern consisting of
d-continents and d-oceans, which we call a Klein picture of f. The Klein picture determines
f topologically.

On the other hand, take a reference point gy in 2. We take disjoint paths connecting go
and g; (j =1,...,n). Let Ty be the graph consisting of the points go, g1, ..., ¢, and these
paths. We pull Ty back over f and get a graph T on X. T gives a cellular decomposition
of X, which we call a Riemann picture of f. The Riemann picture also determines f
topologically. The Klein picture and the Riemann picture for a finite branched covering of
a ball are defined in a similar way.

2 A finite branched covering f : X — A(0,a) x P! is called a degenerating family of
finite branched coverings of P! if (1) every fiber t x P! is not contained in B and (2) every
fiber ¢ x P!, (t # 0) meets transversally with B; at n (n : fized) points {qi,...,¢,}. Put
Xe=f'txP)and f, = f : X, — t x P'. f is then identified with the family {f.}.
Assume for simplicity, a > 1 and (A(0,e) x00)NBy =0. Let § = {t = ¢€* | 0 < s < 2} be
the unit circle. § induces a braid 6(8) on {q, ..., g} which is called the braid monodromy.
By the theorem of Zariski- van Kampen, the equality $,0(8) = ®,, where g = f,. We show
that f = {f.} is topologically determined by the pair ([®,], ()}, while the central fiber
fo is determined topologically only by [®,]. We can observe the degeneration through the
Klein picture. '

We can also define a degenerating family of finite branched coverings of balls and get a
similar theory to the case of that of P.

3 Every complex 2-dimensional normal singularity (X, z) can be regarded as a degenerating
family of branched coverings of balls. We can compute the local fundamental group 7, (X —
T,po) using the Zariski-van Kampen theorem and the Reidemeister-Schreier method. The
Riemann picture is very useful to carry out the computation correctly.

This method works for the computation of the fundamental group of every 3-dimensional
oriented compact manifold Y. In fact, By the theorem of Hilden-Montesinous, there is a
covering h : Y — S% of degree 3 of the 3-sphere S° branching at a knot B; whose
monodromy ®;(v;), (7;: generators of the fundamental group m,(S® — By)), consist of only
transpositions.

We may regard S as the boundary of A(0,1) x A(0,b) in €2 and the knot B, as a braid
in § x A(0,b). Let B be the cone connecting the origin of € and every point of B,. We
construct a topological covering f : X — A(0,a) x A(0,b) of degree 3 branching at B
which is an extension of h (X is in fact a cone of Y'). Then f is a topological degenerating
family of branched coverings of balls and

m(Y,p0) = m(X — z,p0).

Thus the computation of m, (Y, pp) can be done by our method.
16

Deutsche
DFG Forschungsgemeinschaft © @




oF
 OFG=

Deutsche

To construct 3-dimensional oriented compact manifolds is reduced to find pairs ([®], o)
such that ®o = ®, where ® is a transitive representation of the free group < m,..., 7 >
to the 3rd symmetric group such that every ®(;) is a transposition and o is a braid of
n-strings.

We prove that there are 3 canonical forms for {®]. The braids o with & = & form a
subgroup Ky of the n-th braid group B, of finite index. It is important to analyze the
subgroup K for the canonical ®.

WEAK LEFSCHETZ THEOREMS
Terrence Napier and Mohan Ramachandran

Joint work with Mohan Ramachandran on an approach to Nori's weak Lefschetz theo-
rem is described. The approach, which involves the d-method, avoids moving arguments
and gives much stronger results. In particular, it is proved that if X and Y are connected
smooth projective varieties of positive dimension and f : Y — X is a holomorphic immer-
sion with ample normal bundle, then the image of m, (Y) in m;(X) is of finite mdex This
result is obtained as a consequence of the following direct generalization of Nor} s theorem:

Theorem. Suppose ® : U = X is a holomorphic map from a connected complez man-
ifold U into a connected smooth projective variety X of dimension at least 2 which is a
submersion at some point. Let Y C U be a connected compact analytic subspace such that
dim HY(U, £) < oo for every locally free analytic sheaf L on U. Then, for every Zariski
open subset Z of X, the image G of m(®7(Z)) in m(Z) is of finite indez.

The idea of the proof is to form a covering space Z — Z with fundamental group
equal to G and then to construct L? holomorphic sections of a suitable line bundle which
separate the sheets of the covering. This construction is a standard application of the L2
d-method (Andreotti-Vesentini, Hormander, Skoda, Demailly). Pulling these sections back
to ®~1(Z) by a lifting of ®, the finite dimensionality of the space of holomorphxc sections
on the formal completion gives a bound on the dimension of the space of sections on VA
and hence a bound on the degree of the covering space (i.e. on the index of G).

INVARIANTS AT INFINITY OF POLYNOMIAL MAPS AND
SUPERABUNDANCE

Andrds Némethi

Let f = fa+ fy_1 + ---: C**! = C be a polynomial map, where f; is homogeneous of
degree i. We will assume that X*® = {fs = 0} C P" has only isolated singularities with
Milnor number {g;}%, and local monodromy operators {T;}%,.

Theorem. If X®N{fs_1 = 0} = @, then f is quasi-tame (in particular “good at infinity”).

All its topological (and discrete Hodge theoretical) invariants at infinity depend only on the

hypersurface X C P*. E.g. the generic fiber has the homotopy type of V,S™, where
17

Forschungsgemeinschaft

&



UFG

= (d - 1)"*! - ¥, u, the characteristic polynomial of the monodromy at infinity TP is
completely determined by the local monodromies {T;};.

The interesting fact is that the Jordan block structure of the monodromy at infinity
T is not local. In order to describe it, we use the following notations: If V is a vector
space and T : V — V is an endomorphism, then (Vj,T)) denotes the generalized A-
eigenspace with the restriction of T on it; #,T) denotes the number of ! x I-Jordan blocks
of Ty, and #T) := Y, #:Th. We define the (equivariant) superabundance of Sing(X*)
as follows: ff := dim P*(X*) and B, := dim(P"*!(X,), Galois action)exp(zris/a) for 1 <
s < d — 1, where X4 — P" is the d-cyclic covering of P" branched along X*, and P*
denotes the primitive cohomology. Moreover, we consider the local invariants Xs as well:
Xo=—Y; i+ {(-1)""+{(-1)"+ (d~1)"*")/d, and x, = xo+ (-1)" for 1 < s < d—1.

Theorem. I. If a = e*™/4, s =0,...,d - 1, then:
#I(T?")a =Xx:+26, - E?:[#(n)a-
#2(T%)a = —fs + ZE #1(Ti)a-
#u1(TP)a = S, #1(T)a forl2>2.

IL If o #1, then #(Tf)a = Xy #u(T)arms for all 1> 1.

In particular, 7 depends on the position of the singular points of X.

Similarly, the limit mixed Hodge structure at infinity associated with f can be computed
from the Hodge data of X*°, X; and the local (hypersurface) singularities of X>.

The talk is based on the joint work with Ricardo Garcia Lépez. Some of the results
are the global version of the results proved by E. Artal Bartolo, I. Luengo and A. Melle-
Hernéndez in the local situation.

GEOMETRY OF CUSPIDAL SEXTICS AND THEIR DUAL CURVES
Mutsuo Oka ©

Let C be a given irreducible plane curve of degree n defined by f(z,y) = 0 where f(z, y)
is an irreducible polynomial. C is called a torus curve of type (p,q) if p,q|n and f(z,y) is
written as f(Z,y) = fusp(Z,y)? + fasq(z, y)” for some polynomials f,/p, fn/q of degree n/p
and n/q respectively. This terminology is due to Kulikov [K2]. Torus curves have been
studied by many authors ([Z], [O1],[K2], [D},[T}).

In the process of studying Zariski pairs in the moduli of plane curves of degree 6 with 3
cusps of type y* — 2% = 0, we have observed that there ezist ezactly two irreducible compo-
nents N3, and N3z which corresponds to torus curves and non-torus curves respectively.
Their dual curves are seztics with siz cusps and three nodes. Starting from this observa-
tion, we study the moduli space of sextic with 6 cusps and 3 nodes which we denote by
M and the moduli of their dual curves. It turns out that M has a beautiful symmetry.
The “regular part” (=Pliicker curves) of M is stable by the dual curve operation. On the
other hand, the moduli of 3 (3,4)-cuspidal sextics NVj is on the “boundary” of M in a nice

SE-mail: oka@math.metro-u.ac.jp
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way. By the dual operation, this moduli is isomorphic to a “singular” stratum M3 of M,
which consists of 6 cuspidal 3 nodal sextics with 3 flexes of order 2. The moduli space M
is a disjoint union of torus curves and non-torus curves. For a curve C € M, the generic
Alexander polynomial Ac(t) of P2 — C is determined by the type C. If C is a torus curve,
Ac(t) =t — t+1 and 7 (P2 — C) = Z, * Z3, while for non-torus curve C, Ac(t)=1and
71(P? — C) = Zg. Moreover we show that C* is a torus curve if and only if C is a torus
curve.

_In this talk, we study dual curves and their singularities. We show a lemma which gives
explicitly the defining polynomials of the dual curves and then we give a duality theorem
which describes the dual singularity in terms of the original singularity. Then we study
the moduli space M and other moduli spaces which appear on the canonical stratification
of the “closure” M of M. _Main Theorem describes the stratification structure and the
topological properties on M. Then we compute the Alexander polynomial, using the
method of Esnault and Artal ([E],(A1]). After that, we compute the moduli space of
sextics with 3 (3,4) cusps. We can compute the fundamental groups of the complements
of 3 (3,4) cuspidal sextics of torus type and non-torus type. Finally we give a new Zariski
triple of plane curves of degree 12 with 12 (3,4) cusps, as an application of Main'Theorem.
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HYPERGEOMETRIC INTEGRALS AND HYPERPLANE
ARRANGEMENTS

Peter Orlik

This talk was an exposition of the Aomoto-Gelfand theory of multivariable hypergeomet-
ric integrals with emphasis on the role played by the theory of hyperplane arrangements.
Let ¢ be affine space and A an arrangement of affine hyperplanes. Let N = UgeaH be
its divisor and M = C¢ — N its complement. Let ay be a linear polynomial with kernel H
and let Ay € C. Define a rank one local system £ on M to have monodromy exp(—2miAy)
around H. Let £V be its dual local system. The hypergeometric pairing is

H,(M,LY) x H*(M,L) —C.
In order to interpret the result of this pairing as an integral, M is given a smooth, locally
finite triangulation and a holomorphic de Rham theorem is proved
H?(M, L) ~ H*(T'(M, ), V).
Here  is the holomorphic de Rham complex of M and
V=d+wy=d+ Y o,
ay
HeA
If L is sufficiently generic, then Esnault-Schechtman-Viehweg proved
H?(M, L) ~ H?(B',w,)
where B is the C-algebra generated by the logarithmic forms {day/ay | H € A} and

HP(M,L)=0forp#¢, dimHYM,L)=|e(M)|
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where e(M) is the Euler characteristic of the complement.

Arrangement theory provides a combinatorial calculation of e(M) in terms of the char—
acteristic polynomial. The nbc set of A is a basis for the algebra B" and a subset called
fnbc was used by Falk-Terao to construct a basis for H4(M, L)

FUNDAMENTAL GROUPS OF COMPACT KAHLER MANIFOLDS WITH
NUMERAICALLY EFFECTIVE RICCI CLASS

Mihai Paun

In the paper "Compact Kéhler manifolds with numerically effective Ricci cléss”, the au-
thors (J.- P. Demailly, T. Peternell and M. Schneider) raised the following two conjectures:

Conjecture 1. Let (X,w) be a compact Kéihler manifold with numerically effective Ricci
class. Then m(X) is almost-nilpotent. -

Conjecture 2. Let (X,w) be a compact Kihler manifold with numerically eﬁ'ectwe Ricci
class. Then the Albanese morphism of X is surjective.

In geometrical terms, the hypothesis on the Ricci class translates as follows: there exists
a sequence of Kéhler metrics (wx)x on X such that wy € {w} and Ricci,, > —1/kwy (here
we denote by {w} the cohomology class of the metric w).

Now in the setting of complete Riemannian manifolds with Ricci curvature bounded
from below, the following (deep) result was recently proved by Cheeger—Colding:

Theorem (Cheeger—Colding). There ezists a positive number 6,,, such that for each
complete manifold (M, g) with dimM =m and Rlccn, —g, the image

Im (m1(By(6)) > (X ))

E

is a almost-nilpotent group.

By combining this result with the techniques developed by Demailly et al. m the paper
mentioned above, we prove:

‘Theorem 1. Conjecture 1 is true.

Actually, the essential observation is that one can bound the norm of the generators of
7 uniformly with respect to all the Kihler metrics sitting in a compact set of the Kihler
cone.

As for the second problem, it has been recently settled by Qi Zhang for X a projective
manifold. In the Kahler case we have obtained the next partial result:

Theorem 2. Let (X,w) be a compact Kihler manifold endowed with a sequence (wg)x of
Kaéhler metrics with the following properties:

1. wy € {w}

2. Ricciy, > —1/kwy.

Then:
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i) b1(X) < 2n = dimg(X).

ii) Under the additional hypothesis diam(X, w)/VE = 0 as k goes to infinity, the Al-

banese map of X is surjective.

The proof of the first point of this result uses some ideas of Gromov. As for the proof of
ii), it rests on a " Toponogov L?” theorem of Cheeger-Colding and on some ad-hoc Kéhlerian
arguments. The (undesired) hypothesis concerning the growth of the sequence of diameters
is needed to keep some global estimates of the functions of type z — |82, (Where § is a
holomorphic 1-form) uniform with respect to k.

Remark. As for the moment we do not know any “honest” example for which the sequence
of diameters goes to infinity, we suspect that for a manifold with nef Ricci class, the
additional hypothesis in ii) is always satisfied for an "optimal” sequence of metrics with
the properties 1 and 2 of theorem 2. This is actually the case if the anticanonical class of
X is numerically effective and contains a closed positive current with small enough Lelong
numbers.

COMPLETE UNFOLDINGS OF CLOSED POSITIVE BRAIDS AND
OREVKOV’S GENERALIZATION OF THE ZARISKI CONJECTURE

Lee Rudolph

In [1], Orevkov proved a generalization of the so-called Zariski Conjecture (Theorem of
Fulton—Deligne), of which a slightly special case is the following.

Theorem. If V C € C CP? is an affine complez plane curve such that the link-at-
infinity Lo (V) C Si’/£ is a closed positive braid, and if the only singularities of V in C? are
nodes, then the fundamental group m,(C? \ V) is abelian.

The original Zariski Conjecture is the much more special case that Ly (V) is a link
of deg V components of a positive Hopf fibration 53, — P! = S? the general case of
Orevkov’s theorem allows Lo,(V) to be a split sum of several closed positive braids, in
which case the conclusion has to modified a bit.

While Orevkov’s ingenious proof uses the structure of Lo(V) as a closed positive braid
(and of V as a sort of “quasipositive nodal braided surface”, cf. [3]) repeatedly and
profoundly, it does not (at least not explicitly: nor implicitly as far as I can tell) use what
is, topologically, perhaps the most salient fact about closed positive braids, namely, that
they are fibered links. In my May 1998 talk at Oberwolfach, I proposed a generalization
of the quoted Theorem to all closed positive braids (not just those which appear as links-
at-infinity). In the light of subsequent conversations with Orevkov, Teicher and other
participants at that meeting, I am now emboldened to a further generalization.
Conjecture. Ifp: (D*, D*\ Int(N(K), K)) — (D?,S",0) is an unfolding of a fibered link
L c S® = 0D, such that:

1. V = p~}(0) is immersed with no singularities but nodes, and

2. each critical point X of p with p(x) # 0 is a positive quadratic singularity,
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then m (D*\ V) is abelian.
Here “unfolding” is to be understood in the fibered-knot-theoretical sense introduced in

[2].

The proposed method of proof, in the case that L is a closed positive braid, or more
generally a quasipositive Hopf-plumbed fibered link, is to extend the methods of [4] and
[5] to analyze Hopf-plumbed fiber surfaces from the point of view of unfoldings (which are,
a priori, more general than the Murasugi sums discussed there). As to the general case,
no proof method is proposed at this time; it just seems like a good guess!
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NORMAL CROSSING SYSTEMS OF PLANE ONE-PLACE CURVES
P. Russell .

In the study of simple connectedness of certain affine 3-folds, the following question
arose: If G, H are “embedded lines” in C? meeting normally in r > 1 points, is 7, (C2—GUH }
abelian? The answer is yes, in essence since a line G is a curve with one place at infinity,
ie. the closure G in P? has a unique unibranch point at infinity. Let G be such-a curve.
For c € C, put G. = g7(c), where G = g=1(0). Let Lo, = P2 — 2. o

Put

MNC(G) = exceptional locus + L,
in the minimal normal crossing (M NC) resolution of G+ Lo, at infinity. Here, “' 7 denotes
proper transform.

Fundamental theorem on one-place curves (Abhyankar-Moh):
(1)Vce C, MNC(G) = MNC(G.); _
(2) G? > 0 (G’ = proper transform of G after M NC-resolution).

Corollary. If G is smooth, then G is a general fibre of g : ©2 — C.

Let G, H be one-place curves. We define: H < G < the proper transform of H has NC
with MNC(G).

Lemma. HNG =0 G =g"Y0), H=h"1(0) withh—g=ce C.
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Proposition. Suppose HNG # 0 end H < G. Then G? > 0 and H” > 0, where G', H'
are the proper transforms of G, H in the MNC-resolution at infinity of G + H + L.

By a result of Nori, one has immediately

Theorem 1. Let Gy, --- ,Gx be smooth one-place curves in € such that Gy + -+ -+ Gy is
a NC-divisor and G;NG; # 0 Vi,j. Then m(C? — G, U---UGy) is abelian, i.e. Z*.

More generally:

Theorem 2. Let Gy, - ,Gl,l,'n- ,Gk1, -+, Gs, be smooth one-place curve such that
EG,’J' is a NC-divisor and G.’j n Giljl =0 i=17. Then

m(C —UGij) = Fyy x -+ x Fy,.
(F, = free group on s generators.)

It is an interesting question to what extent these results can be extended to nodal one-
place curves. There may be a chance with theorem 1, or the “commuting” part of theorem
2. This is true, for-instance (again by a theorem of Nori), for generic rational curves
with one place at infinity (they are nodal of finite distance). However,

Example. Let Gy = g~'(0) be a generic rational one-place curve with t nodes. Then
g : C - C has t additional singular fibres Gy,--- ,G,, each with one node, and U =
@ - UG; — C1** 45 q fibration. So

1- th — 771(U) - F¢+1 -1

is ezact and m(U) is not generated by one vanishing loop each for each G;. In case
t =1, U = C?-(two nodal cubics). The ezamples show that a conjecture of Orevkov on
the generation of the fundamental group of the complement of one-place curves needs some
modification.

ZARISKI HYPERPLANE SECTION THEOREM AND CHOW FORMS
Ichiro Shimada’

We extend Zariski’s hyperplane section theorem to relative cases and Grassmannians.
Let V be a complex vector space of dimension m, and let U := Grass(r,V) be the
Grassmannian variety of all r-dimensional linear subspaces of V, where 1 <r < m —2.
. Let the group G := GL(V) acts on U from left in the natural way. Suppose that we are
given a morphism f : X — U from a nonsingular connected quasi-projective variety X, and
a non-zero reduced effective divisor D of U. For v € G, let 7f : X — U be the composite of
f with the action v : U = U of y on U, and let "F : "f~}(U'\ D) = (U \ D) x X denote the
morphism given by z — (’f(z),z). We put P,(V) := Grass(1, V), and consider U as the
variety of all (r — 1)-dimensional projective linear subspaces of P,(V'). For a point p € U,
let TI(p) C P.(V)) denote the projective linear subspace corresponding to p. Let S C P.(V)
be a reduced irreducible closed subvariety. For a point s € S, the Zariski tangent space

7E-mail: shimada@math.sci.hokudai.ac.jp
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T,S to S at s is regarded as a projective linear subspace of P,(V). For a non-negative
integer k, we define the generalized Chow form C[S, k] C U to be the Zariski closure of the
locus

U- there exists a nonsingular point s € §

PS5 such that s € TI(p) and dim(T.S N1I(p)) > k.

When dimS = m —r — 1 and k = 0, the variety C[S, 0] is the classical Chow form of S.
When dimS = m — r — 1 + k, the variety C[S, k] is called a tangential Chow form of S,
which was introduced and studied by Green and Morrison ([3]).

Let U* be the Grassmannian variety of all (m — r)-dimensional linear subspaces of
‘ V* := Hom(V,C). We have a natural isomorphism

s: U 3 U

For a reduced irreducible closed subvariety S* of P*(V) := P.(V*), we have its generahzed
Chow forms C[S*,k]* C U*.

We consider the following conditions on f : X — U and D C U. Let Sing D &iénote the
singular locus of D.

(AI) There is an r-dimensional projective linear subspace M of P,(V)) such that II(f(z))
is contained in M for all z € X.

(AII) There is an (r — 2)-dimensional projective linear subspace N of P,(V). such that
II{ f(x)) contains N for all z € X.

(B) There exists an irreducible component D; of D and a reduced irreducible closed sub-
variety S C P,(V) such that D; coincides w1th the tangential Chow form C|S, k],
where k =dimS ~ (m - r - 1).

(CI) There exists an irreducible component (Sing D)J of Sing D with codxmensxon 2inU
and a reduced irreducible closed subvariety S C P,(V) with dimS = m — r — 2 such
that (Sing D); = C[S, 0). )

(CII) There exists an irreducible component (Sing D); of Sing D with codimension 2 in [f
and a reduced irreducible closed subvariety S* C P*(V) with dim S* = r — 2 such that
(Sing D), = 3(C[S", 0]").

Let T be an oriented connected topological manifold, and let @ be an element of H?(T’; Z).

Then there is a topological line bundle L — T, unique up to isomorphisms, such tha

' a(L) = a. Let L* C L be the complement to the zero section of L. We have the
homotopy exact sequence

— ) 2 mc) — ml*) — m(T) — 1

such that the image of m;(C*) — m;(L*) is contained in the center. Thus we obtain
a central extension of m;(T') by a cyclic group Coker d;,, which we shall call the centrai
eztension associated with a € H%(T;Z). It is easy to write down the cohomology class of
H?(m,(T); Coker 8;) corresponding to 1rl(L") in terms of a (see [1]).
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Let ¢ € H%(U;Z) be the first Chern class of the positive generator of Pic(U). Let
ext € H2((U \ D) x X;Z) be the cohomology class

—(incl o pry)*c + (f o pry)°e,
where pr, and pr, are projections from (U \ D) x X to U\ D and X, respectively, and incl
is the inclusion of U \ D into U.

Our main theorem, which contains the classical theorem of Zariski ([4], [6]) as a special
case when 7 = 1 and f: X = U = P™! is a linear embedding of a projective plane, is as
follows.

Main Theorem. Suppose that dim f(X) > 2. Let v be a general element of G. Then
either one of the following holds;
e the homomorphism

F, Wl(’f"(U\D)) — m(U\ D) x m(X)

gives m ("f"HU \ D)) a structure of the central extension of m(U \ D) x m(X) by the
cokernel of f. : 2 (X) — ma(U), and this eztension is associated with the cohomology class
ext, or

o 7 > 2 and the condition

(1) ( (AI) and ( (B) or (CI))) or ( (AII) and ( (B) or (CII) ))
is satisfied.

There are examples which shows that the conditions that the condition (1) should not
be satisfied for the desired isomorphisms between fundamental groups to be valid.

This type of theorem has been proved by Goresky-MacPherson’s stratified Morse theory

"([2]) for various other situations. Our method is completely different and based on the

monodromy argument of Zariski-van Kampen type. The central idea is the following
observation. Suppose that we are given a family of algebrz .c varieties over an affine space
AY such that, outside a Zariski closed subset Z C AN of codimension > 2, we have a
local section. Under certain mild conditions, the triviality of the local monodromies on the
fundamental group of a general fiber implies that the fundamental group of the general
fiber is isomorphic to the fundamental group of the total space. We apply this observation
to the affine space End(V').
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ON THE DIFFERENCE BETWEEN THE FUNDAMENTAL GROUPS OF
REAL AND COMPLEX ARRANGEMENTS

Alezander I. Suciu

The k* Fitting ideal of the Alexander invariant of an arrangement 4 of n complex hy-
perplanes defines a characteristic subvariety, Vi(A), of the complex algebraic torus (C*)".
The characteristic varieties of an arrangement provide rather subtle and effectively com-
putable homotopy-type invariants of its complement. In joint work with Daniel Cohen, we
show that the tangent cone at the identity of V;(.A4) coincides with R}(.A), one of the coho-
mology support loci of the Orlik-Solomon algebra. Using work of Arapura and.Libgober,
we conclude that all positive-dimensional components of Vi(.A) are combinatorially deter-
mined, and that R}(A) is the union of a subspace arrangement in C*, thereby resolving a
conjecture of Falk.

If A is a real 2-arrangement (in the sense of Goresky and McPherson), the characterlstlc
varieties are no longer subtori through the origin. The nature of these varieties vividly
illustrates the difference between real and complex arrangements. In joint work with Daniel
Matei, we study the homotopy types of complements of arrangements of n transverse
planes in R*, obtaining a complete classification for n < 6, and lower bounds for the
number of homotopy types in general. Furthermore, we show that the homotopy type
of the complement of a 2-arrangement in R? is not determined by its cohomology ring,
thereby answering a question of Ziegler.

AN OPEN QUESTION IN FUNDAMENTAL GROUPS OF=
COMPLEMENTS OF BRANCH CURVES I

Mina Teicher

We want to use fundamental groups of complements of branch curves to distinguish
among surfaces lying in different connected components of moduli spaces.

This topic started with Zariski who proved in the 30’s that for a cubic surface in CP?,
G =~ Zyx Z; (see : [26]). In the late 70’s Moishezon proved that if X is a degn surface in @
then G =~ B,, G = B,/Center (see [5]). In fact, Moishezon’s result for n = 3 is the same
as Zariski’s result since B3/Center ~ Z, x Z;. The next example was V; (Veronese of order
2) (see [9]). In all the above examples we have G O F; where F; is a free noncommutative
subgroup with 2 elements. We call a group G “big” if G D F.

Since 1991 we have discovered the following new examples: V5, the Veronese of order 3,
generalized later to general V,,; X,;, the embedding of CP! x CP! into CPV w.r.t. a linear
system |af; + bép|; and C1, the complete intersection (see [13], {14], [15], [16], [17], [21]).
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Unlike previous expectations, in all the new examples G is not “big”. Moreover, G
is “small”, i.e., G is “almost solvable”, i.e., it contains a subgroup of finite index which
is solvable. Dunng our research we dlscovered a new quotient of the braid group (by a
subgroup of the commutant), namely B, s.t. all new results give G = B,-group and
G = G/central element (B,-group is a group on which B, act) (See [21], [22]). For CI, G
is B, itself. So the old examples were exceptions (V; often turns out to be an exception) and
fundamental groups of complements of branch curves are not “big”. They are surprisingly
“small”. Moreover, in all the new examples G, G are an extension of a solvable group
by a symmetric one. In addition, in all our computations the decomposition series had
quotients of the type (Z'@®Z,)?. Thus we can attach to the embedding a discrete invariant
consisting of (.. .t;, pi, g;, - - - ) which will distinguish surfaces in different components! The
globality of the new invariant depends on the answer to the following question:

Question. For which families of simply connected algebraic surfaces of general type is the
fundamental group of the complement of the branch curve of a generic projection to Ccp?
an eztension of a solvable group by a symmetric group?
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A LOCAL LEFSCHETZ THEOREM b
Heinke Wagner o

* For analytic subsets X,Y C P2 with codim X = ¢, dimY = d, a result of Faltings (1980)
implies, that H'(Y,Y NX;C) =0 fori < -"qi' —2, provided Y — Y N X is nonsingular. This
bound is sharp. The analogous result for homotopy groups was proved by M.:Peternell
{(1983). We presented a proof of the local generalization of this homotopy result: Let
(X,0), (Y,0) C (c*,0) be germs of analytic subsets, S, a sphere of sufficiently small radius
€ > 0 centered around 0 and consider X, := X NS, Y. =Y NS.. fY. -Y.NX, is
nonsingular, then

Deutsche

. dimY
mi(Ye, Y. cNX)=0 for ‘lSm—?.
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VANISHING THEOREMS FOR [:-COHOMOLOGY AND SOME
APPLICATIONS IN ALGEBRAIC GEOMETRY

Kang Zuo
(Joint work with Jiirgen Jost)

Let X denote a compact Kéhler manifold. Suppose that the fundamental group of X
admits a big reductive linear representation. A representation is called big if its Shafarevich
map defined by Campana and Kollar is birational (roughly speaking, if it does not factor
through any holomorphic map on X of positive dim of generic fibre).

Using pluriharmonic map on X we construct a bounded singular Kéhler form on the
universal covering of X, which is d-exact of a 1-form of at most linear growth. Further-
more, we use this Kihler form and some important idea due to Gromov and show that
all L?-holomorphic forms on the universal covering except the top forms must vanish.

‘ Consequently we prove a conjecture of Kolldr in the representation case, namely, if the
: fundamental group of X is big then the holomorphic Euler characteristic of canonical line
‘ bundle of X is non negative.

Edited by: D. Garber.
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