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Die Tagung fand unter der Leitung von Herrn F. Bogomolov (Courant), Herrn S. Kol­
lar (Utah), Frau M. Teicher (Bar nan) und Herrn M. Zaidenberg (Grenoble) statt. Die
Teilnehmer kamen aus Deutschland, den USA, Russland, Frankreich, Israel und anderen
Ländern. Sie vertraten einen breiten Themenkreis aus dem Gebiet der Fundamental­
gruppen in der Geometrie, und es wurde vor allem jungen Mathematikern die Gelegen­
heit geboten, ihre Forschungsergebnisse einem interessierten Fachpublikum vorzustellen.
Ein nicht allzu dicht gedrängtes Programm und die angenehme Atmosphäre des Instituts
begünstigten den informellen Ideenaustausch und die angeregte Unterhaltung unter den
Teilnehmern.
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FUNDAMENTAL GROUPS AND GALOIS THEORY

Shreeram S. Abhyankar 1

During my Pb.D. work, my guru Zariski advised me to use Cbevalley's loeal rings to
algebracize Jung's surface desingularization of 1908 for carrying it over from tbe complex
domain to tbe case of positive charaeteristic. In my 1955 American Journal paper, I
concluded that this cannot be done because in tbat case the algebraic local fundamental
group above anormal crossing of the brancb locus need not even be solvable. In my 1957
American Journal paper, by taking a section of tbe unsolvable surface covering, I was led
to a conjecture about tbe structure of tbe algebraic fundamental group of an affine curve.
After some initial work by myself, Nori and SerTe, tbis conjecture was settled affinnatively ~
by Raynaud and Harbater in their 1994 papers in volumes 116 and 117 of Inventiones ..
Matbematicae. A chatty discussion of tbe curve case, including references, can be fOllnd in
my 1992 paper on "Galois tbeory on tbe line in nonzero cbaracteristic" in volume 27 of tbe
AMS Bulletin, and also in my 1996 paper on "Factorizations over finite fields" in Number
233 of tbe LMS Lecture Note Series. In my 1997 paper on tbe "Local fundamental groups
of algebraic varieties" in volume 125 of AMS Proceedings, this 100 me to explicitize tbe
conjectures about higher dimensional algebraic fundamental groups wbich were implicit in
my Ameriean Journal papers of 1955 and 1959-60. Leaving aside the global conjectures
implicit in the 1959-60 papers, here I shall comment on the local conjecture implicit in the
1955 paper.

So let Nf,t represent a neighborhood of a simple point on a d- dimensional algebraic
variety, over an algebraically closed field k of cbaracteristic p, from which we have deleted
a divisor having a t-fold normal erossing at tbe simple point. Also let 1r~(Nttt). be tbe
eorresponding algebraic local fundamental group, by which ,ve mean the set of all Galois
groups of finite unramified loeal Galois coverings of Nt t. Finally let Pt(p) be the set of all
finite groups' G such that G/ p(G) is an abelian group g~nerated by t generators; here p(G)
denotes the subgroup of G generated by aU of its p-Sylow subgroups; in case of p = 0 we
take p(G) = 1. Now we may state:

Local Conjecture. For d ~ 2 and t ~ 1 we have 1r~(N:,t) = Pt(p).

Algebraically speaking, let R be the formal power series ring
k[[X}, ... , X d ]] , let I be the quotient field k((X1 , ••• , X d )) of R, let fi be an algebraic
closure of T, and let n be the set of all JEn such that XlR, ... , XIR are the only height- _'
one primes in R which are possibly ramified in J. We may now identify 1T~(N:,t) with the
set of all Galois groups Gal(J, I) with J varying in O.

In the 1955 paper I proved the inclusion 1r~(Nt,t) C Nt,t and by examples showed that, ...
assuming p to be nonzero, 1r~(N:tt) contains unsolvable groups..By refining these examples,
in tbe 1997 paper I showed that 1f~(N:,t) contains GL(m, q) for every integer m > 1 and
every power q > 1 of p.

I E-mail: ram@cs.purdue.edu
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In a recent discussion, David Harbater has raised the question whether every member of
7r~(N:,t) actually belongs to P:(p), where P:(p) is tbe set of all G in Pt(p) for which p(G)
has an abelian supplement in G, i.e., an abelian subgroup of Gwhich together with p(G)
generates G. To examine Harbater's question, I asked Gemot Stroth to make me some
examples of groups in Pt(p) which are not in pt(p). Here are some of the beautiful examples
produced by Strotb for t = 3, for which I bave been scanning (so far unsuecessfully) the
existenee or nonexistence of suitable loeal eoverings.

The first set of Stroth groups G are for p = 3, and they are G = E * GL(2, 3), where
* denotes central product, and where E is either tbe dihedral group Da of order 8 or the
quaternion group Qa of order 8. Moreover, GL(2,3) can be replaced by its Hat version
GLb(2,3) by which we mean the other group which, like GL(2, 3), is a nonsplit central Z2
extension of PGL(2, 3). Similarly, for any prime power q == 3(4) of any odd prime p, we
get four Stroth groups by replacing GL(2, 3) by the unique group H (or its "Hat version"
H b) such that SL(2, q) < H < GL(2, q) with [H : SL(2, q)] = 2. Tuming to p = 2, we get
Stroth groups G = F * GL(3, 4) where F is an extra-special group of order 27, Le., F is a
nonsplit central Z3 extension of Zl with Z(F) = 23; note that there are two ~~!sions of F,
depending on whether it has only elements of order 3 (quaternion type) or.#so elements
of order 9 (dihedral type); again, instead of GL(3, 4) \ve can take its Hat vers~on GLb(3, 4).

SOLVABLE KÄHLER GROUPS
Donu Arapura

Two related theorems, due to Madhav Nori and tbe author, were discussed. A weak
form of the first theorem states the follo\ving: Let 1r be tbe fundamental groU;P of normal
eomplex algebraic variety and n a positive integer. Let r = 1r/ Dn1r where D~!f is the ntb
derived subgroup. Then if r is solvable and admits an faithful representatiori" into some
GIN(Q), it is virtually nilpotent. For the second theorem 1r is the fundamental group of a
Zariski open subset of a eompact Kähler manifold and r = 1r / Dn1r. If r is polycyclic then
it is virtually nilpotent. As a corollary, it follows that a polycyelic Kähler group must be
virtually nilpotent. The proof of the first theorem is arithmetic, while that of the second
is Hodge theoretic.

AßELIAN CONNECTEDNESS OF COMPACT KÄHLER MANIFOLDS
Frederic Campana

Let g be the class of virtually abelian finitely generated groups (Le. finitelygenerated
with a subgroup of finite index which is abelian). Let X be a compaet Kähler manifold.
Say that X is g -connected if any generic two points x, Y of X are eontained in a compact
complex analytie subset Z of X such that for any irreducible component Zi of Z, one has:
1rl(Zi)X = 1m(7rl(Zi) --+ 7rl(X» is in g (with Zi the normalization of Zi).

Theorem. 11 X (compact Kähler) i3 Q-connected, then 7rl(X) E Q.
3
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This result fails severely in the non-Kähler case and holds for other classes 9 (of fi­
nite, virtually nilpotent, virtually polycyclic groups). It was conjectured by Oguiso and
Zaidenberg.

FUNDAMENTAL GROUPS OF DISCRIMINANT COMPLEMENTS
Jim Garlson

What follows is a description of joint work witb Daniel Allcock and Domingo Toledo.
The family of aU hypersurfaces {Xt } in complex projective space of degree d and di­

mension n is parameterized by a projective space pN. Let ß be the discriminant locus of
this family: tbe set {t E pN I X t is singular}. Let cI> = 'Ir! (lP'N - ß) be the fundamental ~
group of the space of smooth hypersurfaces. Since the natural monodromy representation ..
p : <I> ~ Aut(Hn(xo)) is nontrivial in almost all cases, say, d ~ 3, we know that cI> is
nontrivial. In fact, a result of Beauville (1986) shows that for d ~ 3, (d, n) :I (3,0), (3,2),
the monodromy group r = p(cI» is a lattice in the group G = Aut (Hn(xo)), whieh is
noncompact. (A lattice is such that G/r has finite volume). Now consider the kernel of
the monodromy representation, whieb we denote by K. Dolgachev and Libgober (1981)
showed that for d = 3, n = 1, the case of eubic curves, that K is a finite group. In
alg-geom/970B002 we prove the follo,ving result:

Theorem. (-, Toledo) For d ~ 3, n :I 0, 1, the kernel 01 the monodromy representation
is large.

By definition a large group is one that admits a homomorphism to a noncompact almost
simple Lie group H with Zariski-dense image. Such groups are infinite and, by a theorem
of rits, contain a free subgroup of rank 2. The idea of the proof is to construct, for each
X tJ a cyclic cover yt of projective space branched along X t • Tbe family of yt's has its
own monodromy representation ti, and we show that nnder the stated hypotheses, ti(K)
is Zariski-dense. In the case of cubic surfaces, d = 3 and n = 2, we can show more: that
K is not finitely generated. This result follows from the main result of alg-geom/970916,
which has appeared in C. R. Acad. Sei. Paris 326:

Theorem. (Allcock, -, Toledo) The moduli space 01 marked cubic surlaces is biloho­
morphic to (B4 - H) /r, where B4 is the unit ball in ·complex lour-space, r is a group 0/
complex reflections acting on it, and H is the collection 01 reflection hyperplanes for r.

A cubic surface is marked by a choice of a system of six skew lines. e
Using the above theorem one shows tbat the kernel K is equivalent module finite groups

to 'Ir! (B4
- H): the groups are related by maps with finite kernel and eokernel. Such

groups have tbe same rational homology. Since H is an infinite collection of hyperplanes,
the result follows. The identification of the moduli space with a Zariski-open subset of
the ball quotient is given by tbe period map for tripie covers of~ branebed along a cubic
surface.

Note that the "hyperbolic hyperplane arrangement" H contains points where four hy­
perplanes cross at right angles. From this oue sees that K eontains free abelian subgroups

4
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of rank four. Consequently K, unlike the Torelli group for Riemann surfaces of genus two,
studied by G. l\1ess, is not a free group.

COHOMOLOGY OF FmER-TYPE ARRANGEMENTS
Daniel C. Cohen2 3

An arrangement of complex hyperplanes A is a finite collection of codimension one affine
subspaees of Euelidean space c!-. The cohomology of the complement, M = M(A) =
c- \ UHEA H, with eoefficients in a Ioeal system L, arises in a number of eontexts­
generalized hypergeometric functions, Knizhnik-Zamolodehikov equations, representations
of braid groups, ete.-and has been the subject of eonsiderable recent interest (see, for
instance, [1, 9, 5], and see Orlik and Terao [7] as a general reference for arrangements). For
complex loeal systems satisfying certain genericity eonditions, work of Esnault, Scheeht-
man and Viehweg [6] shows that the cohomology of the eomplement is isomorphie to that #,

of the Orlik-Solomon algebra (defined below), viewed as a complex wit.h appropriate differ- :a" ..

ential. It is then natural to ask: What is the relation between the two ~~~homology theones ~.." ~.
should these genericity eonditions faH? I will give an answer to this question for the class, •. ~ -~~: 1

of fiber-type arrangements (and complex IDeal systems of rank one). ," ",.~_J;

Write A = {H}, ... ,Hn }, and choose linear polynomials fj with B j = ker /j. Tbe Orlik- ,:.- ,.)'.t:

Solomon algebra, A = EB~=o Aq, is the graded C-algebra generated by the differential fonns -.' ":~", i'~~:;'?'J

aj = d log(lj). It ist well-known that the algebra Aisisomorphie to tbe cohomology algebra
of the complement M of A, and tbat A is detennined by eombinatorial data, see [2, 7].

Let ,\ = (At, ... , An) E C' be a ''weight'' veetor. Associated to '\, we have a repre­
sentation"p: 1Tt(M) -t C* given by p(gj) = exp(-21TiAj) for any meridian gj about the . ~~"~':":~~'~

hyperplane Hj of A, an associated local system of coefficients L on M, and a distinguished
element w = E Ajaj in A1. Right-multiplication by w defines a map JL(,\) : Aq ~ Aq+l. ,.ji-- .~ .;,;.~.)~

Clearly, JL 0 J.L =0, so (A-, JL-(.~» is a complex. As noted above, if ,\ is suflieiently generic, ..~~ -' ~r!

the cohomology H·(M; l,) of M with eoefficients in l, is isomorphie to H·(A-, J.l-(,,\» , '!".1~- .~.,~:.:j

see [6], [8]. For arbitrary '\, it is known tbat

rank Hq(A, Jl) $ rank Hq(M,.c) $ rank Hq(M, C).

The first of these inequalities was communicated to me by S. Yuzvinsky. The second may
be obtained using stratified Morse theory [3, 4]' and resolves a question raised by Aomoto
and Kita [1].

For arrangements of fiber-type, more eao be said. An arrangement A in c'+l is linearly
fibered if tbere is a ehoice of coordinates (x, z) = (x}, .. " Xl, z) so that the restrietion,
p, of tbe projection cl+1 -+ C-, (x, z) ...-t X, to the eomplement M(A) is a fiber bundle
projection, with base p(M(A» = M(B), tbe complement of an arrangement B in C, and
fiber tbe complement of finitely many points in C. An arrangement is fiber-type if sits atop
a tower of linearly fibered arrangements. By a elassical result of Fadell and Neuwirth, the

2Partially supported by grant LEQSF(l996-99)-RD-A-04 from the Louisiana Board of Regents.
3E-mail: cohen@math.lsu.edu; URL: http://math.lsu.edu/-cohen

5

                                   
                                                                                                       ©



braid arrangement Al, with complement the configuration space of i ordered points in C,
is the prototypical example of a fiber-type arrangement.

The fundamental group, G ~ lFd, ~ •.• ~ lFdl' of the complement of a fiber-type arrange­
ment A admits the structure of an iterated semidirect product of finitely generated free
groups, and the complement M(A) is a K(G, 1)-space. Given such a group, A. Suciu and
I construct a finite free resolution (C.(G), Ll.) of the integers over the group ring zG in
[5]. This resolution may be used to compute the (co)homology of M with coefficients in
an arbitrary local system.

Let t = (tb"., tn) E (C*)n be a point in the complex torus. Associated to t, we have a
representation p : G -+ C* given by p(gj) = tj (as above, g; is a meridian about H; E A),
which endows C with the structure of aG-module, and induces a local system l, on M. For
any t, the homology of M with coefficients in r. is naturally isomorphie to the homology _
of the chain complex C. (G) ®ZG C.

Denote the terms and boundary maps of this chain complex by (C., 8. (t». The terms
C q = Cq(G) ®ZG C are finite dimensional complex vector spaces. The boundary maps
8q(t) may be viewed as "evaluations" of those of the resolution C.(G) in the following
way. If the matrix of Llq is r x s, then 8q (t) : (C*)n --+ Matrx,,(C) is the (smooth) map
which takes a point t and yields the evaluation jJ(Llq ), where jJ denotes the extension of
the representation p to (matrices with entries in) the group ring zG. Vie\v the differentials
of the Orlik-Solomon algebra complex (A·, IJ·(~» as maps jJq(A) : cn --+ Matrx,,(C). The
complexes C. and A· are related by the following result.

Theorem. Let A be a fiber-type arrangement, and for each q, let 6q(A) denote the deriva·
tive 0/ the map 8q(t) at the point (1, ... ,1) E (C')n. Then the system 0/ vector spaces and
linear maps (CD' 6q (A» is a chain complex, which is dual to the Orlik-Solomon algebra com­
plex (A·, IJ·(A» 0/A. In other words, for each q, Aq ~ Cq, and the map jJq(A) : Aq -+ Aq+1

is the transpose 0/ the map 6q+1(A) : C q+1 -+ C q, pq(A) = (c5q+1(A)]T.
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VON NEUMANN INVARIANTS FOR COHERENT ANALYTIC SHEAVES
Philippe Eyssidieux

In order to study the group of L 2 holomorphic sections of tbe pull-back to tbe universal
covering space of an holomorphic vector bundle on a compact complex manifold, it is useful
to have a cohomological formalism, generalizing Atiyah's L2 index theorem [1]. The goal
of this talk is to OlltUne the construction of such a formalism.

To each coherent analytic sheaf :F on an-dimensional complex space x(n) and each
Galois infinite unramified covering 1f : X~ X, whose Galois group is denoted by r, L2

cohomology groups, denoted by m(X,:F) are attached, such that:

1. The H~(X,F) underly a cohomological funetor on the abelian eategory of coherent
analytic sheaves on X.

2. If Fis locally free, m(X, F) is tbe group of L2 holomorphic sections of tbe pull-back
to X of the holomorphic vector bundle underlying F.

3. m(X, F) belongs to a category of r -modules on which a dimension function dimr
with real values is defined. .:

4. Atiyah'5 L 2 index theorem holds:
n n

L(-l)q dimr H~(X,F)= L(-l)~ dimH~(X,:F)
q=O q=O

The L2-cohomology on the Galois covering X ~ X of a eoherent analytic sheaf :F on
X is the ordinary cohomology of a sheaf on X obtained by an adequate completion of
tbe tensor product of :F by the locally constant sheaf on X associated to the left regular
representation of the discrete group Gal(X/ X) in the space of L2 functions on Gal(X/ X).
H~(X,:F) actually belongs to a very nice abelian category of r -modules, in~troduced by

I\1.S. Farber and W. Lück [2] to give a new interpretation of Novikov-Shubin invariants.
We sketch a proof of this fact in the smooth projective space. This enables us to construct,
in addition to Von Neumann dimension, other invariants measuring the non-Hausdorffness
of this topological vector space. Jr.:",

REFERENCES

[1] ~1. Atiyah, Elliptic operators, discrete groups and Von Neumann algebms, Soc. Math. Fr. Asterisque
32-33, 1976, 43-72.
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BOUNDARY MANIFOLDS OF ALGEBRAIC PLANE CURVES AND LINE
ARRANGEMENTS

Eriko Hironaka

Let C c r2 be an algebraic plane curve in the complex projective plane. The goal of
my research is to study the fundamental group and homotopy type of the eomplement
Ee = jp'2 \ C and compare it to eombinatorial and geometrie information about C and its
singularities.

The combinatorial information of C is eaptured in the decorated incidenee graph of C.
The incidence graph is the bipartite graph fc with curve-vertices vc, one eorresponding
to each irreducible curve C C C, and point-vertices vp , one corresponding to each singular
point p E Sing(C). A point-vertex v" and a curve-vertex Vc are attached by edges eb, one e
for each branch b of C at p. The decorated incidence graph (fe, n is the incidenee graph
f c together with loeal information attaehed to the vertiees and edges: if C is an irreducible
eomponent of C, then T(vc) is the genus of C; if p is a singularity on C, then T(vp ) is the '.
link type of the algebraic link associated to (C,p); and if bis a branch of C at p, then T(eb)
is a connected eomponent of the link T(vp ).

Two algebraie plane curves Cl and C2 are combinatorially equivalent if there is an iso­
morphism of graphs

4>: f C1 ---t r e2
such that T(v) = T(4)(v)) and T(e) = T(4)(e)), for each vertex v and edge e. The curves
Cl and C2 are topologically equivalent if there is a homotopy equivalence of pairs

(r2
, Cd ~ (r2

, C2 ).

A General problem is to determine when a given deeorated ineidence graph ean be realized,
whether it ean be realized in two or more topologieally distinct ways (giving what is kno,vn
as a Zariski pair), and what properties the realization spaces have.

As a tool for approaching this problem, we study the boundary 3-manifold Me assoeiated
to an algebraic plane curve. The boundary 9-manifold of C is the boundary of a regular
neighborhood of C in IP2• It is not hard to show that the fundamental group and homotopy
type of Me are determined by (fe, 7). Furthermore, Me and its fundamental group ean
be realized as a graph manifold and a graph of groups over rC in the sense of Waldhausen
and Serre.

Dur goal is to deseribe the homotopy type of the complement Ee = p2 \ C explieitly
in terms of Me and extra data. This extra data is necessary because of the existenee of _
Zariski pairs, shown by Zariski and later by several authors. The simplest example is the ­
case when C = eisa finite union of planar lines. The eombinatorial type of L, is then
detennined by f.c, since the only singularities of L, are the points of multiple intersection,
and if d lines of C eorne togetber at the point p, then T(vp ) is tbe positively oriented
d-eornponent Hopf link.

Descriptions of the homotopy type of the eomplement of a realline arrangement [, (where
L, is defined by real equations) by Libgober, Orlik, Salvetti and Falk imply the following
result.

8
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Theorem 1. The homotopy type 0/ Ee is detennined by r L, and an ordering 0/ the edges
emanating jrom each vertex.

Work of Rybnikov gives an example of eombinatorially equivalent complex line arrange­
ments wbose complements bave non-isomorphie fundamental group. However, to tbe au­
thor's knowledge, there are still no known examples of two eombinatorially equivalent real
line arrangements whose eomplements have different homotopy type.

In arecent preprint, we give a new proof of Theorem 1. We exhibit the boundary
manifold Me as a graph manifold over the incidence graph r.c, then explieitly find a
"lifting"

f: r e --+ Me,
taking eaeh vertex in r e to the eorresponding vertex manifold in Mt:., such that EL, is
homotopy equivalent to the space

Me/ f(r~:),

given by collapsing the image of f(rc.) to a point. Hefe, for e an edge in r.c, -f(e) need
not be homotopic to a path in the edge manifold of Me eorresponding to e. We give the
homotopy elass of the map f explieitly in tenns of tbe ineidence graph r t:. endowed with
orderings on the edges emanating from eaeh vertex of r c.. These orderings depend on the
slopes of the lines and on the image of tbe points of interseetion under al-dimensional
linear projection.

HARMONIe MAPS AND REPRESENTATIONS OF FUNDAMENTAL
GROUPS
Jürgen Jost

(Joint work with Kang Zuo)
-.

Given a representation p of the fundamental group 7rl (X) of a eompaet Käbler manifold
in a linear algebraic group G defined over C or a p-adic field, one eonstruets a p~~uivariant

harmonie map ~~.:.

u: X ~ G/K or ß(G),

where in the archimedean ease,. G/ K is the symmetrie spaee assoeiated to G, and in
the nonarchimedean one, 6(G) is a Euclidean Bruhat-Tits buiIding on whieh G operates
isometrically. The strategy then is to exploit properties of u in order to draw cODclusioDs
about p. u is pluriharmonie by work of Siu and Sampson and defines a holomorphie
foliation by work of Jost-Yau.

In the archimedean cas~, one pulls baek convex funetions form G/ K t'o produce plurisub­
harmonie funetions on X, and in the nonarchimedean as well as in the Euclidean case wbere
u is· the Albanese map, one pulls back holomorphie I-forms.

If the representation is generically Iarge, one produees in this manner a semi-Kähler
form on X that is positive definite on a Zariski open set. A vanishing theorem for
L2-cohomology is used to show that in that situation, H22(X, ni ) = 0 for 0 :5 i < dimcX .

9
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Combined with Atiyah's L2 -index theorem, this implies Kolhir's conjecture that X(Kx ) ~
oassuming that 1Tt (X) admits a generically large representation as described above.

REPRESENTATIONS OF BRAID GROUPS AND MAPPING CLASS
GRCJUPS APPEARING IN CONFORMAL FIELD THEORY

Toshitake K ohno

Geometrically, conformal field theory is formulated as a vector bundle over tbe moduli
space of Riemann surfaces equipped with a projectively Hat connection. Let E be a compact
Riemann surface of genus 9 with marked points PI, ... ,Pn. We fix a positive integer k,
affine Lie algebra g, integrable highest weight modules of level k ll)..j' 1 ~ j ~ n, and
local coordinates at Pt, ,Pn. We denote by M p the space of meromorphic functions
on E with poles at pt, ,Pn, which acts diagonallyon ®j=lll)..j by Laurent expansion at
PI,··· ,Pn· The space of conformal blocks is by definition

1/.>., (p) = HOIDg(p) (®']=l1l>"j' C) ,
which forms a vector bundle over the moduli space of lliemann surface of genus 9 with
n rnarked points. A projectively fiat connection is defined by rneans of the action of the
Virasoro algebra.

In the case 9 = 0, we have an embedding

i· : 1l>.,(p) --t Horng (8)j=1 V>"j' C) ,
and for a section '11 of the above vector bundle over.the configuration ·space of n points, we
can s~ow that .

8w _ LCiIw
8zj -

is again a section. Here L~i denotes the action of the Virasoro operator L_1 on the j-th
component. This construction gives us an explicit form of the connection, whicb is called
the Knizhnik-Zamolodchikov connection.

As tbe monodromy of Knizhnik-Zamolodchikov connection, we get an irreducible unitary
representation of tbe braid group. In the case of higher genus, we obtain a projective
representation of the mapping class group. This representation was used by the author
to give a Heegaard splitting formula of the Witten invariant of 3-manifolds. In the case
g = sl2 (C), we can apply a method of abelianization of the conformal field theory using
Prym variety due to T. Yoshida to show that tbe monodromy group is finite.

10
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ON A CHISINI CONJECTURE
Vik. S. Kulikov

Let B C p2 be an irreducible curve over C with C ordinary cusps and n nodes, as the
only singularities. Put deg B = 2d, and let 9 be the genus of its desingularization. Tbe
curve B is the discriminant curoe 01 a generic morphism 1 : S --+ p2, deg 1 ~ 3, if:

(i) S is a non-singular irreducible projective surface;
(ii) f is unramified over p2 \ B;

(iii) I-(B) = 2R + C, wbere R is irreducible and non-singular, and C is reduced;
(iv) I1 R : R --+ B is the normalization of B.

Chisini's Conjecture asserts tbat for the discriminant curve B of amorphism 1 of deg f ~ 5
this generic morpbism is unique up to equivalence.

We prove that if B is tbe discriminant curve of a morphism f of

4(3d+ 9 -1)
deg f > (2 (3d + 9 - 1) - c) ,

• "~!~i

then, for B, the generic morphism f is unique, i.e., Chisini's Conjecture hol<!s:for B.
This inequality holels for almost all generic morphisms. More precisely, let S be a

projective non-singular surface and L an ample divisor on S, f : S --+ p2 a generic morphism
given by a three-dimensional subsystem {E} C ImLI, m E Q, and Bits discriminant curve.
Tben there exists a constant 1110 (depending on Sand L) such that, for B, tbe generic
morphism f is unique if m ~ mo.

As a consequence we prove that if tbe canonical bundle K s of S is ampie, f is a generic
morpbism such tbat f-l(Pl) == mKs , m E N, then, for B, tbe generic morphism f is
unique.

HOLOMORPHIC FUNCTIONS OF SLOW GROWTH ON COVERING
SPACES OF PROJECTIVE MANIFOLDS

Finnur Larusson 4

Let Y --+ M be an infinite covering space of a projective manifold M C pN of dimension
n ~ 2. Let C be the interseetion with M of at most n - 1 generic bypersurfaces of degree d
in pN. The preimage X of C in Y is a connected submanifold. Let t/> : Y -+ [0,00) be the
SffiO( thed distance from a fixed point in Y in ametrie pulled up from M. Let O~(X) be
the Lilbert space of holomorphic functions f on X such that f2e-~ is integrable on X, and
define O~(Y) similarly. We get a continuous linear restrietion map p ; O~(Y) --+ O~(X).

Theorem. p is an isomorphism lor d large enough.

As an application, we obtain new examples of Riemann surfaces and domains of bolo­
morphy in cn with corona.

4 E-mail: larusson@uwo.ca
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In some sense, the Theorem reduees the problem of eonstrueting holomorphie funetions
on Y to the I-dimensional case. There, we have the following result.

Theorem. Let X be a Galois covering space 0/ a compact Riemann surface with a non­
elementary hyperbolic covering group. Then either

1. every positive hannonic function on X i3 the real part of a holomorphic function, or
2. if u ~ 0 is the real part of an Hl function on X, then the boundary decay 0/ u at a

zero on the Martin boundary 0/ X is no faster than it.s radial decay.

In case (1), X i3 HP-convex for each p < 00.

The condition in (2) is a geometrie obstruetion to a harmonie hP function being the real
part of a holomorphic funetion, which arises simply and naturally in higher-dirnensional _.
settings. Here, however, it is the only obstruetion. _

How severe is the hyperbolieity restrietion? Olshanskii has proved that almost every
finitely presented group is hyperbolie. Is the same true for fundamental groups of projective
rnanifolds?

Papers are available on the Web at

http://www.math.uwo.ca/-Iarusson.

COHOMOLOGY OF LOCAL SYSTEMS ON THE COMPLEMENTS TO
PLANE CURVES AND POSITION OF SINGULARITIES

A natoly Libgober

The purpose of this talk is to discuss several invariants of fundamental groups of the
eornplernents of plane algebraie eurves and describe thern in terms of the IDeal type and
position of singularities in p2. Let C c Cl be a eurve with r cornponents. Charaeteristic
variety Vi(C) can be defined as a subvariety of the torus of loeal systems on the eornplement
to C (Le. Horn (1fl (Cl-C), ce' )) eonsisting of loeal systems C such that dirn H l(c'l- C, C) ~
i. Characteristic varieties are invariants of 1ft (c?- - C) and ean be ealeulated via Fox
ealeulus. We show that the loeal type of singularities of C and geometry of the subset of
ll"2 consisting of singularities of C determine the characteristie varieties in an explicit \vay.
More preeisely the loeal type of singularities of C defines a natural partition of the unit
eube U C IRr into a union of polytopes (polytopes of quasiadjunetion) so that each face ~
of such polytope defines in a natural way the ideal sheaf I d C Op2 such that the support e'
of Op2/ZA is the singular locus of C. Face 6 ealled i-contributing if: _

1. it belongs to a hyperplane dlXt + ... + d,.xr = i(6) for some integer i(6) depending
on tbe face 6 (here dl , • •. , dr are tbe degrees of eornponents of C);

2. dimHl (IP2,ZA (E di - 3 - i(6))) = i.
i=l

Theorem. Let U --i- (~y be the exponential map

(Sb ... , Sr) --i- (exp 21TSt, •.. , exp 21TSi).
12
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Then the closure 01 the image 01 each ~-contributing lace 0/ quasiadjunction is a component
01 charactenstic variety Vi(C). Moreover, all components 01 characteristic variety Vi(C)
can be obtained in this way.

Example. Let C = Cl U C2 be a union of two irreducible nonsingular curves such that the
only singularities of C are ordinary tacnodes. Partition into polytopes of quasiadjunction
contains two polytopes:

1
ßl = {(x,y)IO ~ x,O ~ Y,x + y < 2}

1
ß2 = {(x,y)fx + y ~ 2,x:5 1,Y $ I}

where the face of quasiadjunction is given by x + y = ~. It is contributing if and only if

for some k one has d1 = 2k, d2 = 2k and dirn Hl (I(d - 3 - k)) =F 0 where Z is the ideal of
tbe union of singular points of Cl U C2 •

These results generalize previous description of the Alexander polynomi'~ of plane
curves in terms of ideals of quasiadjunction [Prac. Symp. of Pure Math., 1983, val.
40, A. Libgober, Alexander invariants ofplane algebraic curves].

LIOUVILLE TYPE PROPERTIES AND AUTOMORPHISM GROUPS
Vladimir Lin

Tbe classical Liouville theorem says that cn carries no noneonstant bounded holomorphie
functions. More generally, any holomorphie funetion of polynomial growth on cn is a
polynomial. The same is true for hannonic funetions on Rn. By Liouville type properlie.s
of complex (or Riemannian) manifolds I mean the properties of similar nature. I wish to
explain certain relationship between Liouville type properties of a eomplex (or Riemannian)
manifold X and the "reaehness" of the action of its automorphism group Aut~X.

Tbe following simple fact illustrates the idea: if the natural action of Aut X in X is
2-transitive then X is Liouville (tbat is, it carries no noneonstant bounded holomorphie
functions). The conclusion holds true under tbe following weaker condition: the diagonal
AutX-action ß in X x X,

ß: AutX 3 9 ~ [X x X 3 (x, y) r-+ (gx,gy) E X x X] ,

admits adense orbit r. Indeed, if f: X -+ Cis holomorphic and bounded, tben the function

F(x, y) ~ SUPgEAutX I/(gx) - I(gy)f is bounded, continuous, and plurisubhannonic on
X x X; it is ß-invariant and hence constant on r. Density of r and tbe evident relation
F(x, x) == 0 imply F = 0 and, tbereby, I =eonst.

Consider a subgroup G ~ Aut X (a typieal case wben X comes together with certain
automorphism group G ~ Aut X is the case of a Galois eovering X -+ V). Tbe natural
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G-action in X is cocompact if G(K) = X for some compact K ~ X (this is weaker than
transitivity condition G(a single point set) = X}.

Theorem 1. A complex space (or Riemannian mani/old) is Liouville whenever it admits
a cocompact action 0/ a virtually nilpotent group.

For Rieman'1ian manifolds this theorem is due to Y. Guivarch (1981) and (in more
general form) to T. Lyons & D. Sullivan (1983). Holomorphic version appeared in my
paper (1986).

Example. a) X = nn = {z E C I Im z > O}, G = {z.-+ az+b I a > 0, bE IR} = Aff +(IR) (a
two-step-solvable group). G is transitive in JEn; thus, 1HI carries no nonconstant G-invariant
functions. However, lH[ is not Liouville. Actually, nI is even Caratheodory hyperbolic, that a.
is, bounded holomorphic functions separate points of lHL .-

b) Let A E SL (3; z) be a matrix with one real eigenvalue Ct > 1 and two nonreal eigenvalues
ß, ß. Let a = (ab Cl2, aa) and b = (bI, ~, ba) be areal and a complex eigenvectors of A
eorresponding to (} and ß respectively. Take X = 1H[ x C and consider the subgroup G c
Aut X generated by the following four automorphisms gj: go(z, w) = (az, ßw), gj(z, w) =
(z + aj, W + bj ), 1 '5: j '5: 3, (z, w) E X = nn x c

G is a two-step-solvable polycyclic group, and X ~ X/G is a polyeyclic Galois G-

covering over a smooth compact eomplex surface I ~ X / G, which is one of the [noue
sur/aces.

These examples show that for groups G "bigger" than virtually nilpotent Theorem 1
falls (even in the simplest case of G~lois G-coverings over compact manifolds). However,
certain weaker Liouville type properties are held for relatively big groups even under weaker
transitivity type conditions.

Let X be a complex space (or Riemannian manifold), BO(X) be tbe space of a11 bounded
holomorphic (respectively harmonie) functions on X, and P(X) be the convex cone of all
bounded continuous plurisubharmonic (respectively subharmonic) functions on X. G acts
in BO(X) and P(X) (G 3 9 t-+ [/ t-+ /9]; j9(X) = f(gx). An element 9 E G is a
/ -period if /9 = /. G-action in X is P(X)-ergodic if P(X) does not contain noneonstant
G-invariant functions. (By tbe maximum principle, a cocompact action is P(X)-ergodic.)

Theorem 2 (V. L., 1986). Let G be amenable and G-action in X be P(X)-ergodic. Let
s E G, f E BO(X), and [8, h] = shs-1h-1 be a j-period/or each h E H in somefinite index
subgroup H ~ G, Then s is a / -period. In particular, each s E G whose conjugacy class
sC = {gsg-ll gE G} is finite acts trivially in BO(X), that is, I' = I lOT all I E BO(X). e
Corollary. Let an amenable group G with nontrivial center act on a Caratheodory hy­
perbolic complex space X. Then the quotient space XIG (i/ it exists in complex category)
cannot be a Zariski open subset 0/ a compact complex space. In particular, i/ such G acts
in a bounded domain U c ~, the quotient U/G cannot be a quasiprojective variety.

Tbe proof of Theorem 2 involves some special G-invariant probability measure p, (related
to the element sand the function f E BO(X) under consideration) on tbe Stone-Cech
compactification ßG of G, and tben tbe corresponding space L2 (ßG, J.1.}.
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G. Margulis (1986) noted that all statements of Theorem 2 remain true for arbitrary,
not necessary amenable, group G whenever its action in X is cocompact; his argument is
based on a special form of the Harnack inequality related to the G-action.

Some parts of Theorem 2 were recently generalized as follows:

Theorem 3 (V. L. & M. Zaidenberg, 1998). Suppose that either G is amenable and its
action in X i.s 1'(X)-ergodic or the G-action in X is cocompact. Then any FC-hypercentral
element s E G acts trivially in BO(X).

Theorem 4 (V. L. & M. Zaidenberg, 1998). Let X -+ Y be a Galois G-covering over a
compact Riemannian or Kähler mani/old Y. // G is an extension 0/ a Fe -hypernilpotent
group by a Varopoulos group, then X is Liouville.

On the other hand, the following result (strengthening a theorem of T. Lyons & D.
Sullivan) is valid:

Theorem 5 (V. L. & M. Zaidenberg, 1998). Every compact Riemann sur/ace..Y 0/ genus
9 ~ 2 admits a Caratheodory hyperbolic metabelian covering X -+ Y. ".~.

REFERENCES

[1] Y. Guivarch, Mouuement broumien sur les revetements d'une uariete compacte, C." R. Acad. Sei.
Paris, Sero I 292 (1981), 851-853.

[2] Masahisa Inou, On sur/aces 0/ class VIIo, Invent. Math. 24 (1974), 269-310.
[3] V. Va. Lin, Liouuille couerings 0/ complex spaces and amenable groups, Math. USSR Sbornik 60:1

(1988), 197-216.
[4] V. Va. Lin and M. Zaidenberg, Liouville and Caratheodory coverings in Riemannian and compiex

geometry, Voronezh Winter Mathematical School (P. Kuchment & V. Lin eds.), Amer. Math. Soc.
Transl. (2) Vol. 184 (1998),111-130.

[5] R. Lyons and D. Sullivan, Function theory, random paths and couering spaces, J. Different. Geom.
19 (1984), 299-323. ..

DEGENERATING FAMILIES OF BRANCHED COVERINGS O';F THE
COMPLEX PROJECTIVE LINES AND BALLS

Makoto Namba 5

1 It is known that a finite branched covering of a given complex manifold M is determined
uniqr ~ly (up to isomorphisms) by its branch locus and (permutation) monodromy repre­
senta\lion. However it is a difficult problem to detennine the covering from them concretely
(algebraically, analytically), even if M = pI the complex projective line. We introduce two
kinds of pictures,a Klein picture and aRiemann picture, each of which determines the
covering topologically for the cases M = pt and M = 6(0, a) = {z E C Ilzl < a}, a ball.

Let X ---+ pI be a branched covering of pI of degree d, where X is a compact niemann
surface. We denote by BI = {qt, ... ,qn} and ~I the branch locus and the monodromy

5 E-mail: namba@math.wani.osaka-u.ac.jp
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representation of I respectively. «>, is determined uniquely up to its representation class
[~/]·

Let r be a simple oriented loop in pI passing through the points qI, ... ,qn in this order
surrounding a domain n clockwisely. We regard n and pI - nasa continent and an ocean
respectively. We pull r, n and pI - n back over land get a checked pattern consisting of
d-continents and d-oceans, which we call a Klein picture of I. The Klein picture determines
f topologically.

On the other band, take a reference point qo in O. We take disjoint paths connecting qo
and qj (j = 1, ... , n). Let To be the graph consisting of tbe points qo, qI, ... ,qn and these
paths. We pull To back over f and get a graph T on X. T gives a cellular decomposition
of X, which we call aRiemann picture of f. Tbe lliemann picture also determines I
topologically. The Klein picture and the lliemann picture for a finite branched covering of e
a ball are defined in a similar way.

2 A finite branched covering f : X ---+ Ll(O, a) x pI is called a degenerating lamily 01
finite branched coverings o/rl if (1) every fiber t x pI is not contained in BI and (2) every
fiber t x pI, (t # 0) meets transversallywith BI at n (n : lixed) points {q}, ... , qn}. Put
X t = I-I(t x pI) and It = f : X t ---+ t X pI. f is then identified witb the family {/t}.
Assume for simplicity, a > 1 and (6(0, a) x oo)nB, = 0. Let &= {t = ei8 ) 0 :5 s :5 21r} be
the unit circle. 6 induces a braid 9(&) on {qI, ... , qn} which is called the braid monodromy.
By the theorem of Zariski- van Kampen, tbe equality 4>98(6) = 4>9' where 9 = 11. We show
that f = {/t} is topologically determined by the pair «(4>9], 9(6)), while the central fiber
10 is determined topologically only by (<Ilg ). We can observe the degeneration throngh the
Klein picture. .

We can also define adegenerating family of finite branched coverings of balls and get a
shnilar theory to the case of tbat of pI .

3 Every complex 2-dimensional normal singularity (X, x) can be regarded as adegenerating
family ofbranched coverings ofhalls. We can compute the local fundamental group 11"1 (X ­
x,Po) using the Zariski-van Kampen theorem and the Reidemeister-Schreier method. The
Riemann picture is very usefnl to carry out the computation correctly.

This method works for the computation of the fundamental gronp of every 3-dimensional
oriented compact manifold Y. In fact, By the theorem of Hilden-Montesinous, there is a
covering h : Y ---+ 8 3 of degree 3 of the 3-spbere 8 3 branching at a knot Bh whose
monodromy ~h ('Yj), ('Yj: generators of the fundamental group 11"1 (53 - Rh», consist of only
transpositions. •

We may regard 8 3 as the boundary of L\(O, 1) x Ll(O, b) in Cl and the knot Bh as a braid
in 6 x Ll(O, b). Let R be the cone connecting the origin of c?- and every point of Rh. We
construct a topological covering f : X ---+ 6(0, a) x L\(O, b) of degree 3 branching at B
which is an extension of h (X is in fact a cone of V). Then f is a topological degenerating
family of branched coverings of balls and

1rI(Y,PO) ~ 11"1 (X - x,PO).

Thus tbe computation of 1rl (Y, Po) can be done by our methode
16
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To eonstruct 3-dimensional oriented eompaet manifolds is redueed to find pairs ([eil], 0')
such tbat 4>0' = <11, wbere <11 is a transitive representation of tbe free group < "Yt, ... , in >
to tbe 3rd symmetrie group such that every 4.>(')'j) is a transposition and 0' is a braid of
n-strings.

We prove that there are 3 eanonieal forms for [<11]. Tbe braids (j with ~(j = eil form a
subgroup Keil of the n-th braid group Bn of finite index. It is important to analyze the
subgroup K~ for the eanonieal ~.

WEAK LEFSCHETZ THEOREMS
Terrence Napier and Mohan Ramachandran

Joint work with Mohan Ramaehandran on an approach to Nori's weak Lefschetz theo­
rem is described. The approach, whieh involves tbe 8-method, avoids moving arguments
and gives much stronger results. In particular, it is proved that if X and Y are eonnected
smooth projeetive varieties of positive dimension and f : Y --+ X is a holomorphic immer­
sion with ample normal bundle, then the image of 1Tl (Y) in 1T~ (X) is of finite-.Jhdex. This
result is obtained as a consequenee of the following direct generalization of Norj's theorem:

Theorem. Suppose <b : U -+ X is a holomorphie map /rom a connected camplex man­
ifold U into a connected smooth projective variety X 0/ dimension at least 2 which is a
submersion at some point. Let Y c U be a connected cornpact analytie subspace such that
dirn HO (fj, l) < 00 /or every locally free analytic shea/ L on U. Then, for every Zariski
open subset Z 0/ X, the image G O/1Tl(<b-1(Z)) in 1Tl(Z) is 0/ finite index.

Thc idea of the proof is to form a covering space Z -+ Z with fundamental group
equal to G and then to eonstruet L2 holomorphic sections of a suitable line bundle whieh
separate the sheets of the eovering. This construction is a standard applieation of the L2
ä-method (Andreotti-Vesentini, Hörmander, Skoda, Demailly). Pulling these seetions back
to ~-l(Z) by a lifting of <Xl, the finite dimensionality of the space of holomorphie seetions
on the formal eompletion gives abound on tbe dimension of the space of seetions on Z
and hence abound on the degree of the eovering space (i.e. on tbe index of G).

INVARIANTS AT INFINITY OF POLYNOMIAL MAPS AND
SUPERABUNDANCE

Andras Nemethi

Let / = fd + fd-l + ... : ca+l --+ c be a polynomial map, where fi is homogeneous of
degree i. We will assume that Xoo = {fd = O} C pn has only isolated singularities with
Milnor number {J.Li}~=l and loeal monodromy operators {1i}~=1'

Theorem. I/ xoo n {fd-l = O} = 0, then f is quasi-tarne (in particular Clgood at infinity").
All its topological (and discrete Hodge theoretical) invariants at infinity depend only on the
hypersur/ace Xoo C Irn . E.g. the generic fiber has the hornotopy type of V1J8n , where
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J.L = (d - l)n+l - Ei JLi, the characteristic polynomial 01 the monodromy at infinity Ti is
completely determined by the loeal monodromies {1i}äo

The interesting fact is that the Jordan block structure of tbe monodromy at infinity
Ti is not loeal. In order to describe it, we use the following notations: If V is a veetor
spaee and T : V -+ V is an endomorphism, then (V>.., T)J denotes the generalized A­
eigenspace with the restrietion of T on it; #,T>.. denotes the number of I x I-Jordan blocks
of T>.., and #T>.. := E, #,T>... We define tbe (equivariant) superabundance of Sing(XOO)
as folIows: ßo := dirn pn(xoo ) and ßs := dim(pn+l (Xn), Galois action)exp(2n-il/d) for 1 :::;
s :5 d - 1, where X d -+ pn is the d-cyclic covering of pn branched along Xoo, and p.
denotes the primitive cohomology. Moreover, we eonsider the local invariants X" as weIl:
XO = - EiJLi + (_l)n+l + [(-1)" + (d _l)n+l]/d, and Xs = xo + (_l)n for 1 :5 s:::; d-l.

Theorem. 1. 11 a = e21ris / d
, s = 0, . - . , d - 1, then:

#1 (Tj)a = X" + 2ßs - E~=I # (1';)a­
#2(Tj)a = -ßs + E~=l#l(1i)a'

#,+1 ('rj)o = E~=1#1(1i)o for 1~ 2.
II. lf a d =F 1, then #,(Tj)o = E~=l#, (Ti)ol-d for all I ~ l.

In particular, Ti depends on the position of the singular points of XOO.
Similarly, the limit mixed Hodge structure at infinity associated with f ean be computed

from the Hodge data of X.oo , X d and the loeal (hypersurfaee) singularities of XOO.
The talk is based on the joint work with Rieardo Garcia L6pez. Some of the results

are the global version of the results proved by E. Artal Bartolo, I. Luengo and A. Meile­
Hernandez in the loeal situation.

GEOMETRY OF CUSPIDAL SEXTICS AND THEIR DUAL CURVES
Mutsuo Oka 6

Let C be a given irredueible plane curve of degree n defined by f(x, y) = 0 where f(x, y)
is an irreducible polynomial. C is called' a torus curve of type (p, q) if p, qln and f(x, y) is
written as f(x, y) = fn/p(x, y)q + fn/q(x, y)P for some polynomials fn/p, fn/q of degree n/p
and n/q respectively. This terminology is due to Kulikov [K2]. Torus eurves have been
studied by many authors ([Z], [Ol],[K2], [D],[T]).

In the proeess of studying Zariski pairs in the moduli of plane curves of degree 6 with 3
cusps of type y4 - x 3 = 0, we have observed that there exist exactly two irreducible compo- 4tj

nents M,l and .N3,2 which correspond3 to torus curves and non-torus cUnJes respectively.
Their dual curves are sextics with six cusps and three nodes. Starting from this observa-
tion, we study the moduli spaee of sextic with 6 eusps and 3 nades whicb we denote by
M and the moduli of their dual curves. It turns out that M has a beautiful symmetry.
The "regular part" (=Plücker curves) of M is stable by the dual curve operation. On the
other hand, the moduli of 3 (3,4)-cuspidal sextics Na is on the "boundary" of M in a nice

6E-mail: oka@math.metro-u.ac.jp
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way. By the dual operation, this moduli is isomorphie to a "singular" stratum M 3 of M,
which eonsists of 6 cuspidal3 nodal sexties with 3 flexes of order 2. The moduli space M
is a disjoint union of torus curves and non-torus curves. For a curve C E M, the generic
Alexander polynomial ßc{t) of]p2 - C is determined by the type C. If C is a torus eurve,
Llc(t) == t2

- t + 1 and ?Tl (1P2 - C) = Z2 * Z3, while for non-torus curve C, ~c(t) = 1 and
'1TI (lP2 - C) = Zs. Moreover we show that C· is a toros curoe if and only i/ C is a toros
curve.
_In this talk, we study dual eurves and their singularities. We show a lemma which gives

explicitly tbe defining polynomials of the dual curves and then we give a duality theorem
which describes the dual singularity in terms of the original singularity. Then we study
the moduli space M and other moduli spaces which appear- on the canonical stratification
of the "elosure" .M of M. Main Theorem describes the stratification structure and tbe
topological properties on M. Then we compute the Alexander polynomial, using the
method of Esnault and Artal ([E),[A1]). After that, we compute the moduli space of
sexties with 3 (3,4) eusps. We can compute the fundamental groups of the complements
of 3 (3,4) euspidal sexties of torus type and non-torus type. Finally we give a J;.l~w Zariski
tripie of plane curves of degree 12 with 12 (3,4) cusps, as an application of ~1ai~·;Theorem.
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HYPERGEOMETRIC INTEGRALS AND HYPERPLANE
ARRANGEMENTS

Peter Orlik

This talk ,vas an exposition of the Aomoto..Gelfand theory of multivariable hypergeomet­
rie integrals with emphasis on the role played by the theory of hyperplane arrangements.
Let C be affine space and A an arrangement of affine hyperplanes. Let N = UHEAH be
its divisor and M = f!- - N its complement. Let UH be a linear polynomial ,vith kernel H
and let AB E C. Define a rank one Ioeal system L, on M to have monodromy exp( -21riAH)
around H. Let I:,v be its duallocal system. Tbe hypergeometrie pairing is

Hp(M, (,V) x W(M, (,)~ c.
In order to interpret tbe result of this pairing as an integral, M is given a smooth, locally
finite triangulation and a holomorphic de Rham theorem is proved

IP(M, 1:,) ~ W(r(M, ~l), V).

Here n- is the holomorphic de Rham complex of M and e
V = d +w), = d + L}.H OOH .

HEA o.H

If (, issufficiently generic, then Esnault-Schechtman-Viehweg proved

lP(M, .cl ~ IP(B', WA)

where B· is the C-algebra generated by tbe logaritbmic forms {do.H/OH IH E A} and

HfJ(M,L.) = 0 for p;j; f., dimHl(M,.c) = le(M)1
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where e(M) is the Euler characteristic of the complement.
Arrangement theory provides a combinatorial calculation of e(M) in terms of tbe char­

acteristic polynomial. The nbc set of A is a basis for the algebra B' and a subset called
ßnbc was used by Falk-Terao to construct a basis for H1(M, 1:,)

FUNDAMENTAL GROUPS OF COMPACT KÄHLER MANIFOLDS WITH
NUMERAICALLY EFFECTIVE RICCI CLASS

Mihai"Paun

In tbe paper" Compact Kähler manifolds with numerically effective Ricci class" , the au­
thors (J.- P. Demailly, T. Petemell and M. Schneider) raised the following two conjectures:

Conjecture 1. Let (X, w) be a compact Kähler manifold with numerically eJJective Ricci
class. Then 'lr1 (X) is almost-nilpotent. .

Conjecture 2. Let (X, w) be a compact Kähler manifold with numerically eJJ~tive Ricci
dass. Then the Albanese morphism 01 X is surjective. ..,--

In geometrical terms, the hypothesis on the Ricci class translates as follows: there exists
a sequence of Kähler metrics (Wk)k on X such that Wk E {w} and RicciwA: ~ -llkwk (here
we denote by {w} the cohomology class of the metric w).

Now in the setting of complete Riemannian manifolds ,vith Ricci curvature bounded
from below, the following (deep) result was recently proved by Cheeger-Colding:

~heorem (Cheeger-Colding). There exists a positive number 8m such that for each
complete manifold (M,g) with dimM = m and Riccig 2:: -g, the image .. _.

Im ('Ir1(Bp (6m )) ~ 1r1(X))

is a almost-nilpotent group. . ~

By combining this result with the techniques developed by Demaillyetal.iI) the paper
mentioned above, we prove: . . .

Theorem 1. COr:tjecture 1 is true.

Actually, the essential observation is that one can bound the norm of the generators of
1T1 unifonnly with respect to all the Kähler metrics sitting in a compact set of the Kähler
cone.

As for tbe second problem, it has been recently settled by Qi Zhang for X a projective
manifold. In the Kähler case we have obtained the next partial result:

Theorem 2. Let (X, w) be a compact Kähler manilold endowed with a sequence (Wk)k of
Kähler metnes with the following properties:

1. Wk E {w}
2. RicciwJI ~ -l/kw/c.

Then:
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i) bt (X) :5 2n = dimR.(X).

ii) Under the additional hypothesis diam(X, Wk)/v'k 1-+ 0 as k goes to infinity, the Al­
banese map 01 X is surjective.

The proof of the first point of this result uses same ideas of Gromov. As for the proof of
ii), it rests on a "Toponogov L2" theorem of Cheeger-Colding and on some ad-hoc Kählerian
arguments. The (undesired) hypothesis conceming the growth of the sequence of diameters
is needed to keep some global estimates of the functions of type x t-+ Iß1~tZ (where ß is a
holomorphic I-form) uniform with respect to k.

Remark. As for the moment we do not know any "honest" example for which the sequence
of diameters goes to infinity, we suspect that for a manifold with nef Ricci class, the
additional hypothesis in ii) is always satisfied for an "optimal" sequence of metrics with e
the properties 1 and 2 of theorem 2. This is actually the case if the anticanonical class of
X is numerically effective and contains a closed positive current with small enough Lelong
numbers.

COMPLETE UNFOLDINGS OF CLOSED POSITIVE BRAIDS AND
OREVKOV'S GENERALIZATION OF THE ZARISKI CONJECTURE

Lee Rudolph

In [1], Orevkov proved a generalization of the so-called Zariski Conjecture (Theorem of
Fulton-Deligne), of which a slightly special case is tbe following.

Theorem. /1 V c c7. C C1P2 is an affine camplex plane curve Buch that the link-at­
infinity Loo(V) C St/f is a closed positive braid, and il the only singularities 01 V in Cl are
nodes, then the fundamental group 7ft (c2 \ V) is abelian.

The original Zariski Conjecture is the much more special case .tbat Loo(V) is a link
of deg V components of a positive Hopf fibration S~/E -+ JIPI = 8 2 ; the general case of
Orevkov's theorem allows Loo(V) to be a split SUffi of several closed positive braids, in
which case the conclusion bas to modified a bit.

"Vhile Orevkov's ingenious proof uses the structure of Loo(V) as a closed positive braid
(and of V as a sort of "quasipositive noda! braided surface", cf. [3]) repeatedly and
profoundly, it does not (at least not explicitly: nor implicitly as far as I can tell) use what
is, topologically, perhaps the most salient fact about closed positive braids, namely, that
they are tibered links. In my May 1998 talk at Oberwolfach, I proposed a generalization
of the quoted Theorem to a11 closed positive braids (not just those wbich appear as links­
at-infinity). In tbe light of subsequent conversations with Orevkov, Teicher and other
participants at that meeting, I am now emboldened to a further generalization.

Conjecture. If p : (LJ4, D4
\ Int(N(K), K») -+ (D2 , 5 1,0) is an unfolding 01 a fibered link

L C 53 = 8D4 , such that:

1. V = p-t (0) is immersed with no singularities but nodes, and
2. each critical point x 0/ p with p(x) =F 0 is a positive quadmtic singularity,
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then 1r1 (IJ4 \ V) is abelian.

Here ''unfolding'' is to be understood in the fibered-knot-theoretieal sense introdueed in
[2].

The proposed method of proof, in the ease that L is a elosed positive braid, cr more
generally aquasipositive Hopf-plumbed fibered link, is to extend the methods of [4] and
[5] to analyze Hopf-plumbed fiber surfaces from the point of view of unfoldings (which are,
apriori, more general than the Murasugi sums discussed there). As to the general case,
no praof method is proposed at this time; it just seems like a good guess!
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NORMAL CROSSING SYSTEMS OF PLANE ONE-PLACE CURVES
P. Russell

In the study of simple connectedness of certain affine 3-folds, the followingquestion
arose: If G, H are "embedded lines" in c'l meeting normally in T 2:: 1 points, is 1r}(~-GUH)

abelian? The answer is yes, in essence since a line G is a curve with one· place at injinity:
Le. the elosure G in r 2 has a unique unibranch point at infinity. Let G be such'·a curve.
For c E C, put Ge = g-I(C), where G = 9-1(0). Let Loo = p2 - te2. ".':

Put
MNC(G) = exceptionallocus + L'oo

in the minimal normal erossing (MNC) resolution ofG+Loo at infinity. Here, "'" denotes
proper transform.

Fundamental theorem on one-plaee curves (Abhyankar-Moh):
(1) \Je E C, MNC(G) = MNC(Ge);

(2) GJ2 > 0 (G' = proper trans/orm oie after MNC-resolution).

Corollary. // G is smooth, then G is a general /ibre 0/ 9 : Cl ---7 c.

Let G, H be one-place eurves. We define: H < G # the proper transform of H has Ne
with MNC(G).

Lemma. HnG=0#G=g-1(O), H=h-1(O) withh-g=cEC*.
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Proposition. Suppose H n G =F 0 and H < G. Then G f2 > 0 and HI2 ;::: 0, where G', H'
are the proper trans/orms 0/0, H in the M Ne-resolution at infinity 0/G + H + Loo •

By a result of Nori, one has immediately

Theorem 1. Let GI, ... ,Gk be smooth one-place curves in Cl such that GI + ... + Gk is
a Ne-divisor and Gi n Gj '# 0 Vi,j. Then 1rt(c2 - Gt u··· U GI:) i.s abelian, i.e. Zl:.

More generally:

Theorem 2. Let Gn , ... ,GIst ,·· •. ,GI:},·· . ,Gkll: be smooth one-place 'cunJe such that
EGij is a NO-divisor and Gij n Giljl = 0 {::> i = i' . Then

7rl(~ - uGij ) = F't x ... X F,Ic.

(Fs = /ree group on s generators.}

It is an interesting question to what extent these results can be extended to noda! one­
pIace curves. There may be a chance with theorem 1, or the "commuting" part 'of theorem
2. This is true, for'instance (again by a theorem of Nori), for generic rational curves
~.vith one place at infinity (they are noda! of finite distance). However,

Example. Let Go = g-I(O) be a generic rational one-place cUnJe with t nodes. Then
9 : Cl ~ c has t additional singular fibres GI,··· ,Gt , each with one node, and U =
~ - UGi ~ d l + t )* is a fibration. So

1 -+ F2t ~ 1rdU) -+ Ft+1 -+ 1

is exact and 1f1 (U) is not generated by one vanishing loop each for each Gi. In case
t = 1, U = c: -(two nodal cubics). The examples show that a conjecture 0/ Orevkov on
the generation 0/ the fundamental group 0/ the complement %ne-place curves needs some
modification.

ZARISKI HYPERPLANE SECTION THEOREM AND CHOW FORMS
I chiro Shimada 7

"Ve extend Zariski's hyperplane section theorem to relative cases and Grassmannians.
Let V be a complex vector space of dimension m, and let U := Grass(T, V) be the

Grassmannian variety of a11 r-dimensionallinear subspaces of V, where 1 :5 r :5 m - 2.
, Let the group G := GL(V) acts on U from left in the natural way. Suppose that we are
given a morphism f : X ~ U from a nonsingular connected quasi-projective variety X, and
a non-zero reduced effective divisor D of U. For 1 E G, let -rJ : X -+ U be the composite of
f with the action / : U ~ U of / on U, and let -rF : -rf-l(U\D) --+ (U\D) x X denote the
morphism given by x !-4 (-rf(x) , x). We put IP.(V) := Grass{!, V), and consider U as the
variety of a11 (r - l)-dimensional projective linear subspaces of lP.(V). For a point pE U,
let II(p) C lP'.(V) denote the projective linear subspace corresponding to p. Let S c r.(V)
be a reduced irreducible elosed subvariety. For a point sES, the Zariski tangent space

7E-mail: shimada@math.sci.hokudai.ac.jp
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T,8 to S at s is regarded as a projective linear subspaee of IP.(V). For a non-negative
integer k, we define the genemlized Chow form crs, k] c U to be the Zariski closure of the
loens

{
there exists a nonsingular point sES }

P EU; such that s E II(P) and dim(T,S n II(P)) ~ k.

When dimS = m - r - 1 and k = 0, the variety C[S, 0] is the classical Chow form of S.
When dirn S = m - r - 1 + k, the variety CrS, k] is ealled a tangential Chow fonn of S,
which was introduced and studied by Green and Morrison ([3]).

Let U· be the Grassmannian variety of all (m - r)-dimensional linear subspaces of
V· := Hom(~C). We have a natural isomorphism

6 : U· .:; u.

For a reduced irreducible closed subvariety S· of IP·(V) := IP.(V·), we have its generalized
Chow forms C[S" k]· c U·.

We consider the following conditions on f: X -+ U and D c U. Let SingD denote the
singular locus of D.

(AI) There is an r-dimensional projective linear subspace M of IP.{V) such that II(f(x))
is contained in M for all x EX.

(All) There is an (r - 2)-dimensional projective linear subspace N of lP'.(V)_ such that
TI(f(x)) contains N for all x E X.

(B) There exists an irreducible component D i of D and a reduced irreducible closed sub­
variety S C na.(V) such that D i coincides with the tangential Chow form CrS, k],
where k =dimS - (m - r - 1).

(CI) There exists an irreducible component (Sing D)j of Sing D ,vith codimension 2 in U
and a reduced irreducible closed subvariety S c IP.(V) with dirn S = m - r - 2 such
tbat (Sing D)j = CrS, 0]. .

(CII) There exists an irreducible component (Sing D)j of Sing D with codimension 2 in U
and a reduced irreducible closed subvariety S· C lP'*(V) w:ith dirn S* = r - 2 such that
(Sing D)j = c5(C[S·, 0]·).

Let T be an oriented connected topological manifold, and let Q be an element of lf2(T; Z).
Then there is a topological line bundle L -+ T, unique up to isornorphisms, such that
Cl (L) = Q. Let LX c L be the. complement to the zero section of L. We have the
homotopy exact sequence

--t 1T2{T) ~ 1Tt (eX) ---+ 1Tt (LX) ~ 1Tt (T) --+ 1

such that tbe image of 1TI (eX) -+ 1TI (LX) is contained in the center. Thus we obtain
a central extension of 1TI (T) by a cyclic group Coker 8L , which we shall call the centrai
extension associated with Q E Jl2(T; Z). It is easy to write down the cohomology class of
If2(1Tl(T); Coker8L ) corresponding to 1Tl(LX) in terms of Q (see [1]).
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Let c E H2(U; Z) be the first Chern class of the positive generator of Pic(U). Let
ext E H2 ((U \ D) x X; Z) be the eohomology elass

-(inel 0 prd·c + (1 0 pr2tc,
where prt and pr2 are projeetions from (U \ D) x X to U \ D and X, respectively, and incl
is the inelusion of U \ D into U.

Dur main theorem, whieh contains the classical theorem of Zariski ([4], [6]) as a special
ease when T = 1 and I : X ~ U = r m - t is a linear embedding of a projective plane, is as
folIows.

Main Theorem. Suppose that dimJ(X) ~ 2. Let'"Y be a general element 0/ G. Then .­
either one 01 the lollowing holds; _
• the homomorphism

7F. : 1rt(7/-t(U \ D)) ---+ 1ft(U \ D) x 1rt(X)

giues 'TrI C'f-·I(U \ D)) a structure 0/ the centml extension 01 'TrI (U \ D) X 1ft (X) by the
cokernel'of I. : 1T2(X) -+ 'Tr2(U), and this extension is associated with the cohomology class
ext, or
• T ~ 2 and the condition

(1) ( (AI) and ( (B) or (CI») or «All) and ( (B) or (CII) »

is satisfied.

There are examples which shows that the conditions that the condition (1) should not
be satisfied for the desired isomorphisms between fundamental groups to be valid.

This type of theorem has been proved by Goresky-MacPherson's stratified Morse theory
.([2]) for various other situations. Our method is completely different and based on the
monodromy argument of Zariski-van Kampen type. The central idea is the following
observation. Suppose that we are given a family of algebr, .c varieties over an affine space
AN such that, outside a Zariski elosed subset Z c "AN of codimension ~ 2, we have a
Ioeal section. Under certain mild conditions, the triviality ofthe loeal monodromies on the
fundamental group of a general fiber implies that the fundamental group of the general
fiber is isomorphie to tbe fundamental group of the total space. We apply this observation
to the affine space End(V).
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ON THE DIFFERENCE BETWEEN THE FUNDAMENTAL GROUPS OF
REAL AND COMPLEX ARRANGEMENTS

Alexander I. Suciu

The ktb Fitting ideal of the Alexander invariant of an arrangement A of n complex hy­
perplanes defines a characteristic subvariety, Vt(A), of the complex algebraie torus ce-)n.
The characteristic varieties of an arrangement provide rather subtle and effectively eom­
putable homotopy-type invariants of its complement. In joint work with Daniel Cohen, we
show that the tangent cone at tbe identity of V,. CA) eoincides with 'Rl(A), one of the eoho­
mology support loei of tbe Orlik-Solomon algebra. Using work of Arapura and,Libgober,
we conclude that all positive-dimensional eomponents of Vk(A) are combinatoltally deter­
mined, and that 'Ri(A) is the union of a subspaee arrangement in C" , thereby resolving a
conjecture of Falk.

If Ais areal 2-arrangement (in the sense of Goresky and McPherson), the characteristic
varieties are no longer subtori through the origin. Tbe nature of these varieties vividly
illustrates the difference between real and complex arrangements. In joint work vdth Daniel
Matei, we study tbe homotopy types of complements of arrangements of n transverse
planes in ]R4, obtaining a complete classification for n ~ 6, and lower bounds fo~ the
number of homotopy types in general. Furthermore, we show that the homotopy type
of the complement of a 2-arrangement in JR4 is not determined by its cohomology ring,
thereby answering a question of Ziegler.

AN OPEN QUESTION IN FUNDAMENTAL GROUPS OF'=,::
COMPLEMENTS OF BRANCH CURVES . :~-

Mina Teicher

We want to use fundamental groups of complements of branch curves to distinguish
among surfaces lying in different connected components of moduli spaces.

This topic started with Zariski who proved in the 30's that for a cubic surface in 0p3
j

G ~ Z2*Za (see [26]). In the late 70's Moishezon proved that if X is a degn surface in QP3

then G ~ Bn , G ~ Bn/Center (see [5]). In fact, Moishezon's result for n = 3 is thc same
as Zariski's result since Ba/Center ~ Z2 *Za. The next example was V2 (Veronese of order
2) (see [9]). In a11 the above examples we have G :J F2 where F2 is a free noncommutative
subgroup with 2 elements. We call a group G "big" if G :J F2 .

Since 1991 we have discovered the following new examples: 113, the Veronese of order 3:
generalized later to general Vn ; X ab , the embedding of (pI x (jp1 into aN w.r.t. a linear
system lai! + bi2 1; and CI, the complete intersection (see [13], [14), [15], [16), [17), [21]).
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UnUke previous expectations, in all tbe new examples Gisnot "big". Moreover, G
is "smalI" , Le., G is "almost solvable", Le., it contains a subgroup of finite index wbicb
is solvable. During Dur research we discovered a new quotient of the braid group (hy a
subgroup of the commutant), namely Bn s.t. a11 new results give G = Bn-group and
G= G/central element (Bn-group is a group on which Rn act) (See [21], [22]). For Cl, G
is Bn itself. So the old examples were exceptions (\12 ohen turns out to be an exception) and
fundamental groups of complements of branch curves are not "big". They are surprisingly
"smalI" . Moreover, in a11 tbe new examples G, G are an extension of a solvable group
by a symmetrie ODe. In addition, in all our computations the decomposition series had
quotients of tbe type (ztEB zp)q. Thus we can attaeh to the embedding a discrete invariant

coI Dbsislting 0ff
h
(··· ti'P~' qi, .... ) wdbiCh dWill dishtinguish surfaches ~nlldi~erent co~pODents! The a.

g 0 a ity 0 t e new InvarIant epen s on t e answer to t e 10 oWlng question: •

Question. For whieh lamilies 0/ simply connected algebraic surfaces 01 general type is the
fundamental group 0/ the complement 0/ the branch eurve 0/ a generic projection to QP2

an extension 0/ a solvable group by asymmetrie group 'f
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A LOCAL LEFSCHETZ THEOREM
Heinke Wagner

For analytie subsets X, Y S; JEDt with eodim X = q, dirn Y = d, a result of Faltings (1980)
implies, that Hi(~YnX;C) = 0 for i ~ 4f -2, provided Y - YnX is nonsingular. This
bound is sharp. The analogous result for homotopy groups was proved by M_~:~reternell

(1983). We presented a proof cf the Ioeal generalization of this homotopy resuIt: Let
(X, 0), (~O) ~ (cn, 0) be germs of analytic subsets, SE a sphere of sufficiently smaU radius
E > 0 centered around 0 and consider XE := X n SE' ~ := Y n SE' If ~ - ~ n Xe is
nonsingular, then

dimY
1ri(~,~ n XE) = 0 for i < d' X - 2.- co 1m
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VANISHING THEOREMS FOR L2_COHOMOLOGY AND SOME
APPLICATIONS IN ALGEBRAIC GEOMETRY

Kang Zuo
(Joint work with Jürgen Jost)

Let X denote a compact Kähler manifold. Suppose that tbe fundamental group of X
admits a big reductive linear representation. A representation is called big if its Shafarevich
map defined by Campana and KoHar is birational (roughly speaking, if it does not factor
through any holomorphic map on X of positive dirn of generic fibre).

Using pluriharmonic map on X we construct a bounded singular Kähler form on the
universal covering of X, which is d-exact of al-form of at most linear growth. Further- _:
more, we use this Kähler form and same important idea due to Gromov and show that .'
all L2-holomorphic fonns on the universal covering except the top forms roust vanish.
Consequently we prove a conjecture of KoHar in tbe representation case, namely, if the
fundamental group of X is big then the holomorphic Euler characteristic of canonical line
bundle of X is non negative.

Edited by: D. Garber.
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