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The topic of the conference concentrated on URegulators" , which appear in various forms in Arithmetic
Aigebraic Geometry and Algebraic Number Theory. Excellent talks about new research results and \"arious
interesting discussions gave new evidence about the importance of regulators, i"n particular in their relatiolJ
to motives and Galois Module Structure.

VORTRAGSAUSZÜGE

~1. KAROUBI

REGULATORS AND MULTIPLICATIVE K -THEORY
The lecture was based on 4 references (K-theory 2 (198B), p.431-463, K·theory 4 (1990), p.55-87, K-theory
8 (1994), p.153-211, Fields Inst .. Comm. (1997), p.59-77.)

The scheme underlying the ideas is the following geometrie picture
(Algebraic K - theory) -t (Multiplieative K - theory) --+ (Topological K - theory)

i i
(Deligne - BeHinson cohorn.) (Singular cohom.)

In a unon-commutative" framework of a Banach (or Fh~chet) algebra, one- introduces a multiplicative h'­
theory Jen (A) which fits into the folJowing commutative l&-term diagram:

K~el(A) ~ Kn{A) -+ K~OP{A) -+ K~~I(A)

~ i i i
HCn- 1(A) -4 K:n{A) ---+ K~OP{A) -+ HCn- 2(A)

i i i ~

BCn-dA) ~ HC;(A) -+ HC:ir{A) ~ HCn- 2 (A)
i J, ,J: i

HCn-dA) --+ H Hn(A) -+ HCn(A) -t HCn- 2(A)

where all HC·groups are variants of cyclic homology (in a topological context) as introduced by A. Connes.
Three main examples are of some interest

1) A =C. Then K:n(C) =C X if n odd and there is acanonieal map Kn(C)--+C x which detects all torsion
elements and from which one can detect the Borel regulator.

2) A = Coo (51 ). Then K2 (C) ~ C X and the homomorphism K2 (A)-+C x defines the well-known Kar­
Moody extension I--+C x --+r---+sL(COO (SI))--+l.

3) A (as a sheaf of) holomorphic functions on a compact analytic manifold X. The analog of HCn - 2(A) is
then the following sum fB"H2,.-n(n·(X}/Fr} where F" is the Hodge filtration and O·(X) the deRharn
complex. The group 1\:"(A) (denoted also Kn(X» can be computed thanks to the exact sequenCtt

K~O:I(.X) ~ ft)rH2r-n-l(O·(X)/Fr) ~ Kn(X) ~ K~OP(X) -+ 5,.H2"-"(O-(X)/Fr).

where Hi(O-(X)/Fr):: E9, •••• HP'9{.'<) (Hodge theory). There is a Uregulator" K~O'{X)-+Kn(X).
,.< ..

Many techniques are necessary to construct and prove the previous statements. One feature is the contin·
nation or a modpl of Eilenberg.~lacL;Despace K(C, i) as the simplicial abelian group .'1 ~ Z'(~,) whprp
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Z'(A,) is the vector space of closed forms of degree i on the simplex ~,. If G = GL(C), a model of BG
is the diagonal in the simplicial set (EGra)p/Gn where Gn = COO(An : G) and (EGn)p is the set of se­
quences (go, gl, ... ,gra) with Gi E Gn. H we put r = E xlcg; 1dg lc , XII: barycentric coordinates in An, and
R = dr + r2 , the trace of Rm is a closed globally defined form on BG and we define a simplicial map
BG---+K(C, 2m) which represents the Chern character.

The homotopy fiber K:(C) of the map BG--+ nm K(C, 2m) is the classifying space of the multiplicative
K.theory of the complex numbers nra(JCn(C)) =: JCn(C). If C6 means G with the discrete topology, it is
deM that there.is a canonical map BG6 ~ ,t(C) inducing the Uregulator map" Kn(C) -. Kn(C) .

.More details can be found in the references for the general map Kn(A) -. ,(n(.4) where A is a Frechet
algebra.

A.GONCHAROV
MULTIPLE POLYLOGARITHMS AND MODULAR COMPLEXES

Multiple polylog's:

We describe the Lie coalgebra G(N)•.• generated by the framed mixed Tate motives corresponding to (.)
when zf' = 1. We introduce a complex Mtm) of GLm(Z)-modules of length m- I such that

where C(I) •.• is the bigraded Lie coalgebra corresponding to (.), and a similar relation for G(N)•.•. When
m = 2, M(2) is the chain complex for the classical triangulation of the hyperbolic plane.

A.HUBER
DEGENERATIONS OF ' ...ADle EISENSTEIN CLASSES
Uoint work with G. Kings, to appear: Inv. Math.)

Let B = Q(J'N), N ~ 3, M the modular curve of elliptic curves with level-N-structure / B. It can be
compactified

M ~ Xl +- Cusps +- 00 = B , M t- 00.

11 the Tate module of the universal'elliptic curve. There is a canonical map, the Eisenstein section

Eis: QdCusp] = HO(Cuspz,Q,) ~ H~\(Mz,SymA:1l(I»G= H~t(M,SymI:1l(1» = Ext~(Ql,Symlc1l(l»).

Prop If f(J E QI[CUSP] with q,(oo) = 0, then i-i.Eis(!;?) E Extk(Q" Q,(k + 1».
We write Dir(",) E BI (B, Q,(k + 1» for this element.

Rem This is a reformulatiOD of Harder's construction of Anderson motives.

Let

PA: : Q, ([EIN] - {O})) ~Q,(Cusps]

={/ e G~(Z/N) ~ Q, 8.t. /(ug) = leg) for u E (~ ~), J( -g) = (_1)1: /(g).}

be the horospherical map. It is surjective.

Tbm For VJ E Q,(E[N) - {Oll with p'(,p)(ind) =0 we have

(_1)1:+1
Dir(EispA:1/J) =~ E 1/J(u,Q)cl:(U) I

uEZ,N

2
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whcre ck«U) is the Soule-Deligne element of H] (8, Q,(k + 1)).

Cor Dir is surjective.

There is a second version of Dir, the cup product construction, which immediately translates to moti\'ic­
cohomology and absolute cohomology. Hence we also get

Cor Conjecture 6.2 in Bloch·Kato is true (Theorem of Beilinson-Deligne, Huber. \Vildeshaus)

The degeneration theorem is proved by relating Eisenstein classes to the elliptic polylog (Beilinson-Levin)
and the cyclotomic elements to the classical polylog (Beilinson, Wildeshaus). So the final proof consists in
studying the degeneration of the elliptic polylog into the classical one as the elliptic curve degenerates into

Gm.

A. WEISS

THE LIFTED ROOT NUMBER CONJECTURE
Let K / k be a finite Galois extension of number fields with Galois group G, S a targe set of primes of K 1 and
denote the S-units by E and the kernel of Z[S] -+ Zt P -+ 1, .by 65. To a G-monomorphism rJ>: 65 -+ Ewe
associate a class Ot,? in KoT{ZG)t t.he Grothendieck group of finite cohomologically trivial G-modules. Thp.
conjecture Uoint work with R. Gruenberg and J. Ritter) is that Olp is represented, in the Hom-description
for KoT(ZG), by X ~ A~L~)WK/k(X) , where Alp is as in Stark's conjecture and. ""\'K/k represents t.he
root number dass. This conjecture, if true, would imply the O(K/k,3) conjecture ~d the Ustrong Stark"
conjecture of Chinburg, and has the technical advantage of being approachable one prime at a time.

l'vluch of the talk was a discussion of the simplest nontrivial example Uoint work with J. Ritter) in which
K /Q is cyclic of prime order I with r ramified primes, all different from I. A special map I{) is construet ..d
which induces an isomorphisffi Z, t&l 65 ~ Z, x E and gives a Tate sequence by pushout of an explkit
sequence. The construction is elosely related to Euler systems: this leads to a proofof the conjecture when
r :5 2.

J. WILDESHAUS

POLYLOGARITHMS AND REGULATORS FROM A SHEAF-THEORETICAL POINT OF
VIEW
Theorem (1) Beilinson INeukireh, Esnault; 2) Deninger, 3) Beilinson, Deligne IHuber, Wildeshaus; 4) Hu­
ber, Kings)

d ~ 2, K := Q(lJd), J-ld := {w E Pd primitive}, n ~ 1.

r'N : K 2n - 1(K) ® Q --+ EB C/(27Ti)"R
t1:K ...... C

the regulator in absolute Hodge cohomology. Then 3 maps (unique for n ~ 2)

The larger part of the talk concentrated on a survey of the sheaf theoretic input necessary for the proof of
the above. Special emphasis was put on the elassification theorem for unipotent variations (due to Hain &
Zucker). The second part consisted of a discussion of the logarithmic sheafand the polylogarithmic extension
in a more general geometrie context.

3
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A. BESSER

p-ADIC REGULATORS AND p-ADIC INTEGRATION

Let [K; Q) < 00, Z/OK quasi-projective and smooth. Then Gros and Niziol define a syntomic regulator

Kj{Z} ~ H;;;i(Z,i) (ealled by other names at other places).

Let C/Cp be projective and smooth with good reduction

(caU the composite rc.p), ddined by

where (f) =L nj{xj) is the divisor of J and fl089 "1J is the Coleman integral of logg· W, which is unique up _
to constant. The main theorem we prove is •

Theorem 1 U Z/O" is projective, smooth, of relative dimension 1, and C = Z ® CP1 then the following­
diagram commutes:

K2(Z) ~ H;yn(Z, 2)

.t.
K2(C) 2.t Hom(Ol(C/Cp),Cp)

~ HJR(Z,,/K)
J.

Po~r~ HJR(C/Cp )

The main ingredient in the proof is the theory of loeal indexes at the ends of a (so-called) ubasie wide open"
of Coleman.

This is a complement in C of a finite number of "radius Rn dises, with r ~ 1. The corresponding annuli
are called the ends of U. One can define "local indexes" at the ends: for 2 Coleman functions F, G on
an annulus e, such that dF and dG are analytic forms on e, indt: (F, G) is the unique anti-symmetrie form
extending ReseF dG when this makes sense. We have:

Residue Theorem Ir F is a Coleman function on U with dF analytic on U, and F is analytic on U, then

L inde(F, log J) = Q.

eEEnd(U)

The theory of loeal indexes allows one to define an intermediate regulator 1

p(f.g)(w) = L ind. (log l.j (dlog9F",)).
eEEnd(U)

We show that this is the same as the syntomic regulator, interpreted via the above diagram, and that up to
logs of tarne symbols it is also the same as the Coleman-de Shalit regulator.

4
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B.EREZ
!}·INVARIANTS FOR MOTIVES
The aim of the talk was to present recent work of D.Burns & M.Flach. This work brings together two Hues
of research: Galois module theory a la Chinburg-namely the study of certain invariants inside class groups­
and the theory of special vaJues of L·functions following Bloch, Kato, Fontaine and Perrin-Riou.

The starting point is a motive M over a number field K with coefficients in a (not necessarily commuta·
tive) semisimple algebra A/Q. Under suitable assumptions one defines an element TO(A, A-I) in the group
Ko(A, R) (or Ko(A, Q)), where A c Ais an order /Z in A and Ko(A, R) is the relative Grothendieck group of
projective A-modules of finite generation w.r.t. theta map Z -+- R. This element is defined as being the dass
of a tripie (8(A1)z,8oo ,A) where 8(M)z is an invertible module in the ~~fundamentallinenIAof Fontaine
and Perrin-Riou, and where 800 is defined using the leading term of the .4R-valued L-function L(Al, s); 900

defines an isomorphism between 8(AI)z @ R and A ® R (this is the construction in the commutative caCie;
D. Burns sketched the construction in general in his talk].

The talk emphasized the ways in which TO(A, Al) is related to other invariants and what the consequences are
of the Equivariant Tamagawa number conjecture which says/predicts that TO(Q, M) =O. This eonjeeture
generalizes the Bloch-Kato conjecture, the Kato eonjecture for motives of weight S 1 with coefficients in
ZG (G abelian). Evidence for the ETNC independent of that for these two conjeetures is given by work in
Galois module theory (Greenberg-Ritter-Weiss, Chinburg-Koister-Pappas-Snaith and Burns-Flach). Note
for instance that ETNC # Lifted Root number conjecture (for Tate motives).

C. GREITHER

FITTING IDEALS OF CLASS GROUPS OF REAL CYCLOTOMIC FIELDS

This talk reported on fecent joint work with Pietro Cornacchia. The main result is as folIows: Let K· be a
subfield of Q((,,,)+, G = Gal(KIQ). Let E K (CK) be the group of units (of cyclotomic units, resp.) in h·.
Then

FitZG(EK leK) = FitZG(CL(K»).

Here Fit denotes the first Fitting ideal.

The main points of the praof are an application of the Main Conjecture in Iwasawa theory, and a lemma
which says that HFit" is multiplicative on exact sequences 0 -+- N -+ A -+ B -+ M -+ 0 where the middle
terms A and Bare of finite projective dimension. It is worth mentioning that the modules EIcICK and
CL(K) are not of finite projective dimension in general.

A. LANGER

ON THE IMAGE OF P-ADIC REGULATORS FOR HILBERT-BLUMENTHAL SURFACES

Let Y be a smooth projective variety over a loeal field L with good reduction. Then the image of BI (Y, K 2 )0
Qp in HI (GL, H2(}', Qp(2» under the etale cyele dass map can be controlJed by what Bloch and Kato call
the loeal points of the motive H 2 (l,r)(2). To show that the map BI (Y, K2)~Qp -+ H; (GL, H2(y, Qp(2»)1 H)
is in fact surjective, one has to show the Tate conjecture in char p performed for certain Hilbert-Blumenthal
surfaees ~~ over Qp where p is a split good reduction prime in F = Q(v'Q), q = 1(4) the discriminant of
F. We assume that hF = 1 and that all Hilbert modular eusp forms for the full Hilbert modular groups
SL2 (0F) are lifts of one-variable modular forms. Then the Tate conjecture holds in char p. The idea is to
study the reduction of certain Hirzebruch-Zagier eydes mod p and give a modular description of them. For
each isotypical component 111 in the cuspidal cohomology under the action of the Hecke algebra, one get s in
this way two linearly independent cycles FI, VI, that generate the space of loeal Tate classes.
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J. NEKOvAil

DUALITY THEOREMS IN GALOIS COHOMOLOGY

This talk was about a generalization ofTate(-Poitou) duality theorems foi Galois cohomology over laeal and
global fields to "big Galois representations" .

Let p be a prime, K a number field (totaUy complex if p = 2), S :> Sp :> SCXJ a finite set of primes of K,
1\'8/ K the maximal extension of K unramified outside S, Gs = Ga1(Ks/ K). Let R be a eomplete loeal
noetherian ring with finite residue field k =R/m = FpN of char(k) =p. We define a suitable category
(R[Gs]ad -' Mod) of admissible R[Gs]-modules (which includes R-modules M of finite (resp. eofinite) type
aver R with an R-linear action of Gs, continuous W.r.t. the m-adic (resp. diserete) topology on Al).

One has duality functors D, V

T --E..... T-

~!X!~
A A-

T. TO E D~_rt{R(Gs)ad - Mod). A, AO EDLeort (R[GsJad - Mod), such that, after forgetting the G8.e
action, V( -) = RHamR( -,wR) is the Grothendieck dual and D( -) is the Pontryagin(=Matlis) dual. For a
bounded below complex M of admissible R[Gs]-modules one defines a complex C;ont(GS, M) of continuous
cochains and a complex of eontinuous cochains with compaet support

C;.cont(GS, AI) = Cone(C;ont(Gs,M)~ E9 C;ont(GvIM»)(-I],
vES-Sco

These complexes define funetors Rrcont(Gs, -), Rrc.cont(GS, -}.

Poitou-Tate duality can be generalised as follows: for T, A, T- , A· as in the above diagram, the functors D,
V and 4t interchange the cohomology

Similar results ean beproved over Kv and for suitable "Selmer complexes".

D. BURNS

TAMAGAWA NUMBER CONJECTURES FOR NON-COMMUTATIVE COEFFICIENTS

This talk described a UTamagawa Number Conjecturen (of Bloch-Kato type) for motives with (non-commut­
ative) coefficients. Ir M is a motive over a number field K which admits an action of a finite dimension~

semisimple Q-algebra A, and A is a Z-order in A. which is Utame" for M (Le. there is a projectivp. ,
. lattice "in Mn) then we can conjecturally define an element TO(A, At) of the relative K -group Ko(A. R).
The conjecture of Beilinson et.al. implies that Tfl(A, M) E Ko(A, R) and the "Equivariant Tamagawa
Number Conjecture" asserts that Tn(A, M) = O. If A = Q~ A = Z and M has weight :; -1 this is thc
original conjecture of Bloe i-Kato (Grothendieck Festschrift). In other cases the conjecture refines existing
conjectures of Gross, Tate, Rubin, Chinburg etc. We also described same evidenee for the general conjecturp.

6
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U. JANNSEN

CLASS FJELD THEORY AND FINITENESS RESULTS FOR SURFACES OVER LOCAL
FIELDS
The talk reported on joint work with Shuji Saito, eoneerning properties of the regulator maps

for a smooth projective variety over a loeal or global number field k. Here d = dirn X and Hd(X, JCd+l) ==

Coker( EBrEXl K2(k(x»)~EBzEXo k(x», where Xi denotes the set of points of dimension i of X anel

k(x) is the residue field of x E Xl'" If k is loeal, then H:~+l (X, Z,(d + 1») =:!! 1rdX)8b, the abelianized
fundamental group, and p is the reciprocity map of higher-dimensional dass field theory. The case ofcurves
is weil understood, mainly by work of K. Kato and S. Saito in the 80's. For a surface }( we prove: Assump
that the I\.1i1nor-Kato conjecture holds for Kf' (k(x») and tbe prime 1 (resp. for all primes I) [this is valid
for I == 2 by work of Rost / rvterkuriev-Suslin, or for all I for rational or ruled surf~ces].

Thm.l Let k be loeal. Then

Vv > 0

if X has good reduetion. If X has semistable reduetion, there is an exact sequenee (l ,eresidue eharacteristic
unless X is ordinary semi-stable),

where ry is the simplieial complex associated to the special fibre Y. In general, the family of groups
(ker PI" )v~o has bounded order (resp. the family (ker Pn)nEN is bounded), and similarly (V( ..t)/P')v>o (resp.

(\t'(X)/n)nEN) is bounded for -

V(X) = ker (H2 (X, K(3)~k)() .

Thm.2 Let k be global. Then tbe families (ker PI" )112:0 and (V(X, Z/III) 112:0 (resp. (ker Pn)nEN anci

(V(X, Z/n»)nEN are bounded, where

V(X, Z/n) = ker (V(X)/n -+ ffi CHo(l"'v)/n) ,
vEV

x~U being a smooth and projective morlel of X over an open part U C SpccO., O. = ring of integprs of
k, }'u= fibre of X over v E U.

The proof uses several complexes of Bloch-Ogus type introduced by Kato and requires to prove same of
Kato's eonjeetures on these complexes.

D. DELBOURGO

p-ADIC HEIGHTS

Given a modular elliptic curve, E/Q such that L(E, 1) =0, then it can be shown via Kato's Euler system
that Sel(E/Zp-extension) is eotorsion over the Iwasawa algebra, A, at primes p > 3 such that p2Icond(E)

& p is potentially ordinary. Then one ean find a formula for charA (Sel(E/Zp-extensiOn») if #Wp- < 00.

This formula involves a ubad" p-adie regulator and the usual suspects.

7
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H.GANGL
REGULATOR CALCULATIONS AND TUE LICHTENBAUM CONJECTURE
\Ve exhibit non-trivial elements in the higher Bloch groups (as defined by Zagier and also by Goncharov)
Bm(F) of number fields F (of degree up to 8 over Qt not necessarily Galois) with the help of a computer.
Since Bm(F) is conjectured to be an explicit model for K2m- 10F (and known for 7n = 2 and to some extent
for m = 3) and one can compute a certain one-valued version of the mth polylogarithm t Cm : C~R,

which plays the role of the Borel regulator map for this model, we obtain conjectural information about thc
regulator.

This in turn enables us to establish numerical evidence for both Lichtenbaum's and Zagierts conjecture for
small m (25m :5 6) and predict orders ofeven K-groups K2m - 20F (at least up to primes:5 m). For m =2,
it is knowu that .c2 (B2 (F» forms a lattice, and the corresponding form of the Lichtenbaum conjecture (wit.h
numerical support) reads:

".lm-1h(;.( -1) = #w:(~) .covOl(.c2(B2(F») .
The computations helped to detect certain superfluous Euler factors in a proof of Lichtenbaum 's conjectureA
for a dass of abelian fields and to give a clue how to get rid of them; a prominent role is played by distribution"
relations for polylogarithms.

J. D. LEWIS

INDECOMPOSABLE MOTIVIC COHOMOLOGY CLASSES
Let X/C be a projective algebraic manifold, and CH"(X,m) = Bloch's higher Chow group. Gur primary
interest is the study of the following objects t using Hodge theory methods:

Definition. 1.) The space of decomposables is given by the image

CH~(X,m)Q:=Im{(BCX)~m@CHk-m(X,O)Q-.CHk(X,m)Q},

where CX is identified with CHI (X, 1).
2. )The space of decomposables is given by

CHi~d(X,m)Q=CH"(Xtm)Q/CHt(..Y,m)Q.

There are cycle dass maps C".m: C H"(Xt m)Q --+Hb"-m (X, Q(k)) , and correspondingly induced ~aps

~.l : CHtnd(X, I)Q--+Hi,"-l(X, Q(k»)/CQ® Hg"-l (X)Q

where Hg"-l(X)Q is the Hodge group), and for m ~ 2

'.t,m : CHi~d(X,m)Q--+Hb"-m(XtQ(k).

By rigidity, Im(~",m) is countable for m ~ 1.

Definition. Level(CH"(X,m)Q) = min{r ~ OICH"(X,m)Qrell~ionCHk(X- Y,m)Q is zero for some

elosed Y C X, where codimx(Y) =k - r - m.}.
Similarly, one can define Level(CH~(X,m)Q) and Level(CHi~d(X,m)Q).

Let s/e be a smooth projective variety of dimension s. We introduce the following 'diamond':

CHIc(S x X,m)

lr..~

8
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Definition. H{~,I,m}(.x)= C-subspace of Ht-.,t-m(x) generated by the images of CH~{S x X, m), over
all S.
We have the following theorem:
Theorem. Assume either m ~ 2, or for m ~ 3, there exist a projective algebraic manifold B /C of dimension
m -I, and a dass.., E Hm-I(B,R(m -1)) with 1 m - LO #- 0, in the image ofthe regulator map

rm,m : H,M(B,Q(m))R--+Hi)(BtR(m))::: Hm-I(B,R(m - 1».
Then 1. H{~-m,l-m,O}(X) C H{~,l,m)(x)

2. H{k-m,l-m,O)(X) -:F 0 => Level(CH~(X,m)Q) 2: 1- m ,
3. H{k,I,m}(X)/H{k-m,l-m,O)(X) # 0 => Level(CHi~d(X,m)Q) ~ 1- m.

Note. One can show that I - m ~ 1 in 3. implies C Hi~d(X, m)Q is uncountable. Thus, by rigidity, 011('

would have an uncountable number of indecomposables in the kernel of the regulator map C~,m'

FinallYl in joint work with B. Brent Gordon, we have:

Theorem. Let X =EI X ~ X E3 be a sufficiently general product of three mutually non.isogenous elliptic
curves. Then Level(CHi~d(X,l)Q) 2: 1.

T. CHINBURG

GALOIS STRUCTURE OF K-GROUPS AND THE MAIN CONJECTURE OF IWASAWA
THEORY .

Suppose NIK os a finite Galois extension ofglobal fields with G = Gal(NIK), and that 1 ~ n E Z. This talk
was about the application of Wiles' proos of the Main Conjecture of Iwasawa Theory to study an invariant
On(NIK) in the dass group CI(ZG) which measures the difference between the G-structure of K 2n+ 1(ON."';)
and K 2 (ON,S) when S is a large G-stable set of places of N. (For the definition see "Galois structure of
K -groups of rings of integers/' C.R.Acad.Sci.Paris t.320 Ser 1(1995), p.143S·1440.) Conjecturally, On(N/ K)
is equal to a certain root number dass wN/K defined by Fröhlich and Cassou-Nogues. This is knon if N is a
function field of characteristic not dividing #G, and also if n is odd and N is a totaJly real field up to c1asses
. ( @(n+l)}Gal(NINJIn the kernel group D(ZG) and classes ofmodules of2-power order. Let Wn+1 (N) = np # IIp-

and let w~+dN,G) be the product of those primes 1 dividing wn+l(N) for which the l-Sylow of G is not
cyclic. We discussel. how to use Wiles t work to show that if N is totally real, n is odd and G is abeliau, theu
On(N/ K) = wN/K up to classes of modules of 2-power order and classes in D(ZG) represented by finite
modules supported on Wn+ I (N, G).

N. SCHAPPACHER

On K 2(E)

Let F be a number field t E an elliptic curve defined over F and [/OF the regular minimal model of E over
the ring of integers of F. One conjectures (without being able to prove a single instance) that the groups
HO(E,K.2 )/K2(F) and K2(E/OF) are finitely generated abelian groups. On the other hand, there is the
problem of constructing explicit elements in K2(E /Oy )-with a view 10 verifying Beilinson's conjectures for
L(E/F.2)-resp. for the derivative L'(E/F,O).
In the talk. we reported on the elementary proofs given for recent progress on the second problem, obtained
by GoncharovlLevin (Inventiones 132) as weil as Wildeshaus (Duke 87); these elementary arguments were
published in Crelle 495(1998)t by Rolshausen and N. Seh. They rely as much as possible on the c1assical
theory of elliptic functions according to Eisenstein, Kronecker and Weierstrass.

At the end of the talk, we drew attention to Don Zagier's remark about how desirable it would be, in this and
similar contexts t to have a group bigger than E(F), but much smaller than the G(Q/F)-invariant divisors
on E(Q), at one's disposal...
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R.DEJEU

TOWARDS REGULATOR FORMULAE FOR TUE K-THEORY OF CURVES OVER NUM­
BER FIELDS
Let k be a number field, and let C be a smooth, proper, geometrically irreducible curve over k. The Beilinson
conjectures give a relation between the image of the regulator map K~~+l)(C)-+HJR(C@Q C; (21Ti)"R)
and L(C,2 - (n + 1»-, the first non-vanishing coefficient of L(C,8) at 8 = 2 - (n + 1), for n ~ 2. (For
n = 1 there is an extra condition on elements of K~:+l)(C) for this.) Based on complexes conjectured by
Goncharov, we construct a double complex M(n+l)(C) in terms of F = k(C) and k(x), where x runs through
the dosed points of C, with maps of the cohomology of the double complexes to the K -theory of the curve,
depending. on same general conjecture for high n. .

For n = 2,3, we can show that after applying the regulator to the image, we obtain a11 of the image of the
K -thcory (K~:+l)(C») under the regulator in HJR(C0Q C; (21Ti)"R), independent of any conjectures. This
provides evidence' for the correctness of Goncharov's conjectures.

S. LICHTENBAUM

REGULATOR PAIRINGS WITH VALUES IN QUOTIENTS OF IDELE CLASS GROUPS

We give two exarnples to illustrate the philosophy that values of zeta-functions should be essentially given
by etale Euler characteristics, involving a regulator pairing into a quotient of the idele dass group.

I. Let F be a number Held, OF the ring of integers in F. Let X = Spec OF, X = the completion of X
obtained by adjoining the infinite primes, l(J : X -+ X. We consider X with the etale site.

We have the formula:

Here
(X Z) - #HO(X,l(J!Z) . #H2(X,cp,Z) . Re _

X ,'P' - #Hl(X,l(J,Zhor #H3(X,l(J!Z)cotor gx'

The regulator is obtained by pairing H 1(X,l(J!Z) with the dual of H3(X,V'!Z) (the units of F). The units
are described as Hom.t(cp!Z,cp!Gm ), and hence we obtained a pairing into Hl(X,V',Gm) which maps to
HI (X, V'!Z). H 1(X, l(J!Z) is dense in the quotient of the idele dass group of F divided by the unit ideles.
The dassical regulator is obtained by composing this pairing with log I'I-+R and then taking determinants.

11. Let E be an elliptic curve over Q with N~ron model E over Z . The conjecture of Birch and Swinnerton­
Dyer for E can be rest8ted as saying:

where w is the real period. Here the regulator is the determinant of the pairing from HO(X ,1p!Z) x
Ext~(cp.E,Gm)-+Hl(X,Gm)~R, which is the height pairing on the eUiptic curve.

10
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