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The conference was organized by Da,,;d Eisenbud, Joe Harris and Frank·Olaf Schreyer with an emphasis
on topics around the moduli space of curves, quantum cohomology, and Gromov-\Vitteni1ivarlants. In
selecting the speakers (as well as the participants) precedence was gjven to the bright YOllng people in the
field, for example Kai Behrend, Carel Faber, Barbara Fantechi, Lothar Goettsche, Brendan Hassett, Rahul
Pandharipande, Michael Thaddeus, and Ravi Vakil.

The number of talks was kept to four per day, each of 50 minutes- t'o allow plenty of time for discussion
and to encourage questions at the end of the talks. Perhaps partly because of these policies, the attendance
at the talks was very high. There were also many lively discussions among the mernbers between the talks,
and several research projects moved forward in this time.

The enthusiasm of the participants, the level of activity in discussions among thern, and the quality of
the talks, made us feel that this was a highly successful conference.
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Abstracts of talks

MICHAEL THADDEUS

On the quantum cohomology of asymmetrie product of a curve

The dth symmetrie product of a eurve of genus g ia a smooth projective variety. The lecture is concerned
with the little quantum cohomology ring of this variety, that is, the ring having its 3-point Gromov-Witten
invariants a.s structure constants. This is of considerable interest, for example as the base ring of the
quantum category in Seiberg-Witten theory. The main results give an explicit, general formula for the
quantum product unless d is in the narrow intervall [~g,g - 1). Otherwise they still give a fonnula modulo
third order terms. Explicit generators and relations can also be given unless dis in [!g -I, 9 - 1).

( The talk is areport on a joint paper with Aaron Bertram).

\VILLIAM FULTON

Eigenvalues of Hermitian matrices and Schuberl calculus (after Klyacbko) e
A. Klyachko has shown that if A and B are Hermitian n x n matrices, and C =A + B, the eigenvalues

0: 01 ~ ... ~ On of A, ß: ßl ~ •• , ~ Pn and 1': 1'1 ~ .•• ~ 'Yn of C satisfy the inequalities

L ')'k ~ L Gi + L ßj
IeEK iEI je)

for subsets (I, J, K) of {I, ... ,n} of cardinaJity r such that the Schubert dass uK appears in (ll . u J in the
eohomology of the Grassmannian of r-planes in Cn ; here (11 corresponds to the partition (ir - T,."•• ,it -1),
where I = {il < i 2 < ... < in}. Together with the equation E "'(k = E Oi+E ßit these equations completely
characterize whieb (0, P, "y) can arise as eigenvalues.

If (0, ß, 1) are integral, there are eorrespolJding representations ya, yß, y'" of GLn(C) with these highest
weights. Klyachko shows that yN,.. C V Na @ V Nß for sorne positive N exact1y, when the above inequalities
are valid.

The saturation problem asks if yN,.. C V Na l8> V Nß implies y'" C ya @ yß. H this is true, it raises the
challenge to algebraie geometers: to show that Schubert caleulus for n-planes in rn-space - at least as far as
the question of whether produets are zero or not - should be controlled by Schubert ealculus for r-planes in
n-space, for 1 ~ r < n.

CARELFABER

Identities for integrals on Alg

Consider the following tautologieal c1asses on AIg,n: 1Pn (1 $ i :$ n), the first ehern classes cf the
neotangent line bundles; K.j = 1rn+J,n.(~~~) (with 1rn+l,n:Afg,n+l -+ Afg,n forgetting the last point);
Ale =cle(E), the k th Chern dass of the Hodge bundle, pulled back from Alg •

The intersection numbers ofthese classes can be computed: for those involving 1/1i and Itj, this is \Vitten's
eonjecture = Kontsevich's theorem; to inc1ude the Ale, use Mumfords's formula for ch(E) and recursion (see
alg-geom/9706006 for details). .4A

In joint work with R. Pandharipande v.-~ prove the following explicit fonnulas for same of these numbersW
Define ZIe(t) E Q[k][t) by

Theorem. 1) ZIe(t) = Z~+I(t), 2) Zo{t) = 'i~('i2)'

In the talk, we outlined proofs of Z-l (t) = 1 resp. Z-2(t) = 'i~~t'2) using global generation of the line
bundle ,pI ~most every where resp. a calculation on the h~llipticlocus. 1) is proved using localization
on Mg,l(P ,1).
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KRISTIAN RANESTAD

Abelian surCaces OD Calabi·Yau J.Colds

(work in progress with Klaus Hulek). Abe1ian surfac:es of small degree are often contained in Calabi­
Yau 3-folds, similarly Calabi-Yau 3-folds of small degree often specialize 10 Calabi-Yau 3-folds with abelian
surfaces on them. The first assertion is intimately connected with the fact that the moduli space of abelian
surfaces 01 smaIl degree is uniruled: An abelian surface on a CY 3-fold moves in a linear pencil, and therefore
gives rise to a line in the moduli space of abelian surfaces. This idea was taken up and explored by Gross
and Popescu starting with a very singular CY \'ariety, the secant variety of an elliptic normal curve. The
translation serolls inside the secant variety a.re degenerate abelian surfaces and form a line on the boundary
of the moduli of abelian surfaces. They show that the secant variety defonns 10 CY 3-folds with only isolated
singularities and with a pencil of abelian surface as lang as the degree of the elliptic cur\"e is less than 11. This
limit is related to the DeI pezzo bound for the possible smoothing of minimal elliptie surface singularities:

\Ve explore a similar setting. ~ a p2 seroll over an elliptic cun'e any anticanonical divisor, if there
is one, is a possibly degenerate abelian surface. Hone can glue two p2 scrolls over elliptic eun'es along
an anticanonical divisor, the union is a singular Calabi-Yau 3-fold. H furthermore the anticanonical divisor
rno,·es in a penell on (at least) one of the two serolls, then we are. in a position like above.

\Ve start by asking for smooth abelian surface with two pencils of plane cubie eurves on it. The
two pencils would then define p2-scrolls whose union is Calabi-Yau. It turns out that purely numerical
eonsiderations bounds the degree of these abelian surfaces to 18. The bound is obtained by abelian surfaces
which form the complete intersection «0,3), (3,0)) in p2 x p2 with its Segre ernbedding. For each degree
d, 10 ~ d $ 18 there are numerical possibilities which are easily realized. For this talk we-study the case
d = 12, i.e. the case of abelian surfaces embedded linearly normal in pS.

\Ve find and deseribe the abelian surfaees of degree 12 and the two serolls defined by their pencils of
plane eubic eurves. The union of the two serolls ia a nonnormal Calabi Yau 3-fold of degree 12.

In a separate approach we construct via projected Del pezzo 3-folds, nonnormal CY 3-folds in degrees
10,11,12 and 13. This construetion gives a characterization of these CYs which we use in the final sections
to identify the union of two ellipic serolls eonsidered earlier as a specialization of the nonnormaJ CY 3-folds
of degree 12. The talk concluded with a proof using Reyes results on webs of quadrics and apolarity we
deseribe the nonnormal locus of the Dei pezzo 3-folds.

BRENDON HASSETT

Limiting Plane Curves and the Minimal Model Program

Let Pd denote the smooth plane curves of degree d up to isomorphism. One natural question is to
deseribe the closure of Pd in the moduli space .·\..1g(d) where g(d) = ~(d - l)(d - 2). The corresponding
curves are called limiting plane curves.

\Ve approach this question locally. Let Co be a germ of an isolated plane cun·esingularity. For each
smoothing C -+ 6 of Co~ we can consider the loeal stable reduction ce -+ Ä. The centraI fiber C8 takes the
form

CöUp1 ••..•P• CT·

where Cö is the normalization of Co and (CT,PI, ... ,Pb) is called the tail of the stable reduetion. The locus
of such tails is denoted Tco' and is a closed subvariety of the moduli space of pointed stable curves.

We replace the family of curves with a farnily of log surfaces (S, Cl, where S =SpecC[[x, yJJ x A is a
trivial family of surface genns. We then apply local stable reduction for log surfaces 10 obtain (se, ce) -+ .6..
This stable reduction is computed using the log minimal model program. Thus our limiting curve C8 sits
naturally in some (singular) surface 88.

These surfaces may be used to describe components of 100 for certain types of plane curve singularities.
The singularities we consider are of toric type, Le. topologjcally equivalent 10 xl' = yq. We show that
certain weighted plane curves CT C Pcp, q, 1) naturally occur as elements of Tco' and conjecture they are
dense. We apply these results 10 describe certain boundary divisors oE Pd.
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DUCO VAN STAATEN

Grassmann-like varieties and mirror symmetry

(Report on joint work with Klaus Altmann.) A ßag-like quiver Q is an oriented graph with one saurce,
I sinks and at other nodes as many arrows coming in as going out. The torie variety P(Q) associated to the
flow polytope V(Q), which is always reflexive (Altmann-Hille), has many structural properties in common
with the torie degenerations of Grassmannians (I == 1) and partial ßagmanifolds that were considered by
Stunnfels, Lakshmibai-Gonciulea, which in fact can be realized by very special quivers. The Picard group
of P(Q) is Zl t the singuJarities sit in eodimension ~ 3 and the codimension 3 strata corresponds 10 (certain)
nodes with two incoming and two outgoing arrows. The spaces of infinitesimal deformations and obstructions
Tl and T2 can be understood in terms of Qt and although T2 #- O. in general, it can be shown that P(Q) is
smoothable in eodimension 3. This means that the 3-dimensional noda! sections of P(Q) can be smoothed
and in this way one gets new Calabi-Yau threefolds, for which one ean perfonn (conjectural) mirror symmetrie
caleulations for the rational cun-es using the hypergeometrie series~of the quiver Q. E.g.

tI = f (2m)!m!( L (b) (c) (c) (m) (m)2)qm
m=O (m!)3 Q.b.c~O a b abc

is period of the mirror of the (1 , 2) section of the deformed P(Q), where

LOTHAR GÖTSCHE

Couoting curves 00 surfaces

1--+
I

Q= I
1--+
1/

-+1
·1
t

-+1
'\,1

I present a conjectural generating function for the numbers of cun'es of given genus in linear systems
on surfaces. Let S be an algebraic surface, L a sufficiently ample line bundle on S, and b ~ O. Let ti(L) be
the number of cun'es in ab-dimensional sub-linear system of ILI which have b nodes as only singularities.
I give a eonjectural generating function for the ti(L) as polynomials in the intersection nurnbers L2, LKsl
K~, and C2(S).

Here X(L) is the holomorphic Euler characteristic, G2 and A are the well-known (quasi)-modular forms
and D = q-J;. BI, B2 are (unknown) universal power serles. There is an algorithm for determining their
coefficients. The conjecture is checked in many cases: it gives the formulas ofVainsencher and Kleiman-Pien~
for 6 :S 8; it has been partially proven by Bl1'an-Leung for K3-surfaces and abelian surfaces; it is checkecw
against the recursions of Caporas~Harrisand Vakil for P2 and rational ruled surfaces.

EDUARD LOOIJENGA

Stable cohomology of 1.19

The results discussed reflect an approach 10 the conjecture of Mumford that says that the stable coh~

mology of Mg is generated by the tautological classes 1'1, "2, ....
Given a compact connected oriented surface of genus g, S, then the mapping dass group ro :=

'1foHomeo+(Sg) admits a natural arithmetic quotient Jg that is obtained as an extension of the symplectic
group Sp(Vg) (here Vg := H l (Sg; Z» by the lattice ASVg/wg" Vg (here w9 e A2Vg is dual to the intersection
form). The projection r g ~ Jg induces H~(J9; Q) 4 H~(rg; Q) and the latter map is known to stabilize as
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9 -+ 00. Kawarumi and Morita have shown that in the stable range the image of this map is just the subalge­
bra generated by the "j6. So Mumfords conjecture asserts the stahle surjectivity of Ht(Jg ; Q) -+ H'(rg; Q).

Our approach is 10 introduoe a moduli space Mg (in the analytic setting) of what we call irrational
trees of genus g; these are weakly normal curves C with only smooth irrational components of positive
genus such that the nonnalization C -+ Cinduces an isomorphisrn on H I. This is a quotient of the moduli
space Afl1 of goad curves of genus 9 (these are stable curves C such that the nonnalization C-+ Cinduces an
isomorphism on HI • One can show that the orbifold fundamental group of }./g is isomrphic to Jg and that it
maps isomorphically ento the 'stacky' fundamental group of Mg. It is known that Ht(Afg;Q) -+ H"(Afgi Q)
is onto in the stable range and a recent theorem cf U. Tillman (that says that the stahle mapping class group
is an infinite loop space) suggests that even:

Coojecture 1. H"(A/gi Q) -+ H'(Afg;Q) is onto in the stable range.

The period map Afg -+ Ag extends to a proper morphism Aig -+ Ag which in fact factorizes through a
morphism ifg -+ Ag. Now over Ag v..oe have a natural bundle Jg,o -+ Ag (in the orbifold sense) by Kummer
varieties of tori such that Jg,o is a virtual classif}ing space for Jg. Hain~s universal normal function is a lift
vg: Alg -+ Jg,o of the period map. \Ve prove

Theorem. vg extends to a morphism ilg: A{g -+ Jg,o and ilg js injective and l-connected.

\Ve offer the following

Conjecture 2. Given k E N. then ilg is k-connected [or 9 suHiciently large.

This conjecture is strong and much harder to prove (hence easier to disproye) than conjecture 1. In fact
conjecture 1 and 2 together imply Mumfords conjecture.

RAHULPANDHAIDPANDE

Methods of computing Gromov-Witten invariants

Gromov-'Vitten invariants are integrals of natural c1asses over the moduli space of stahle maps. Already
in 1990 three methods of detennining G\V invariants were known to the physicists: via the splitting axiom
("·DVV), mirror symmetry, and Virasora constraints. 1 talked about the conjectural Virasora constraints
of Hori and Xiang (and Katz) and explained joint work \\;th E. Getzler in which we derh'ed consequences
of these formulas for certain ehern dass integrals over the moduli space of curves.

BARBARA FANTECHI

Obstruction calculus for functors of Artin rings

This is joint work with ~Iarco Manetti. Let K be a field t art the category of local artinian K-algebras
\\;th residue field K. \Ve study good deformation functors: Le. cO'äriant functors

s.t. UF(K) = 1 and Schlessinger:s (Hl), (H2) hold. \Ve introduce the notion of obstruction for such functor
as a pointed set. We prove that universal obstruction exists and is unique and complete, Le. an elemant
a E F(A) lüts to F(B) (for B -+ A -+ 0 in m:t) iff it's unobstructed. \Ve give explicit conditions for
the obstruction 10 be linear, i.e. 10 have a natural vector space structure. As applications, we generalize
Ran-Kawamata's TI-lifting criterion and prove that group good deformation functors in char 0 are smooth.

NICK SHEPHARD-BARON

Lang extremal rays and symplectic resolutions

A symplectic singularity is a complex space X with a resolution J: X -+ X, where X possesses a nowhere
degenerate holomorphic 2-form. The motivating question is whether, locally on X, this can be modelled
in an algebraic group, as was shown by Steinberg, Springer and Brieskorn when dimX = 2. It turns out
that, under same teclmica1 assumptions, this is true for isolated singularities: if dimX ~ 4, then the only
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possibillity is that X -+ X is the collapsing of the cotangent bundle T·pn of projective space. A main tool
in the proof is the following characterization of projective 8pace (sharpening an earlier reault of Cho and
Miyaoka): if Z is a nonnal projective variety such that every maximal family of rational curves through a
fixed general point covers Z, then Z is projective space.

KAI BEHREND

Mod~fying Gromov-Witten invariants ror varieties with h2,o "I 0

Ooint work with Barbara Fantechi). H you try to apply Gromov-Witten theory to count rational curves
on a K3 surface X, you discover that the expected number of Mo,o(X,ß) is -1. According 10 G'V, rational
curves should not exist. But, in fact, they do. Hone de(onns X, ß) in such a way that ß does not remain of
type (p, p) then one gets obstructions to defonning stahle rnaps of dass ß. Hone restriets to defonnations
such that ß stays of type (p, p), all obstructions that actually occur are contained in a subspace of the
G'V-obstruction space Ht (C, f·Tx ). This subspace is the kernel of the natural map

Thus we may modifl the usua} G\V-obstruetian theory E = (R1r.j·Tx)* by HO(X, O}) to get a modified
obstruction theol)' E. H, for all stable maps J: C ~ X in Alg ,n(X,ß) the map HO (X, fix) ~ HO(C, I-fix ®
w) is injective, Eis I-perfect and gives rise to modified G\V-invariants. Examples of X for which this theory
applies are irreducible complex symplectic varieties. In case 1C is K3 the modified expected dimension of
Al0 ,o(X, ß) is zero. U ß is primitive, then deg[AI0,o(X, ß)]t1ir = n(h) where E~o n(h)qh == ~ And

2h - 2 == ß2, by arguments of Fantechi, Göttsche, van Straten, Beauville, Yau and Zaslow. Note that there
is an alternative approach (in eertain cases) by Bryan and Loung.

ANDRE HIRSCHO'VITZ

Moduli of perfeet complexes

Joint work with Carlos Simpson (Toulouse). Let us fix a natural integer e E N and consider, for a E N,
the affine (k- )scheme A/a of matrices of type (a, a + e). It is nicely stratified by the rank of the matrix.
For b larger than a, a large open subset 1.1: in Alb has (Ioeally) smooth maps to Ala compatible to the
stratifications. So what about glueing these Ala together into a single (Ioeally?) algebraic stack? Just as the
stack of vector bundles on p i glues together the versal deformation spaces of these bundles.

After inspection, it turns out that the right object is a 2-stack, and not an ordinary stack. And the
similar problem for complexes of length r leads to a (r + 1)-stack.

\Ve introduce a hopefully convincing nation of Segal stacks suited for such purp05es, and abtain, for
boundecl perfect complexes, the natural descent and algebraicity results.

RAVI VAKIL

Stable maps and characteristic oumbers of plane quartics

A characteristic oumber problem is an enumerative problem of the following fonn: Given a dimen-~
sion D family of plane curves (or curves in a larger projective space), how many pass through a general~

points and are tangent to D - a general lines? The algebraic geometers of the last century were able to
compute the characteristic nurnbers of curves of degree d S 4 (and genus S (d2'I), culminating in Zeuthen's
detennination of characteristic numbers of smooth quartics. The arguments were not rigaraus, and one of
Hilbert's problems was thus to put the computations of Schubert, Zeuthen et al. on asolid foundation. We.
complete this verification by computing the characteristic nurnbers of plane quartics in a manner somewhat
reminiscent of Zeuthen, and incidentally give a quick method for conies and cubics as weil.

These are really problems in intersection theory. Classically, the philosophy was to construct a good
(hopefully smooth) compaetification of the space of smooth curve&, where the divisors A (corresponding
to curves through a fixed general point) and TL (corresponding to curves tangent to a fixed generalline)
are hopefully Cartier, and AOTLD-a gives the characteristic numbers of the family. The space of complete
conics work for d == 2, and Alufti '8 "space of complete cubics" works for d =3. We use the space Mg (P2 , cl).
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(9 = (d;l), d == 2,3,4), which is the camponent of the (Deligne-rvlumford) moduli stack of stable maps
generically corresponding to smooth plane cun~. Although the machinery is heavy, the method itself is
naive and straightforward. After defining A and TL correctly,

2(d - I)A = TL + boundary.

'Ve find the boundary divisors and multiplicities, and intersect this relation· v..;th one-parameter families
AOTLD-l-o (0 :S a $ D - 1).

The fact that such a naive approach works shows the power of Kontse\ich ~s moduli space of stable maps.

HUBERT FLENNER

Atiyah class and semiregularity map Cor modules

Let X be a complex algebraic manifold and Y y X locally a complet intersection. Then the tangent ­
spaee of H, the Hilbert morluli space of X at [Y] is given by HO(Ny/-'d whereas the obstructions are given
by H 1 (Ny!.'<). In particular, if H I (Ny!x) = 0 then His smooth at [Y]. There are many situations~ where H
is smooth although BI (Ny/x) ~ O. In the 70's S. Bloch introduced a map u: Hl (Ny!x) -+ HIc+1 (n~-l) and
showed that the injeetivity of this map already implies that H is smooth at [Y). Another typical example
where the ~natural' obstruction module does not vanish is given by the trace map of Artamkin-~Iukai. In
this talk, which described a joint work with R.O. Buchweitz (Toronto), we propose to intr_Qduce a whoIe
bunch of semiregularity maps for deformation of modules, say [ E Coh(X), as folIows. Firstone has the
Atiyah dass of E which is an element in Ext l

([, E ® n\). The obstructions for deformation q( modules are
just Ext2 (E, E). ~lultiplying by the power at"(E)/k~ E Ext"(E,E<8l n\) of the Atiyah class at(E) we obtain
am~ ~

u,,:Ext2(E,[) -+ Ext"+2(E,E@O\).

Again one has the result, that the injectivity of u = ffi">ou,, implies that [ has a smooth '·ersal deformation.
~·Iore generally, if (8,0) is the base space of the semiu~i\"ersal deformation, then dimS ~ dimExt1(E,E)-­
dimKeru. The map uo is just Artamkin's map. l\-Ioreover, Bloch's semiregularity map is the composition

( k := codimY ), and so one can define such map more generally for the case of subspaces Y Y )( (without
the assumption, that Y is a loeally complete intersection). Finally, a similar construction using Atiyah
classes leads to a new description of the infinitesimal Abel-Jacobi map for deformation of m(~)(~ules and gh-e
a description of its tangent map. . .

E~nLIA ~IEZZETTI

On threeColds which are covered by a Camily of lines oC dimension 2

This is a joint work with Dario Portelli. 'Ve study the problem of the classification of projecti\"e ,"arieties
X of dimension three, which are coyered by a fannl)" of lines E of dimension 2, but not by a larger family. If
Pisa general point of X, then there is a finite number of lines of E passing through P: call JJ this number.
If E is reducible and EI, ... ,E, are its irreducible eomponents, let lJi denote the number of lines of Ei passing
through P. In this case, we have JJ =JJl + ... + JJ•.

If l' = 1, then X is birationally ascroll over a surface: the eomplete classification of serolls seems to be
hopeless, so from now on we assume JJ ~ 2.

Dur point of view is the following: it is enough to classify hypersurfaces in p4 having a family of lines
with the requested properties, because every threefold can be birationally projected inta p4 to a hypersurface
having the same degree.

\Ve prove that such a hypersurface X either is birationally a quadric bundle or it belangs to one of the
following farnilies, which are characterized by the \"alues of s and Jli:

1. X is a cubic hypersurface, IJ =6, E is irreducible if X is smooth;
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2. X ia a projection of a cornplete intersection of two quadrics in pS, JJ = 4 and in general E is
irreducible;

3. X is a projection of a quintic threefold, general section of the Grassmannian G(l, 4} with a p6, 11 =3
and in general E is irreducible;

4. X is a projection of a threefold of degree 6 contained in p7, hyperplane section of p2 x p2, E has
two irreducible cornponents ",ith 111 = JJ2 = 1;

5. X is a projection of pI x pI X pI, E has three irreducible componens ",;th JlI = JJ2 = 113 = 1.

CHARKES \\~ALTER

Non-pCaffian subcanonical subschemes

A subscherne Z C X is subeanonical if it is Ioeally Gorenstein, and its canonical bundle is the restriction
of a line bundle on X.

One way of construeting subcanonical suhschemes of codimension 3 in X is to take a vector bundle E
of odd rank 2n + 1 on X, a line bundle L, and an alternating map r/>: E· ~ t(L} such that the degeneracy
locus Z(t/J) := {x E X I rk(f/>(x)) < 2n} has the expected codimension 3. Such a Z(q,} is subcanonical and
is called a pfaffian subscheme beeause its ideal sheaf is generated loeall)" by the submaximal pfaffians of rP.
This construetion is due to Buchsbaum and Eisenbud.

In this talk I ga\'e several examples of nonpfaffian subcanonical subsehemes of eodimension 3 in pn+3.
They included nonclassical Enriques surfaces in pS in characteristic 2, a union of ten 2-planes in pS in
characteristie 2, and a 4-fold of degree 336 in p7 in any characteristic. The basic method of construction
was as a degeneracy locus where t\\'o lagrangian subbundles of a t",isted orthogonal bundle ha\'e intersection
of dimension more than 1.

Joint work with D. Eisenbud and S. Popescu.

ZIV RAN

On Nagata's problem

The problem states: Let PI,'" I Pr E p2 be generic points. Then any plane curye C satisfies

r

L multp,(C} :5 y'rdeg(C}, r ~ O.
I

The case when r is a square was done by Nagata himself. In this talk we discuss sorne recent progress on
this problem culminating in a praof that the inequality holds provided the fractional part of '" is not 'tao
close' to !.

Report by Frank-Olaf Schreyer
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