
 In Begritt, prysklio atwistelten".

1. 反. 1444
2. X. 1444
3. $x, 1444$.
4. $\widehat{3} .1444$
5. $x, 1444$
6. $\sqrt[x]{2}, 1244$

3 x $k n$

10 Z ム

Lat 10 :: 6 Pr, Rlive Flanchen the rie in t Laypot. tanyun len patarmeten mil tlilfe nihs. Lomnum la livere Dufferen tial peratere

1. Dee Dopfecentialion, hwseno
2. Ablaiturno qleiah ungu. Pincllive Af nichol bactair.

 Funuctioner und Auswendungen aif Rond wentaufyaber der Welluglaidung.
9.12.44. periesizp Eandypiryan myjessiHor typent. $K\left(x_{1}, \ldots x_{n}\right)$ in sim tegsitive unclagipp
 $\sin t \sum a_{i k_{k}}\left(s, \ldots, \alpha_{n}\right) d x_{1} d x_{k}$ sin yopoto to-
 texpitairen oinffijionsen. Fir sisin juppoms
 jemajent primbemseyp finionany siner n-simimpionsten thelererpl. Ao jistan bigrmairycifín ket siffe nomy fei grad $u \neq 0$ ti mamy $U\left(x_{1}, \cdots k_{n}\right)<E$ saivt thing inpeprosiging for estine clem siter do ${ }^{2}=(E-\mu) \sum a_{i,} d H_{1} \cdot d x_{k}$ pi simer Kimunum ppen nexumg ferthy Jeenz.

 seppaner sis he yotankixen firnagis U ninw Hor kimes, fungin $T=\sum_{\varepsilon_{k} k} \dot{x}_{i} \cdot \dot{x}_{k}$.
3. 12. 44
18.12.44. Terbesern un Nálencungs loinnyen geroithei= aker Ajférentisegeinhumpon, innes. Inteprive.

Unterschioft
19.12.44.

Zur kenfimen gamnatrie der ebener moghi:
29. 12.44
24. 12.44.
30. 12.44
3. 12.45
5.1.45
8. 1.45 .
when Kuven ibit Kairo ebenc areghioble Hurve
 uten Effiegelang an K idie recter gewitulicken Brompunsile ron K in Sime J. Plieters. * Die 告igeltililer des Punteteros an K
 bessidnoten Punifle Id neme ric herne m K. Xer
 nuny vermweigh odur unversweif, jernectotem fo angerude veer gerade it, sitin heravaim.
 orf dic Pobetifisioung; \&. B. werlanents die hivrve $\mathrm{I}=$ Cix ine leicthe Ro elifisiutaikait huytraellich dem Thustand, dard nie mer Brompmete sweitor 0 . and kimen Nein hat. Eirsteiling air unagfitione dienn Kurver noil der Tionnanuctur Filice ther Aprigoleny

 meispmention spitreen let. kimentern hat. Eirstariang ain unaghitace ciann meappantan younan iet.

2.) Spetiots σ Extionm.

4.) Ammentung in Rellish, ohen to ctitialthemic ant fast perimbione Trmakt: inen.
 Fanklinimu. (hem kame dic Therrie den fort: puriwhicha Founktimm anch invashalle gamizen $\sqrt{\text { trimimengen un f.r. }}$.F. Aurah fititum).

Thence

- 10 -

Fhemer
21.6.45.
3.7 .45
8. $7 \cdot 45$

Ifecligkeril der faslpariastiostann Tounkliziven aut the Nongel.
thatish writ auf Sruppen Kanme man aup
 (vingb. Viriting am 11. 1.45.) Ans Aun Sateron v.d.haerokn, dase die Poumnetserst Mingen hathenifusters Smpiten

 v.d. Waesile mande vangetingmi, angesstunittion anf to spazicthe Tall der "rayipte An Xngubtrethingen. In dicson-
 Begriffe.
Abbildomgen in du Theorin des Finhticnen mehreves veramdulishen.
EL wid zum Abrikied ei Refuat when dri Entrichlung der thbildungs the ori gegelien. tungangsyunhtit dii NGiLteblipobaikut vin Hypuhngel and Disylimden, \&s forgon die Kulernehungen wher dhe rblilalbanheit der Reimhardtiston Köpen, den Kreirhiögre, den (oulourche $(r y, y)-15$ emich undzun Sillurz die stanen Berviche.
Invariant problems of variation on suafuees in projective 3-space

Einfühin u i: die Feaiben Oheovi, Differertialion läng Kucren, Ésnei bung erie Satier un fubini ouf enis aĺl gomeine K Car is vu Vavialvirn profleme. Tu veri an le Sckreibung den Ëvler enten Sleichenqon t'é: Variath nusper Heme for Kares onf eiver qequir Fleidi

Bor

R1 \quad Dotum $\quad-12-1$ Thenue jifpranmfrinymoter by hinta.

Ginpromer Shnseri pris if. gom trix sm strmitny gnilmunn gion.

 frimpmet ejr trina tipst fiff wnt iti-
 wblintm, swert, tepo for Dom yory $n+|m|=1$ Lingt. ($\frac{n}{2}$ finemi fll 4 An ningmantm $n:\left[\frac{n}{2}\right]$ ninim
 nm $|n|<1$.)

Irinitgrianten Civioffer Gurnustrin my "Kowatewstei, Aleysunine untiveign Gernuetion siut dielfe Smubformationes. trigg eu."
25.10.45 L"ber isoteop Hifferentialgrounh.:

Di Bewejareğ guppe des irtisua Račuer vors tofecelewenti $d_{j}^{2} \equiv \mathrm{dt}^{2}+\mathrm{dy}$. uthàct zwee Konminetalive Cliffor iff. Khickürt guesper, sul oki uean Paraliele
 givesis Kave, die pieiner ACGilliny de Floichure Cuneu F E der Rrevuces.
 Elue ferteres. Eincu fleritu ive Racue uetwielt cabui ure línce yaar, river Flöch im uigeath\& fecichuticuto Pǔuktueraraur trekof bidhuntan goonvetui wer kenvin -

skafter entruicet wake di istiou difbentialgornctici
ar Keriten īn? Floichen sice
 Kkertraguy is it an thave eiviger Beinich relfogl, worei u. a. the ainlach den fobguht Vierrenzelra \bar{y} hear ofen wiv; ;he du cleventain Vienctuzel no ie lilimici uer fuda laer ethaiet:
"Pind zucifíckengluida sillimein ding glvidnimij vorallele Reugeater auf eineudes begayen, to grtet ed minclestues vier samue
 di Kuiruningender Eititrion en ander ghif me?."
fubinur wis
Timis 1445
I.Kap. Grifyon rein zint aptrityinulering: Angobisisariande Pipferantiuc ferman. Revimpior bempurnan. Huayo wifie Ior theypen ffuris. Surpuesingen nimo sifionithimente Rnent fermen thenem. Unhergesifyin, homudeciter zi. Fibsersirizge. Nioper king.
IT. Kap. Duntutir Lisfow Pingi Jendan-
 tisfe dinga, dizerou tis ois fumpl. diluates. Dalyoom minas Eimfon Rimpar. Gnlaitusifp turen sine tiofy bimper.

Dotum
Fheuna
Unlersolarift
Oblober 1845 . Forbctiveng des son'jew Kollequinums: Darokellingstheoric der helkeinpactea kontinuriedichen fruppen nachlegl. I.kap. Algennene Säze siter die dardellungen. Eindeshye Bestimenthe 4 uner ineduqublen Durctellung mirch des. hoersou fewicet.
II. Kap. die Dorshellungen der gueziellea Lineeren froppe. Bezecung par Teanvedureng.
28.0ks. 45. It 6xitheng Br Lorny hand form wPimen.
 Arminibifereni donsiment $x_{1} \ldots x_{4}$ pors frianen, Sup-bi Eipkeigal sinay $\left(x_{1}-x_{1}\right)^{2}+\left(x_{2}-x_{2}^{0}\right)^{2}+\left(x_{3}-x_{3}\right)^{2}-$ $-\left(x_{4}-x_{4}^{0}\right)^{2}=\sigma_{i} x_{4} \geqq x_{4}^{0}$ gyaten x° in. fif neine amR fispe is fimbemindenejegat the uffinem foxmeris
 sitippkypl is Lippoyel aze payt, appeni ist.
y. AtRint
24.0ktoker 45. Ein Variationstproblum.

Nor Ansdrwct $\int_{1}^{5}\left[\int_{\alpha}^{-3} f(x, t) h(x) d x-1\right]^{2} d t 10 e$ bri gegobraw $f(x, t)$ frir vim sopirfito $h(x)$ sime gnaignith λ zn rimm Extrenum gamayt apmin. Sin Herleitung not: Mn tiger Lnsingeringon fifft ant vimu \#ntugralgeniforsy mit lymuntrifom thone. vin vibhifion hor figon fintotionnu limpot fimmispus Gosingnugun firt min Ertrema.
30. 046 . 45. Thale ine Pyrnagorar.
 be igilepapicic ion Sorfotemtiker.
17.11. 45
23. I. 46.
28. I. 46.
29. $\div 46$

 Louviffi sür Oiffesfing um Intryalyenifiñyan 1. qut.

Uniformisterveng' der m-reiluijen orthogouaten Mabrir miltch der Cayrey-shen Formelen.

Eur Theorie der Wohrodieinlidikniten ventrigglider Eraingyer veiguisse. I) Berieht siber vorliegende ingebuisse, I) Herbeitung eines neven grenzwertsatges fir eirn "Aufteilengs problem": $Q_{m}\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ sei die Wahnocrintichteit dufir, wa β bei m-maliger Wisdertuenng eines Versucts, bei dem jeweils Keines, cines oike mekerere von \& ventrighliden Ereignissen $A_{1}, A_{2}, \ldots, A_{4}$ omptreter körnenen, das Ereignis A_{1} x_{1}-imal, \cdots, das inveiguis $A_{*} x_{k}$-wial bevbacket wind. Untersuctinny des asymptotisction Vertioltens von Q_{n} fir $n \rightarrow \infty$. Berecturny der Konstanten dor Goupsiden Girenzverteilung.

Wakrohcienlivukit, Cañsulitait Fud beikeit.
Or physikulische fitting wore Whaschinlideki'hperehen
 Bestehen ades wiblethestehen vieur shragen Cañonlita't. Stringe Cuisealita't ist mit ith chenese moveinhar wio añok wint wabrei Frisikit der febcuessen Fud besavders des cheurateve. In fusch der frassen fake jaigh nek aine Coingident man valludetuen Kasmos 5ud idealene Ckeas.
 Varañ̉efäng des Nubityettus der Cañoalität sdecitert natumendy an byysifflichen Sokeviorighetton.

Hed-Oes 45
5. 2. 46 .
21. II. 46

Es wirdeakin neiver Beares zio cinems. Satge vom Gaip (Ges. Werke, 3 (1866), p. 112) innd derain sich ergobende Absohätyingem firs die absoliten Beträge von Nirilstellen wan Palynamen mitgeteils.
28. 1.46 Til Hilfe wom Foiniertransformationen avirden Lëringer der Prandttorken integralgleishineg der Tragfeigeltheoric angegeber.

1. 3.46 Jiö máhenjiweisen tercotminy des tigumearte einer homoguen intepralkexiduirs mist hilpe alpebrasixhor Nailñ̈ivepsham.
27.2.46.

2P. 2. 46 .
30.2.46.
5.3.3.46.
6.3.46.
7. 3. 46 .
8.2.46 Zes iterativen Lösung vor Gleidangen, ensbsondere H. Sörten
9. 2.46
8. 3. 46 .
zm. Picand-Itenation.
Hauptsaize der Matrizenthevrie.

Uber Integriermechamismen.
argpithes tiuw balyernilya Glyetio.

Hom Rnichmer
fienues.
H.Cionth.

Geside.
9.3 .46
13.3 .46
14. 3.46
$16,3,46$
22.3.46
24.3.46
25. 3.46
16.3. 46.
22.3.46.
21. 3.46

Zun Dypamit des Meeresströn angen.
Eirfluns des Boden Topographic anf den Verlant des Meeresströnungen auf d.roturenden Eide unter Berinctsidlipray der inmeren Reibuny

Die grundlegenden Beziehungen zaischen den Ordunngsfrinktivnen eincr $n-$ dimensionalen projetotiven Geonetrie und den Halb-ordiungei des zugehorrigen Koordinatentörpers.

Uiber des Wesender Wincursinaftsgesdicite, iustesmere er Matheventitegenderdet

Loihis I: Sutcurafe is Pais, thes deo peasseb siufier trienfedenthucetsoen anu kude lif
Aofuras,

Libuiz II: Enstar Bescich ice Louden
" III: Rie grmeu intledtivegen 16 ,73/74

- IV: ints holowecaterceder d Lieluis sphen stasenen 16 gu/7

Iofensun

Simelsane projobarve Kurventheotre fa chai
Knevow; Aestivanueng cines ench dual imvarianter ansgegechnoten Parameotes ab jejok tive Relatio - Boyenlañge.

Suervin.
Siofemann Cofencas
\qquad
26. III. 46.
28. 51.46.

Son Π-Cheoreu der dimeniomaualysis.
ARulichheib hetrachtingen und Wexeu vho Aivenbions constarite.
2. IV. 19.46 .

Ein Croblem ans der statistischen Theorvic der Registrier instrmentent . - Beriott äther einége Engebriise ome ohe Theoric it tibergongs wahr. sckieineickikciten. - "Ansheiting" eiver $(m+1)$-dimiensomialen stodiontischen Matrik. Menkinal misdeng ber cturtastischen velorizen.
11.4. 1946.
¡wei Kalküluiojhitkesten fur frematisecmy or Buphteationberrehung uns ince Feile. Esunrecin Juobrtaben - unrein Vunktious Leithenkalkül anfrejeiyt uni ihee Quwenhrug, vonallem bes hegraser foringung um toge, ero pofurhet
1.-12.4.46. Difforentiregermetiv von Exeakmalea-chow in thscenp an Anberten ruom Has und berwald, ei gebaut in sine off. ne Peashanthoolie, tise in apora athe Vorkggen ans low reladiman FCërtantheowie antwivtiak sind.
-19 -
16. 4. 46. Eine Bencerkung über des hahictuis der besèrofor Abel-fimitionny. Wikneud bei Togen \{So\} ams
 neen bate fregs, oruntt bai Fummiouen $s(t)$, the b Uimstivaren mid, die A-Traustornution $\frac{1}{x} \int_{0}^{\infty} e^{-\frac{E_{5}^{*}}{S}}(t)$ it mitht enimal fu existionen.
17. 4. Y6. Es verten die von G. Lorentz sefunderen notrendigen und hinreikeriden Dedriggurgen fir die Rouvergenz tresce iner Sticlifes-IntegralTranstormetion des Rorm $\int_{0}^{\infty} b(x, t) d s(t)$ in fusemmentrary mit ätheren Säzen ververather Af dergersellt und 8.7. bevisen.
14.4.46 Einige Betrachtungen itter Devilimy hoiterer llodunng om Karren una Flicher im Zusammanhay mill der Verll gemerneung des Begrifte der Abwichling smeier Feachen onf einanter aits andere fryper S.B.E
 (elementer, vgl. Pinifer, Archio orr)
2. Anzabl W_{n} des Pormutationen $\left(\begin{array}{l}1 \\ i_{1}\end{array} \cdots i_{n}\right)$ mit $i_{k+1} \neq i_{k} \pm 1 \quad(k=1,-\cdots, n-1)$. Berisis de Reicdlanfformal $W_{n}=(n+1) W_{m-1}-(n-2) W_{n-2}-(n-5) W_{m-3}+(n-3) U_{n-4}$. Poturn mitinu. Trage: $W_{n} \sim e^{-2} \cdot n!$? Venvening divergunter
3. Hinwris ouf funltionenthenetiche Behandlung (P'́lye, Ate math 68) àtulicher fragon
rekneser.
14. 4.46: Violiworuaten:

Back, G-dur.
Mozart, B-dur K.-V. 378
L.v. Whesche
schunent, Souatine sodur. H. Boerner.
21. 4.46

Ocheru
22.4 .46

Vialinjonalen:
Beehoren og. 23 a-moll.
hozart Bo-dur K.-V. 454
schwbert Jouatine $a-$ woll
Beethonew, Frillispsoure.
Vial uวomaten:
Beethonew, knentzersmate.
Bualues, G.der.
24.4.46. Vialinsonalen:

Vivaldi, Kon zert Q-dur.
Back, Souake h-rual.
Mojait, Ey-dur K.-V. 380.
Vozath, G-due K.-V. 301.
23.124.4.46 Durtillump theoric der Endlichea Gruppew nut tuife der zerlequy Nes frippearings in Limks ideale reach Wegl. 4. יd. Waender ((.Noether)

25: 4.46. Der von Weyd ampededed Resaminchihay pwincken dem dardellingen ther lineaxcugrupisn nud der Penutations pruppen. H. Boener.
25.4.46. Des 1795 mm Laplace gegebere untivitiche Bereisansats zum fundenentaloatr der Algebra (Journ. de l'Ec. Polyt. \& (1812), \$ $56-58$), Ser mit hu hitteln her nodernem Algeha zu him von Dörge gegcbenen Bavaise niv, $l \bar{j} \mid t$ sich unit on hethoir un Gayßens zwiten Bercis (1816) zee incun Bevise ansgestalten. Mbusicht wher rie intritionistisch unangrifform Burise. H. Kneser.
26.4.46. Hrmurtopierigenschapten der gefaserten Kärme. Anwending an sines Defarmutions satzes: Bejoehunger zurischan den Howo to palugrapsien
des Gefoserton Ranues, der Faser und des Basirraumes. Figunscopten dei Gernforsumen Integrad. mannisplalfigheiter sines wolstindig integraplea podinemrionalex Flíbemelementfeldes.
i'ku Piojettivin Flächen abwick Cung Werm 2 nei Flïhen aif emanden puaptitio Atvickeltar oride, so lises nith tielon Pais endruectonten Pmble ori tewtig emis Projeflivital zureaen. Datming unit es mighti h Leveler Ab wicklany auch fefilde vie mich an/ an Flíche liigen mill za i"bertagem. Daseltegill f is tehitige ein entenlige asym otrlim limin entaltenk A tfillinga umi zwei Flächen
30.5. 46
(H:umelfild)
30 . 31.5 .46
$5.6 .46 ?$
9.6 .46

Pfingoter

Hamumerklavier sonate op. 106 von Heethonew

Farbethung voru 23.124.4.: Der frippeni'y ist dolete Suuue vos vollen Matrixningets. Ae säte tiver de freds nid wher die Angutl der isreduziblen dor stellungen. De Darshellungen des oynuenctrincteen Pluntetions gropfeen.

Shubbort, Sonate B-dur
Bach, Woultemp. Kelerier Dadm (2, Te. C), $f \cdot \operatorname{moll}(1 . T C \cdot l), \vec{E}-\operatorname{dms}(2 . T e x), f i n-\operatorname{malk}(1 . \pi x)$, As - dios (2.TciC), Pritudien Fis-dur, 11-dus (1. Tele).

Choprn, Nacturne Edur

Ehresmamin
$22-$
2.6.46. \} Konstraktion aller Ordsiungsspunditionen viner
3.6.46. Geometrie ans den Haltordunugen des zugetörigen Koordinatenkorpers.
3.6.46 hote inner Cibinie; Berrichuggen awcichen th Aurahber du schileles. den turath du Lotk, die duccs inien Puntel githen. Sordute des Silinis.
4.6.46. Schlufs des obigen lhemas
6.6.46. Iprpflbryiopingan envilfin allounminn hommpitaito Gegriffer nint algibraifpue thoni uningsisiginflaftow.
$11,6.46$ \} iber hir ariffunatiffa hevflaleing sor iluppugufe 12.6.46 viller ablefar fuyebingur
5.7.46? Skurhert, Sonak a-moll ($N_{r}, 1$)

6II. 46. Das Werien sier Levibnigescien Mothenutit in Paris, I

 insbesondere awriohineusionade allgencince Rönure; noch Berwache.

Limm Simmuentegriff aothilivien Zoxden-1

 sathes, aps jirle dheope inetanegation gounar Zarlem stets numindetions sive Darsteling als fiumerme urse eventiell innerdeand velan Immsimmandon Fersitot.
\qquad
12.8. 46
15.8.46
15.8.46 Eine lineare Differential qCichmy noter Ordmug lísov zith ersatur durdi ein. Sleidwertiges Syolem un no Cinenew Dilferentialgleidhmgen einter Cackming, in dem sith ri: Katfinénler ter Ancuing ver markingig Vernünulichen ans hei /multi plikation atter Lörmgur mir exiew gemeri samen Foth inim foch rechalter.
15. 1ㅔ . 46. Einige geometrische Eigenschaften stetiger Funlitionen:
Satt A (fast trivial): Es seifeine stetige rulle Funk tiow anf derteresistimie is, a eine pos Zathe, kleines as Lénge touk. dam givt es sinm Bogen Fg anf K vow der Langé á, sodass $f(p)=f(q)$. - Thrsequensen: Vevallgun. des Polleschen Satres; Ansing. wit tinear Bemerkung von Plíry.
Saz B (Bosnk-Ulam): Zn n stet. Fktm fi anf der Sphrire S^{n} gift es inumer in Rutipodenpaor $(x,-x)$ der S^{4}, sodass $f_{i}(x)=f_{i}(-x)$ fro $i=, \ldots, N .-$ Hegehr. n topol. Hous equentent.
bie Sate $A n \cdot B$ sind entha lhen in $\operatorname{Sats} C: E_{E}^{x} z_{n} n$ stet. Futhw. fir ant der gerche. Priemsumonew Mannipf attighest M^{n} u. jedim $a>0$ gist is immer eiven geodït. Bogen Fि der lánge a anf H^{n} sodars $f_{i}(p)=f_{i}(q)$ pro $i=1, \ldots, q$. Bewers frit $n=2$ dunchgetintut, allgemeiner Bewes:
\qquad

Promg. Math, 1943/44.
Sakz D (de triza Fernandes, Port. Mern. 1943/44): It f inne stetige Fhat anf der lingel s^{2} u. 4 ein stames beweghiches, gleichsaiziges sphīr. breseck anf $S^{\prime 2}$, so kann man \triangle eime solche Lage goben, dass f^{\prime} in seinem 3 Eckpmokten die of' den gleichew Wert hat.
16. VII. 46. Irupperräume and ihre Verallgemeinerungen: \# Re sei ein Raunn, der cine stetige Muetis hiketion mot Einselemant sulánt n. eine endliche Hornologie basis besiht (T.B. eine gesche. Lresche Imppenmannigfattig hei'); dam ist der Cothot (in serms ay turlogiening vorn PP iamorph dem Cohonwobpresinenkreffinimber ming des Cartesisenen Pwduktes sirirgor SphliaCharctheminit 0) ren ungerader Armension. (er rist ein Irassmannscher Ring), - Skire des Bewerises. ausfribrtiche oarstelenng (for Mamiryfderyberten R1: Amals of Hath. 1941.

Fin Atstecher vou dem Beweisgang hiefert den Sats oou Stiefel: Der fred eines hyperlumplexen Systems viter dem Horper der rellen Rallen welehes ssicht assorichis th sein brancut ' abo keine Nullterter entsotf, ist eine Pótent von 2.
17.8.46. Gesichtspunkte zur Waitebilding is there um In anelytixchon, insbesonsre den gauzen Funktionen mehrerer Keändedichem. Methode und Engenisse on Abict Sitempber. D. Rraeß. Ak. ∂. Wiss. 1936, 5. 446-462.
17.8 .46
\qquad
Bach: fnyment f-moll, Toccate c-mall
Moras: Souale a moll
Haydu: Vasiatimen f-moll Beethoven: Sonale oy.10.3.
19. 8.46.

Die leteve un sus ebsolut Konvergenten Reihen lipt sich onne jer Bexupnahure auf oic Anorinung der Glich (rieje sowicso anf Konverpuz und Summen wist kinen Einflus het) anflawen. Enuid definition: Jot 7 eine Gelielige Menge (die, Iursxmengen') so heipe $\sum_{i \in 7} a_{i}$ ebrlut kowvergent zumberts, varn ze jierm $\varepsilon>0$ eine entiche Tilmenge E unf gehoit, hrut, ops finjur Eenthaltinir ensiche tilinempe E^{\prime} inn 7 silt: $\left|s-\sum_{i \in E} a_{i}\right|<\varepsilon$. Den Zerlegmupsats: It \# $F=\sum_{k \in K} \mathcal{F}_{k}^{i \in E}$ and homespat $\sum_{\mathcal{F}} \varepsilon_{i}$ abolut, so ist $\sum_{F} a_{i} k \in K$ madht elle "Emonimungsàtze" (re erste Stufe sumi
 lidhe Rovilte. Envtiche uni minentiche Raribte wn unemilicher Summen. Limonswning in den Boprift in "Komvergenz wach E.H. Moore nan Thivith," in an nuchicdinen ffellew in ch Anelysis unal Tof-logie naturgenigs auftitt.
18.8.46... Kolenas Beethoren op. 106.
25.8 .46 (anustagebuidtory sorbatranguident

Sia infferrergea-iffereratingloriffirigy $y^{\prime}(t+1)+a y(t)=0$
 Magrus-Wigge hing his Laplece-Fonemfomendiver.

 $0 \leqq t \leqq 1$) is $\sqrt{\text { arvee simer marnelfruencinserten }}$
 her traubcuectiuten feaifing $a e^{z}=r$ vringlinift. In jishen Intionall $2 n \pi \leqslant \forall\left(z_{n}\right)<(2 n+1) \pi$ gill if
 pasai roulla hilleffellen z_{0}, z_{0}^{\prime} fuir $a \leqq \frac{1}{e}$-ind thoni
 fiir $a \leq \frac{1}{e}$. vis ufpugtatiffa harthilizing ther hiceofreclansiz, ming wiftier hor ufpugfotiffan Invitiluigg ohr

 Abfirifuing augagabra uning. for polyt die abpolvth vies gleifucibige Tountangry sher mornlyuuninut ten Vorivingfien Deifo fir $t \geq 1+\delta$ wit >0.
26.8 .46 Un de allemuenste Dardelling der "allge. nueinen linearen froppe" atke u-redyen Matrizen der Belerni vieate $\neq 0$ wisklek hinschreben pu kōnen, mun suan evse Blisio j'eker "Sy munctrie Wlane" wn Tusoran v-terstufe acy chea. Eine Si-ke. wird durch Lיw Scheura $\#$ PP Chordicizert. Mauandue

 Es visx heriesen, des diyenyen Rusarkouporensen, be-denen die zudizes ven lines hade reents zevt ab-,
\qquad
von okenuach suben furchoen, vinc ISaris tiden;
 Wpimponenten dwich drea huidrictecu kame. Hich lest sth die Matrit oppothinatwerten. H.ISNember.
27.6.46. Back, woutempthe. I. IR fikell, fionkode, Folw. Buthonew ap. 111.
Sckubert shate yodver.
28.8.46. Buthoven, Leabelli- Variationew

Buck, Fryment f-inde
suthoren, Varnhtoren c-luoll.
13.9.46 Grvinkouniffeetigleition ter grejontex, W. Buran

15. 9.46
freapion oon Grbieh arpanain:

1) Mormevirpin mit a per. - derpuee.
$y_{i}=\lambda_{1}^{n-i} \lambda^{2}(i=0,1, \cdots, n)$, givant c^{n}

$$
y_{\dot{i}_{1} i_{2} i_{3}}=\lambda i_{1} \lambda i_{2} \lambda^{i_{3}}\left(i_{1}+i_{2}+i_{3}=n\right) \text {, }
$$

3.) Tuentifa "mannigfallighnilion,
refinin riref ris grajiskion Pizir finge ore $k+1$ groj: cärimen $R_{\text {m }}$ ciof. imavina g ginamit $S_{k \cdot m} \operatorname{in} R_{(k+1)}(n+1)-\delta$ 4.) grepunownffe no wigfoltijenikin, $5 / k, n$ Dia min iniminilige 6 bies st thenges elher $B_{k+2} 0^{(n-k)}(k+1) R_{k}$ im R_{n} fint.
Sifourket mivim or griminigupfoftim sinfer griels, in rbpoukr ifr g ywie -ingary rfusso ing prajicliaum, pobi alf rifuithe son 3.) g. \&s tir Norm tenirean 1.)
furainfeomnue fortin diavodoff or rehiouehm Rygolpobilte, vis unan birige yojeblir enjinfing san deranteirerm
 tipfar Raletioum augajobin, turin Rir axtmigfoltigtriken gimigan. bii 1.) -3. in $_{0}$ fabman $x_{i} g_{n} / 10 \mathrm{el} x_{i_{1}} x_{i_{2}}+x_{i_{3}} x_{i_{4}}=0 \mathrm{mis}$ $x_{i}^{2}+x_{k} x_{l}=0$, bi 4., dogegirn $x_{i 1} x_{j_{1}}+x_{i} x_{i}+x_{i j} x_{j}=0$.
1.10,46. Ubes aine lineare partidle sifferenzengleiching mitt korstantin Koeffirienter. se Geciching

$$
\begin{aligned}
& u(x+1, y)+u(x-1, y)+u(x, y+1)+u(x, y-1)-4 u(x, y) \\
& \quad=\left\{\begin{array}{l}
1 \text { f }=k=y=0 \\
0 \text { omit }
\end{array}\right.
\end{aligned}
$$

(x, y garreballen) Lat in Bercich aller Gitterpunate x, y eine und sur eine atosen, dic den Nburbedingangen $u(0,0)=0$, $\mu(x, y)=o(r)$ firs. $r=\sqrt{x^{2}+y^{2}} \rightarrow \infty$ geaig.t. Diex anngezsichuete Ltsing, die mit $\phi(x, y)$ bexichact rende, lift sid in Integralgestilt angeber. die hat das asymytotisise Noblelten $P(x, y)=\frac{1}{2 \pi} \log r+\frac{\partial}{Y \sigma} \log 2+\frac{1}{2 \pi} G+O(r-1)$,und die Jyminaturenigersceftem $\phi(\pm x, \geq y)=\phi(\geq y, \pm x)$ $=\phi(x, y)$. Ans don speriden Wertan $\phi(1,1)=\frac{1}{\pi}$, $\phi(2,2)=\frac{1}{\pi}\left(1+\frac{1}{5}\right), \phi(3,3)=\frac{1}{\pi}\left(1+\frac{1}{3}+\frac{1}{5}\right), \ldots$ lofpt sie sich mamerisid berechuen. Alle Went Lalu die Gestalt $\phi(x, y)=\frac{a b x, y 1}{4}+\frac{f(x, y)}{\pi}$ (a gem rationcl, f rational). - Di Fanltion insteint of Livang folguder Affole: E, ist die Potectiolverteilang in einem ans quadratisiden Mesdein bestleuda doletrisitem Netr verte a finden, wein bei cirean Giftefualt dor Strom 1 eintritt and ins thenderice ofperist A. Mhot,

Evkliving be hivearen Naloriniugen Sregarys fir dew
 siren, suthileh is Hitopalitives veilen sha iocinte Reilen fier sise sur $\frac{2}{4}$ 范,
31.10 .46

Mengen uid affinis Anadrung:
In einer Meage of is vermange liver
Funklion ∂ jedem ungenduebee Pumer $(A, B), A \neq B$ $A \in g_{,} B \in Y$ eine Teilunenge $\partial(A, B) \leq G$ ingendueh die Ph. ∂ gehoscss 5 Posbulaben, 4 hireuseu and inieu diewen Assulal, wrshases des Begiff der offenentherse $r(A, B)$ forgeleyict. Kiesomaus =
gehead wird der Begiff eives en ines lecieb:gen Tiluienge $i \leq g$ essenglon liveasen Rewas $\zeta(v)$ offinces. Jedem liveteres Renm wirt verminge lines Dín eusions begrifors bindeatis ine Kardin ulsare Ingerschech, hiland $\geq 3^{\circ}$. simkens. Dests Punkle eines lineasen Racmes $7(4)$ Kum, anogphend Ura der Peratter des rrienges= den henge "r , inendlids vichen Soridten durcs ziehenum forcider errengt "werden. Die Erren:gungen weiden anf eine Nomalfors selsaces (a Peenoshe Eritengung'). Mil dor Peinas choss Sspengury beweid man sake, dio chra dean Jaimith: shen Anslusions delubprocher, fermer Treen=
 Dinulution I, sin lalt aber die sinseution om Jurchosindten gohs ither die eadlidhtimensio. nale fermetrie hixsus; in lineare Rème H.Schick. endeider FinenJion wird der allygeneine Selinch: purkhak beiveses: $z=u+t i n d$.
26.10. 46. Bach, wowletmp. Ktuvier II, F.der, I, es amale, TI, Es der. Bethoven, Enoice-Variationew Shubert, Improsupter Bodew
27.10.1446 Back, worktemp.kl. II, Edeu, d.k.ak

Bechurien Erivica-Varibtionew
Sheskert, Dentike Täuze

- Moneess weusicaax As-dar, f-lude

4. Haevier
1.11 .1946 Haydw, Symphonie ki.d. Pawkensobly
5. Cantan
6. Aremer

Back, walk. k<. I, b-mall, I, fib-kall
+1. Cartion
Bechoncu, souche op. 109 f-rall $\}$
H. Boemer Bach, W
4.11.1946

Thime is yabion pan bs ciups no commaiarip

2. K' ist de roay fini axr $K 0$, comone spee vecioniel à ;smiche

a granch or it érrite ourt égem)

$$
x \rightarrow \sigma_{k}(x)=k x k^{-1} ;
$$

 hiviouses, is s-rfficient dam a anta C, ios k teb $p u \sigma_{R} \in G_{2}$; tour
 $\omega \cdot \sigma_{k}$, oiz $\omega \in G$ if $k \in K_{0}^{*} ;$ infor, x d disigne h romy de $K_{0}^{*} \operatorname{sun}\left[{ }^{\circ}, \longrightarrow\right.$ it 2 \& nany oi K an K_{0}, ir a

$$
n=m+n-1
$$

(K ees is K commuraril ansuppurdiour i $d=1, \quad r=n$)

 sicuncopur wota lis K^{\prime} ith pre $K_{0} \subset K^{\prime} \subset K$ it in aso giumpes

$$
k=\sum_{i} c_{i} k_{i} \quad\left(c_{i} \in C\right)
$$

2.11.46. Hyper geoda" fioche Kurren oys tame, in dees prigetliven Flixhm the rie

Kurer iiteetlik ither vis Formules den wopt. tiven Fenchur theni. Unberouching um z̈rer pasemeliqus Kavem op themen

$$
\frac{d^{2} v}{d u^{2}}=A(u, u)\left(\frac{h u n}{d n}+3(u, n)\left(\frac{d u}{d u}\right)^{2}+C(u, v) \frac{d u}{d u}+D\right.
$$

5.12,46. Uhber einize eleneutargeonetrische Fragen.
8.12.46. Back: Charal "Vordeinen Thoo tret ich kiermit": Knust-der Fuje "Contrapmetus I, III, IX. - Fragnent Becthoven: Sowole ap.14, 1. op.2,3:2.4.3.5a/t. Chophu: Nocturue E-dur.
 verabietang linisl nith in beng anf eine belidiza "Normolentmgenewr" esiner Fínthe in perpetimen t_{3} uetiven. Dater it es wibl meeh man'siy mb anf dii T angeolen cherin en Lenbicä he jdis Ver nhriting vise fin tio Puntle onf on Nounde unc daven wilequate was destide me in tuer sivit, wema wi kitimump litnie ten Wounlei tis kinjupietes Ner lildu.

Die Weytnhe Gernabie die rie Fomelu boLevinh gilt tam in erve Ris mome the ither
16.1.44 Dec binteprid rute om frum Bome linn ent ehenfalls reallquesinew, is die Nounk Komgueur knjugier, 20 gither in dis klasiswhe Froul in keng atfoix za yhe itio Riensurn
\qquad
25.1.47. Zher du Browetui he isoriafen Eleue.
 died. Si zuigt gequeiber der cuecidimen, thetrith der ERuce einue beike $1 x$ teinspoutes Herouderheiten dis ausfincilicher dargerellt wièstru und auf diekerkillerike à a cuktinkeu हbue sucuker neẽe Lídt welfen. Eingekender wivoth di bocecetua: nuel \&igrunch aften der Kuite aul der Koget nkuita der rotionur Lkeu dougentete wnd auf irm Reike kanteiteriv woutvola Folgerusen eiragegauyer bi diobitiercing ireiterondere de Eijoicseataftey Kraforcabe kegelnkutle lidfert die ther ni st Eipernhafter de lejelnber ua cio Her hupurkoter caaves. Dev vaje, sas dis thensapu an Sinc Khan koufor kale kesclupurn ghept wrekel hitku, betruill zts. a fats, dant daifynuen be diunkegilnburll wad dar hymentoter-
 an pluif nue? a.s.a. Hes watene beripice winchucira beroudel arpache पifineng on Giūd auppok da suadrocinhan Mtspolation wits ciner kesseliany kinfrake and as Aut pleiff uefung gof ser, ki muf an, Lewrimerken reüot aice vicikend da Eioner Ebecon fitht, de alt sokionel
 pirweet creesky Kacur.
r. Müdiker
2.2 .47

Back: whelemp. klevier 2. Tex Ao-due, firotheds Shmaert: Faulasia hoos. G-hur:
3.2 .42

Beners row A. Dinghes nad E. Sceundt fis
 deut fir die roperimetrinde Eyeursaft der kujel ith u-dimiunivnalea enkiduvered Ranise. (Ath. Ak. Siolin 1943, 7).
14.2.47.

 stypusitue. Thy lersisten sem Seppert (M.Z. 46, 1940) nint grouner tuo hiller (M. z.4y, 1942).
15.2.47
16.2.47
30.3.47.
30.3.47. Vidine und Klavier: Schubert, Sonatinen Dund A
4.4.47. Back; s.-dur ma. hezth. Sas Onalicus G-dur. Schutert, SonatineD.
6.4.47, Shewhest, Duo A-dur. Tuozast, Souake Fider, suthoven of. 23 a-violl.
 тucu cine qoure Chane yon sciucul hnacidberen Siktace (nambish rolve rox der Form $(x) \overline{A(x)}$, wa $A(x)$ teriem Quaubor neter entiaitf) diè dh foartoude Trausformation der trithuelisiercing añ̀ eineme oon stumen, z.? aut due vor X: Goide tonntrinimben, hergcestex merden hata

 Gyrom $\overline{3}$ remer un 3.2.47.).
4. Brener.
H. Beener.
L.4. H. Borner.
$+$

5．4．47．
13.4 .47
haektory uafiense Jete．
7.6 .42 ．

Untersuchung des asymplotisitm Varhationo dur Listungen eine Sifferontial flistinnosyotims $y_{i}^{\prime}=\sum_{k} a_{i k} y_{k} \quad(i, k=0, \cdots m)$ ，bri duen
 aik mind rorangesestit，din sudlicte forus onsh $\alpha_{i k}=\lim _{x \rightarrow \infty} a_{i k}$ exicitions．
 Jutagrch $\int_{x_{0}}^{\infty}\left|a_{i k}^{\prime}\right| d x$ kennougiome．$\left|\mu \cdot \delta_{i k}-a_{i k}\right|=\prod_{1}^{n}\left(\mu-\alpha_{i}\left(x_{1}\right)\right.$ sin
 $\varepsilon_{i}=\operatorname{limim}_{x \rightarrow \infty} \alpha_{i}(x)$ ath montiuth．．．Simmin lid whine sich dii $\alpha_{i}(x)$ somememin limin，dins fiwi $x \geqslant x_{0}$ ，ytis $X\left(\alpha_{i}(x)\right) \geqslant X\left(\alpha_{i=1}(x)\right)$（iz1，的n－1）wid．
 ein（his of ain trisiah Norming）ais dentijg bistituntso Funds． thatelsyotic tou Lin ghe

$$
y_{i}^{(\nu)}(x)=\exp \left(\int \alpha_{i}(x) d x\right) \cdot r_{i}^{(\nu)}(x) \quad\left(\gamma_{0}, \cdots n ; i=1, \cdots n\right) \text {, }
$$

bio dun oli frrmenot $\lim _{x \rightarrow \infty} N_{i k}=\rho_{i k}$ existivh $\bmod \left|\rho_{i k}\right|=1$ ish．

$$
z_{i}^{\prime}-\alpha_{i}(x) z_{0}{ }^{T}=\sum_{k=1}^{m} \lim _{i k}(x) z_{k}
$$

 den \＆．Sgres mid Jilf Juk zemine Appormination dis．
Bericht inber die＂gegenserige Dussel dhicogiring andydischer inel gevehiseher Dorffassirgieis de j＂̈ugstir Euturideltrug de．Wertverleiervy．lebue＂ iu Deítocherand－insheurdese irber dic Herslel hisg vore Firunct：onewis unil typivehem Wentocele： hiugreigeuschaftèn ero asyuptotischer fachir ais geometrivah．Strikkiroervchriftes fir che Rie uamusche Flaiche 20，welche $\omega(z)$ el Ored eveogy．

$$
\text { Y.Mr. } 22
$$

Egn heerioh
 Pevpar: Huqufraltuing sur outin var firs dis allgnemninni inibisfu Jrafllisoger thicta, vrls кіш miu-coiffustifa vraibing viud Araufuing ver Theffrus. girfl arocition unio? Naci farlla.
 tolle, 3.) Torut-zuicler vift-zglieligar File! vir finla cuifntpfaicha foy ving bis Alovitheir ver frífritauguigga nicio vea Cüfrecogpiounn ale piraloran. The Itmikfor unin im suizalneen wishofligy. Sin Renpwyigl sing giok viflat ulf Dis
 Eminfuiveliousin inn. Modisflimbefo cuer) Impncivartan irípoifuifonceet vibar
 rualem Full hain iref reeen zunvi-

 shr oreylupau Anseliplibertion ach

1.6.47.

Rosmenitler, Joíle f. 2 Geyen; Bnekeas, Honntrio (m. Inatick), Mropart, Kyilstatt tiri (m. Geige)
mozat, Sonate Nos Es-dur; Buthonce op. 30,1 1-dan; Shubert, Smatine D.
h.r.W.SDenser.
L.a.H. Bbenw, W. v. Wersie. -
$4 \cdot \pi \cdot 4 z$
-36 -
Sete ien Xoiès un cer heioquardotier Astike Merkenes: Aceargorso, dé Clinedeten do beppoksto, der soty mis Lisurves (f $\sim d e$), dió lletthe Prdimads ais der Vrainuessing Veier MeAtham: Dionsudierg wech Cocorum, Uhoudtides Whinsoluntinth no kieta tonk tin dient liverelling thi Ereyeng, ntinese Frojiundsatourv, Luckeeg diñh indrogolvaïrgé Videske, dé́ sich systemotesil lew havis aunblienser larm.
3.2.42

Slemenbare Kenuzeidonngen now Eicaviden mise Midsogramis.
Man bedades den heimeron Percheninial of der vou siver Sehue s duce sinam Pundes p sins sibraids of of obgendmitten wiad: $f(x(P))$,

 heipe Mininabehie, Dintbe mie mabuc ainer Minimabehie Ahmahimophe. Riv \&bereich mis hïhensens abzäLekar violen thonohineymokem had stas semen Nebolyn Last it héme Ransdotuestary, so ide soin Mibelpuouks sein singiger Ansmah open or wis flichen thelamhengang lasum noh Mibelpinss boeidh noth anf andeve wope huch aindere Xyfinisoaven viou $f(0)$ 人a. ratteriscolen, 3. B. anch spazisce th Radousthon mis Paven houjingionder turchmesser.
6. 8. 44 .

Oquiche
$-37=$
 shuteinsiffeus viwem in sor Matercuatik. Siv stis frisgeen its sis Ments sin kófuor, sis Bolt. varinieng gemunice, the fugt litaspantarkeit, fruil
 traug she Wucuiligh in the Tyeltile siu, zern isd Fite ond Becigion; sor Face fer. vir numere fro

 keina Yroupan ficct, froven ries of ithole seyy sin "Srifiter" giote (kay siever Hosenfsicy env Koof. Bacuk). Hetge tewer she Wuewtiges - im fypsn
 Lfefian sito frffece. si Bencurvin teriue juga nige

 btraytivey sics fleicuew tratew, in ter Mofyfile tiv

 Civitapinculnyfuicey.
7.8.47
8.8 .47

 preien eisfigm Kniminupturis burger, Aiequan' ma tier

 nturblas (ali, quani) ires foluile, Tullf die

9.8.47.

Su dem um Wiicstraß aufgeotellten, un Teunits beriesenen Sats, Daß sine in Endlichen und in Unenstichen meronurphe fueltion von n komplexen Verimiestichum (rach neuerer Erveiterung is Satres gening F Sel ormunstenne: in Unenstichen meromophe") national ist", "inis geseist, daß funktioumthenctiche Beveisgriuns our in futhe $n=1$ ingreifon and bei $n>1$ geometrishe Ūély.ungen in Sate zemnicefïtroen auf in rein alfetraischen : it $f(x, y)$ estlist firr alle x ans einum unentlichen und alle y aus inem überebzable aren Vestronat und int $f(x, y)$ rational in ${ }_{y}^{x}$ bei festim $\frac{y}{x}$, wist $f(x, y)$ rational. Des "iberefiatelear" ise weuntliod, dim der Satz: " $J_{1}+Q(x, y) \neq 0$ in Polyuom ans $k[x, y]$ (k cinkelifijeer kigur) und $f(a, b)$ fin $a \in k, b \in k$, $Q(a, b) \neq 0$ no rofinint, $\partial a \beta \quad f(a, b)$ bei festimn a nics duch eine tation ale funletion ums ${ }_{a}^{l}$ aurshichen

Hang
$-3 q=$
lapt, so likh sics $f(a, b)$ duch eine retionele funtion un a nio b aursiniken"
giet, wie S. Pickest benuente, diim uni nur gamm, venn k entich osh ubcrabzähber ist.

 Yemainheir. Vertuot des bikalen Kiennadaflem:
 Wage aing filloce wodem feümen.

Bove'sche Voblände mil linheit. Begriff des Certan'schen Fittero. Oie Misximaefites da Tunkite. Oie natürliche Eurulogie ihser orbenge (H. Corlan).

Koordender uines thaximalflers.
Tompabtisiciñ̀n eines Boolés chèn etongymerbandes.
Oer Bexiff der Kluinhici mencom Boove ishen Vorband mittdo der en dichere julegiengen der Einngit.
Boolé scher o- Vuband. D-Abacimalfeter. Somatische Eopulogie eines Böbéshen o-l lerbandes. Hriterium für Ourstellburkeit díreh Nengen.
Inhalt uber conom Boobéshen Vubaind. Jordan Fild. Map werband. Toapraiam.
Thap über concon Boulb icheno-Verband. Boed Fold. Noa β. rentand. Soppraium.

- Sharpo ader Wuken Moap.

Sas Evviteriungp piablem unco (undlichm) Inhaiter jüvinum Staple. Dr-Sefinition borich des In haltes ist in cinem Boole ichen o. Ver. band cinges ttot.
2. ES legen nier de Mimante des Sfluitions ruiches vor. Hrutrium jur bedingten Adddurie"t (a bbjalllearen Adoducivät)
mit Hille dor Kompatisuicioning Heasendaisoulling unes croaßrubandes Pat voon Weken.
 Verbandotheorktiche theraraging des Salfervor dhe Bois Caysiond wibes dho Riomanm 'ache Jinkeyral.
18.8.4.7.

Diophantische Gpproximatimen (nach Kotesma mad. Mahler). Jrationatita"5 - und Transtendens mans. Simville'sche Tahlen. Sinfihrving der Mahber'ichen Klassentimtisiing. in A, S, T, U - Fahlen. A.tahlen 三 álgen. Tahlen Jast alle Fahlen s-tahem mit sudexy $1<\gamma<3$. Alle visigen tahben sind vime Lebesgne'schen Marre Mull. Lionville vahlen U-tahlen wis $\mu: 1$ 19. P. 47 .
20. $08: 47$

Behandlung der Poklke scken Anifsabe im u-dinuensionalen Ranim mit Hrilfe der Matrizerechnumg nach E. Sticfel, Commientasis' Mathem. Helvet. 10-1937/38 S. 208 ff .

Die von Sheic Cartan (Leçons sur las interiants intégraïx, Poris 1922) fir kansewative holonouse. dguam. Sypteme angegebeven Unterssütingen jüm "priucipe de la consentation de la qùautité de moinvernent et de ℓ 'éwergie' werden aïf mishtholonome Syiteme aïgedehut. Man gelt hiubsi van Lagrangewhen Gleishimgen 2. Art mit rumbe stimniten, gritabhangigen Miltiplikatoren ains and erhalle ais der Bredingüng fir das Statio-
$-41-$
màscin des Wirkeingsintegrats bi variablem Grengen sine Cartanshe relatic integralinveriante, van der inngetalst sich geigen lagt, dop tie die Baregingeglaichingen ein deütig charalcterisicert.
17. Bowere
21.8. 47

Über die Pascelsche Konfiguration g_{3} : Es jot 108 Pernumtationex der 9 Pmulte, velche iie Konfignation in sich isber firtren; unter diesen sind in Alymeinen 3, in perialfatten 6 oder 12 Kollincationem.

Egaingend gün Uortrag vam 20.08 .47 vardanke ist Hosen Prof. H. Kueser den Hinweis, dap revine Engebinse is.a. in Avbiten vom j. W. Camp bere (Brill. Americ. Mate. Suc. 42 (1936), $82-86=185-687$) Ind A. 2. Tageor (itid. 40 (1934), 735-742) euthalton ti H. Bielears Per Vortraquade Neelt time die Reifqabe, sirismer siskew, inwieweit beit inmitieraigpo verpoloren das Pemaunus gesetz ohallen bleiat, veum mak sinew alfuscinuena Cosnvergus begniftridiam. ir munt hevinitiolge $x=\left\{x_{n}\right\}$ ", farthoworquat," wein das glesdende testrel hiv $\frac{x+\cdots+x+b s e}{p}$ gleivkm ni pegoen Nite tomeryiort. Eo ssidies

 die Finderning, dan füs dan Domenterde líacere por tive Failational $L(x)$ moth $L(1)=1$ der himed $\left\{\left\langle x_{9}\right)\right\}$ ecirthert. Vorter sumut "kark permanuent "ine Limistionedn vent, whele ohi Ferkhowergus unsfant isi kerift,

 V. $\lim _{x \rightarrow 0}\left\{\operatorname{Max}\left|a_{m \times n}\right|\right\}=0$ thes sith.is fin die aum
dun Momenten $\int_{0}^{1} x^{x} d y(x)=\mu_{n}$ Tgiderlaten Mabirizeu
 hes' peligneter bial mu $g(0)$ filtaren, deun der Frll, wain $g(x)$ bix $x=1$ neligis ist.
 viederseden vor G.E.Tautz).
14.9 .47
23.9.4y
23.9 .47
24. 9.47 25.3.47

Appurimation vor Funhtiene an Riemanmi ha PCichn. 1) Liegt X_{3} in η^{\prime} and it η su neletiverifaher.n Zus aume han s, so laisstriel jide $i n$ regulair tr Atim dort hulk D'reg. Funtriom ypuosimian, 2) Ligt $\Pi_{1}=n^{\prime}$ gide n regnein Fu Lti= dat denc
 Lie- Quoribl, Guatiti on Wilezgorkit Schonig quatiit. Letulare is fersers vinet F wadik durt g anf dwi Aryp * oben Givai kirki Selrion angerdnela. Prublle, die Q mavith un W. The dhenles Analoger

U foer cine Vormucting vos Herrm Pascual Fordan. gegen beispicl.

Inei Vortraige uikr geschlossue Lie skhe Gruppen nach der Matrode des Cardan'seten Polyeders.

1. Berpiskung des tabivechen implexas, crelches zue oivir rixp achum Einyppe gelo't. Tioses vimpax Pas ais Iimanisios den Rang ons frype und or Trukil zurisehew Wer
\qquad
$-43=$
vore serven sibufla'cher vuess rier gouter $\sqrt{\text { ail von }} \pi$ seiu). Siskissinu car diskontiwnerlichen siske. Berregugs gryppe di chuch oukzissive Sjuic gelug des Cimplexes on seiven TV́nclenentsbitl. Ttre k Lura ious haflen der Lie'vobu Snypse abeberen ares dem imylx.
2.) Daskllug, theonic der riufuker
 tore ous dum Cortau'schur inuplex. shese cles Bureses, dans rive Lhe-fnyyse shareh ihr icuplax virdentig bestivt tiot.
3) Perichd u'her che tapologie dar gesehl.
 R. Braver CR. $\bar{\sigma}$ Rescramen H. Athof ?'. Pretyagia) Apbesen dor Buth's sheu zabbir aus dem Cadar'sclen Siuys bx.
26.9 .47.
26.9 .42.
95. 9.47 abeuds
sù diminviren. Disgucherith sin Pmbleuning an die von Perron entasiduete Methood (11.2. 18 (1823) in der Form dan (das Sirvaletrike Probleur) die Loisharkit des Bisintets duei Proboues fir nisglivera regritire nnd Heine Elewrentas gobiet 2 . Dr. Hrein porkiliertrwind, nideu eis Grevater $L_{f i k}(P)$ ruigriùde solegt sird, her jider Nebipu Reudfuibtor f evif deu Reude des Elenentargibiets cine netige Fcirktion nir Tunern risordunct, wolele den ferceneten Asidmen junigt. S lient mile dwer jideur belidey'en hesdraí Kiue Eqbiet eine "Lrmung " vionduan, die is. B.
 bescurpinis evtuills. Nisunt mon als nurie Bedinepriais die Exinuar eiver pusimu Sixquilarikitenfui Mase cutrureckend der Ifminobisining he' S'fleransielgleickenique Hinvio ne laist sile der xerallqueiner Re Drichtetidue Prsblen si deurdleu Dendauge sise hed
 gognibur gesimen Paikthraustormationcu corifert, die einer lipodithbeaisjring gavigion. Evrohnt sird suth, das sill dei Thersic sin veruntevaue retariatoien lamz wesen die Werte des O perators L_{p} / π einem Vorbaund surit gensrou Hessoergenz eiqus defteu augriöven
 usinis why sius Durfte Chicey in fraye rint ifnes Extwigg fïr Sice kurleufiviegigrobleus

 ses kevkicimb sm tritiy empist. Vurfelevicuy

 mazx-artuize sumbures

- fachentheove in poijoterivan

Heidimen io on en Raum. Mevide
thee one thenie in um Wilcennithe
Fubiui-Cch + Säss me um
Befenon. B tue dis eitlithe Zan.
ramuter fassing is cive algoneine
thenui, bei der evie Uleglonde
Seometrie un thittaef unt thell
ne Fiider xii Darkellanger
lee Feächen in pmhe an
1.10 .47
2.10 .47

Komercita ${ }^{\text {Ff }}$ bei Ordmungo finntitiven Nack cincer einleitenden Eifurvititt rawh Gie Theorie der Onduningsfunktinnew. who ec die Not vendigkeit der Hbwendenng der Begriffe "Sutecimer Hyperdeme" and "Mimerocitait" besprocken. Derleging aler sucekmáfrigen teraligemerinerungese "Querseite" und "Pserdokomereitait" Zusam monenfalien dieset bomiffe heimor malis" Ordmungs funtetionen nnitt du ersgenannter. Wechsel besichungen ourischen Konverreitaitt bee Ordmings fromtitionan und Monotomie oder Aitimonotomie der zugeho"nigen Körper-Halbordrungen funws.

1. Vortery:
2.10.47 Hhu fint ge ation sthe aiu in at skll atehw quippem. - s ri l'ime-hinet are, han se atinesGuie Mamigl aliglatit om Fmiflioxued $f(x)$ inbe ince Giuppe, ma J Jin Jutege eeapa ator hilluy_{1} deedm 4 forsie atw gemigt:
17) J(f(x)); induitig
(I)
$J(\alpha f(x)+\beta g(x))=\alpha J f(x))+\beta J(g(x))$. himeae
III) $J(f(x \times x))=J(f(x))$ hanslation sinvariont.
IV) $J(f(x)) \in$ femi.tiue des Werlera at $f(x)$ mittul aft.
Dam ist $(\eta) J)$ in Jut. Jy sthm, du vim Ref. hen retilem Ar t .
Em vichtiqu Fall ines rechon Iy shon sists: duch (OH, H) Y̌ Jehnont aiu amiof airiglais du mitue aum Fiontelimin dudeutest. $f(x) \in M$ fans zie jedm $\varepsilon>0$ in ende. Iy 1 thom ori giupfm dementhe $x_{1}, x_{2} \cdots x_{n}$ (Rastu) tro an gegetm on din te ame, den fur alle π, to \in grippe giet

$$
\left|\frac{1}{n} \sum_{1}^{n} f(\pi x+\pi)-a\right|<\varepsilon
$$

$a=M(f(x)$; Millel rut (in Sime ron
7.V. Niem amm, W. M rak M.a.)

Ansqehn dom die sulle we Mt rí a fü di HMamigt ae rigfailf allu Fimktrinuen in froge atiml s ynimi (f, J) aesristent men geviem, th tedingt invariant
 fü an fof
$3 \cdot \underline{\bar{X}} \cdot 1947$.
y. Pratinnom.
1.11.1947
18.II. 1948.
19.II. 1948.

Tonstrutction der süultichen rationaten lissungen der Fuuktionalglidunug firi die Transformations fakterew der Relativ. Invarianten der fineareen Substitutionspruppen einer kompleren Voviabeh. Bestimumugg der rationadew multipaikeativen Matrizenfuublionew iber eineies algabraisch abgeschloseneen Jorper der Charitheristok Null.

 (ii) 1-sinhgnierhar. Sam siletes neoth Lunis sm jidum ह eine member. Merge BCA ntan $f(x)$ ant B gevidumaim; netig it müdm $(A-\beta)<\varepsilon$ arislilet. Nimu nsind, - der Lumiache Sate browile
 hei enthioum amo mo 4 als istuprierter liseislunes,
 δ ceisiest sodan fin jede tienge $B C A$ mis $|A-B|<\delta$ ant welener $f(x)$ vetiy int $\mid \int_{B} f(x) d x-\mathcal{F}<\varepsilon$ ans failes. Eosnind un
 sthe nind die Definition mon Thengen mo miverdicaum Mas ervertest. Wredersessbee in G.L. Tautz).
über einen Weg aur Verallgemeinerung der Bexichungen wwischen otential-und Finktionentheorie.

Is wirderinterfahren ange geben, nach welchem gevissen partiellen AFifferentialgleichunigen Tunktianentheorien sugeordnetwerdenk"̈nen, welche veitestgehende thnlichbeit miti der Therrie der Funktionen ennerkomplexen teränderlichen besitken. Alo Beiopiele werden pehandelt:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0, \frac{\partial^{3} u}{\partial x^{3}}+\frac{\partial^{3} u}{\partial y^{3}}=0, \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 .
$$

grundgedanke: "s werden diajenigen homapenen beynome bentirmmt, welsherugleich Rosungender jenveiligen p. \%. sind und reriezasts genähet.
\qquad
der Gasis bestimmt Komponentensall des auwählenden hyperkomplexen Zahlensystems. Sie Mretiplikation in ihmmird dwrah die Kompositionsregel festgelegt, wiesich die oum grade $m+n$ gehörige Basis ans den aum grade mundu n gehorigen Jasen anfbavenlàßt.

Eecistenz and Konstrnttion dus Integraleuraven Dgem eate Ontming.

Dic n Fimktaimen $f_{i}\left(t, x_{4}, \ldots, x_{n}\right)$ seim

$$
\text { in } \operatorname{dam}(n+1) \text {-dimentionalen Gebiat }
$$

$$
g: \alpha \leqq t \leqq \alpha+\alpha \quad(\alpha>0), \quad\left|x_{i}-b_{i}\right|<\infty \quad(i=t, \ldots, n)
$$

statig und mögen dort dan Liptehits ledingum-
gan
(a) $\left|f_{i}\left(t, y_{n}, \cdots, y_{n}\right)-f_{i}\left(t, x_{1} \ldots, x_{n}\right)\right| \leqslant L_{i 1}\left|y_{1}-x_{1}\right|+\cdots L_{i n}\left|y_{n}\right|-x_{n} \mid$
 thung kerm das Systun as duriz diz lingeriating
(e) $1 f(t, y)-f(t, x)|\leqslant|2|| y-x \mid$
pretst wodten, in volulur x, y und f NEEtormabrizen bedenter, K1 dhe Betrag dur Matrix L du Lipschitekonstanten: Bei Bemnitung von(a) egist sictr vine versinfacile Darritelling des PicardLindelifueten Excotentherciestior das Syaten.

$$
\dot{x}=f(t, x), \quad\left(\dot{x}=\frac{d x}{d F}\right) .
$$

Ist $\mu_{0}(t)$ ein doe Anfangsbedingungen \&fütcondes Funktimen-n-tupel $\left[\mu_{0}(a)=l\right.$ mit
 $\langle a, a+\alpha\rangle$ integniarbare offleiting besitat, so ergifs dive Iteratize.
\qquad
-49 -
iine Folgerm Finktimmon-timpoin, dionbolutund plerinhmäfig in $\langle a, \alpha+\alpha\rangle$ gegen die durat
 giast. Setat main $\lim _{n \rightarrow \infty} \mu_{n}(t)=\mu(t)$, so gict
(3) $\quad\left|\mu(t)-\mu_{0}(t)\right| \leqslant \int_{a}^{t} e^{|L|(t-t)} / r_{0}(t) \mid d t$

$$
r_{0}(t)=i_{0}(t)-f\left[t, u_{0}(t)\right] .
$$

Es sitid auf die Bedeuting ho Absehaiterng (3) hingewieson, insbesmilere gexigt, trie trith mot ihver thitye bi allgameivern Gुebietion Aunsagen wher dic konotrultion der Integrallewne ion Groforn markion lassen.

Quade
21.2.48

Üfer sine Transformation der Sturm. Lionville$\frac{\text { sehen Ogl. }}{\text { Die Sturm }}$

Die Sturm-Limvilleseh Dge.

$$
\left(p y^{0}\right)^{\prime}+9 y=0, \quad a \leq x \leqslant b
$$

Earns untw der Vornustataing $p\rangle 0$ in $\langle a, b\rangle$ duoth Einfl"tring sines neuen unathaingigion 1 Teraindarbichen

$$
t=\int_{a}^{\alpha} \frac{d \xi}{p(\xi)}
$$

stets in dre Form

$$
\frac{d^{*} y}{d f^{2}}+p[x(x)] q[x x(t)] y=0, \quad 0 \leqslant t \leq T
$$

gebracth vertim.
Subatituwas man in terallgemsinering duv
Preforetin Trans formation
$\mu(x)=\rho(x) \sin M(x), \quad \mu^{\prime}(x)=5(x) \cos V(x)$, so ertated man las Syotren
(1) $\rho \sigma \vartheta^{\prime}=\frac{1}{2}\left(\sigma^{2}+9 \rho^{2}\right)+\frac{1}{2}\left(\sigma^{2}-9 \rho^{4}\right) \cos 2 \theta+\frac{1}{2}\left(\rho \sigma^{\prime} \rho \sigma \sigma\right)$.
(i) $\rho^{\prime} \sigma \sin ^{2} \theta+\rho \sigma^{2} \cos ^{2} \vartheta-\left(\sigma^{2}-9 \rho^{2}\right) \cdot \sin \theta \cos \vartheta+$

Uber die Tunketionan ρ und σ urind man as $\begin{aligned} & \text { ver - }\end{aligned}$
fügen, dap der Faklonisu von astand min $2 \cdot t$ is (1) iven Klivian Bering Annehimin, baripoialscosise $\sigma=\rho \sqrt{q}$; Damit riod ais (1), (B).
$\vartheta^{\prime}=\sqrt{q}+\frac{q^{\prime}}{49} \sin 29, \quad \rho^{\prime}=-\rho \frac{2^{\prime}}{4} \cos 4$.
E inid tir An armandung awf die spesille Kuem-
sehe Randwatanfgake mit du DEl.

$$
y^{n}+(q+\lambda r) y=0, \quad r>0
$$

 srase uniturwht, and anniz thefe der Methote do Obe. ind Anterfint Ktionion (Perron) entire turt iobera Johmenken fir siuntlith Eigenwath angege ben.

Quader
brige sibar sine Arbile sow Ohmawew: Rower of fir siven 24. II. 48

 fiptes, of haint or pow sinur fleigh, bogrouge. trsiff silar sime spitan Arbis now Ohmaue gris Dutegrale

 nution I mir ofur fupsir gremount finct, sparive axiegypifts,
 tompayen primer this sin fitemuapintegrac sugagetrue.

Angate eines - mus mit kombinatoricitea Mistule whesieades - Vorohrift purw itimokeshea ther Quatripen the invita piflem bavplelanybu dee oqnewefriavew Pemmabines prippiee

Boence.
Darshellung der Quakernioneis yruppe ato gefesselte (tisine) Viereigruppe mach dem Uestabmen von Wiser.
3.3.48

Skitt des chlum-dyson-dorutanstres unt-dem Dewis von bysun. In $a=\left\{a_{1}, a_{1}, \cdots\right\}$ eime durye mittregthine gurse betem ispl. Lo $=\left\{\operatorname{Con}_{n}, \cdots\right\}$, mim $\alpha=a+\pi$ = daspe veer $a_{2}+b_{\lambda}$, is hesies H. drant: Fin dic Aitte de Simmamenge ' α ' giel: $f=6 \equiv \alpha+1$, weme
 ith, wertei Alm, Aln ünu. Jerais die tusape aller persifiven Elervente is de ewhpreviendas dumpe F . dater. urrióspene = it detei $6 \div 1$ aucempeis pielf $=$? Herdar jebse moth als trive diengen adocin $l: a=b_{1}+a_{2}+\cdots+a_{4}$ notolft ain $f 3 \alpha+\rho$ im Fale $h_{1}=2$, sofort $f 3 \alpha_{1}+\alpha_{2}+\cdots+\alpha_{1}$,
 lehter पeainós fob uin dysmo der entan Deweís do fier urgetrya. arode, jpduk wil on'th leintton Kentaif; is sei $\sigma_{v}=\operatorname{fin} \frac{c t(n)+D \operatorname{lin} t+1}{n+1}$ prive laiiens
 fite, ahe min enumal gesites iniod, whei tom zomblenes dix Dentrointiós ait clas Föer, dmp dir diver in alla
 heme eimutroins de oferpomandais fodeiter Die veriette कitte α_{v} sina deonge a sei dinnte α_{v}. "fir $\frac{A(m)+1}{n+1}$ delineet. Dam gill amit $f_{v} \equiv \sigma_{v}$, anost her mithites Invi fimmonden. Diess Desnithot it shor neunemenes Abändens des bysimntar Paiesies eviclotar: dlam

 Sthacure

43,48 ,

Soforot aterencic Abinit woon R. Kashuer (Sram. AMS, 1943)

 1. Siveindertige stetige tobiermagen/midem manden Rain ow

 grokemenen demper, so entiill evic siser dengen exi x-siaceentante,

 soln-) Bimension $n-2$ hat.

10.3.48 Aumain
11.3 .48 sumarn

Gebar ana lafinth thillel werti.
 leath. Eitoder. \&i Math. tumelen 1935, deeth Eit! 1940, heth. Amaden 1944). DPimitien, Nowformen Invariant, Enifachir Euremenen lary 2. Grundgebieters

 Unpplang ion fhelle $\xi_{y}=r_{2}=\cdots=r_{n}=9$, Aypmentritch $\xi, \ldots \varepsilon_{n}$ nit $\operatorname{le}(z, \ldots, z) \equiv \hbar$. Exithenk unan Gunder. bicken $|z-a|<S$. Jeve theioxhaiby aieniem tomilfinamim Grimegpoict is stiver quminptid. Sderanter buraide tien ni $|z|<1$ definints ruse. tistbel. Gonammen clamenden-

 muah. hilled unrorurnft, foomen int dic Itoretiontherric.
12.3 .48

Analogmen der aif Legrange miriobgghenden Kettentmich theoric fit dreerdimensionale Gitter.
I. (Arithneatis der) Teil. Der queidimensionde foll als Posotyp. Extreme Matrizen, Nadbartilicivy firr entreme Matripen, melestoindioe
 vedlan quedratider Zallkitper. Gegensiben blekñy des nevien Kettertnidvegehbeus in kubliscle Z allkotpen posither Disbriminente. Dofinction

 mirmerishen Berspieds fisidic Nidtorferednañ.
 simblegen Carsesisobe sptem siven fresien Quede, jcoler freice Qucder eine extreme Matrix, deren kilen veblorec. Basis des Gikers sind. Es siot
 der in I. Teil pegetiven N.cdbartildicay als it llangeovetrishe Opacton.

Ris No Martildiny in t irverient gegenster Eubleitermwietiplititsin, Vo siven belifirgew extrenem Quader acisgeled weden alle (mended inider

 gregrete topolginde Abbildūy der Besrexpiosfoide der Vareingüng nenge deer friesen Quader aif dir Ebere ubstell ein Gryph des Vepathem, dessen Ebe merle (Edepuited ind Shedeu) viell kmigidisen. Tise AOCildings mogest.
 worpeleghee Kiper card dénsh den Gopbee ad de Transformationew der entre-
 sectall des Kipen. - Analygou piom Soy m Ľgrage: Die kestis der Zullgitter and dix añ ithen duind shederingen ***i, i_{i} hervogge tenden Gi/ker sid

G. Biterg.

Zwei Benerhüngen $7 \overline{\text { un Geometrie de tallen. }}$

1. Eimpader zolleupeandtriner Beweis des Hlawherlen Abternctior nathes (Hbewha. Meth. teithtr. 49 (19M4), § 4 m. forgunte) $f=$ howivene

 den miet alle ineeren gitter í bh aif ine geraden ligen, ergit sil sive Vorsläfing des Hlawhenkes Alfenvatimestres.
2. Anuendiung des Hlacolealla. Altencatiossates in Riblty y auf den Minhowshinke Getto iho inchangegere lineafornew. Dabei folgt do
 mavie in allgenciven Foll eive biareiblende Bedingin's, diesishacíA
honingeue tinearformen beriblt.
The bhueides.
17.3.48. Vifer die Aichte der Sumane zerrier tmengen mothitister fallem.

 vom 3.3.48) . 1947 gat ven ha corput, auf he thotherpen torrison

Robltarh
 karm unce eingredso defi meres ies sine Et teme, his sit obs ean

 duno duei vecued eilene Punble. Ahalith ir हो tor vietur anuem sefferaline gernelit ithe A.g gathen.
Es wubse ein Sinh iter lineare Glei thanjorytem fensem, wit ussen trilfe nm hi Gleithnectig heil Heicer Dofonituman in viler Fatler Ceiili tencisen
 waíe gereips. dam wie Gleith wevsig lous will x Liki tevtart lilh ul.
-56 -
Die linearin Anordinn'ugseigensck aftur bei 18.3 .48 . Ordrnings printetionen.

1. Einfuthoning, ine die Theorie der Orduniugs fint timen 2. Eroitternng ofer Möglidukeiten firir die lineare Aworduning besi den ant cime Ordmingesfintation gegrindeten Zwisken-und'tierm besielaingen. Alegeineine Sautze darriber.

like eive vepinute firing des asy ptetrate obitui19.3.48 protans.
gounte 2alles, $d^{2}=a+x$ ilfo. Sinvie!, dik. dise dimpe

 tovilut. Es in imentent in othaxiotsos vimg*. है। levenfue icher nont jo dit herints prositiver foter, fio due $A(x)+B(x)<x$ in, wem man sith anil clan file $O \in G$ n: bentionut, wa wit sererftamode, heine Einstraikus Lodatet. Bellount waine die fryman Aholeibengs
 gilt $\mathrm{g}^{* 3} 3 \frac{3}{2} \alpha^{*}$ (Gadis 1938). Itt $a^{*}+\rho^{*}>1$, mint $\delta^{*}=1$ (Y. shim in the koressing (etha 1935)). Sext invo

 $j^{3} 3$, and $j^{*}=\frac{3}{8} \sigma^{*} \frac{3}{4}\left(x^{*}+P x\right)$, wes bise is dehin

 stititins $j^{*} 3 \alpha^{*}+2 j^{*}$ an \sin te de vovañisitas $o \in a,\{0,1\} \leqq b, \alpha^{+}+p^{*} 1, \beta^{*} \leq \alpha^{*}$. fir nt wist ther sieteres nutt da vorpergetada replainelis, the wirl sten siospueb existrica, liontidenen olven des
$-57-$

 shumbs qefel. Ss sid gopeif, dol whe whijon E:sehume aw chese Fomer thelathe simer, untir ni: ant ear wesureats lemwerfos de Eidas-furnod

 i. deffelsonde tolea $z=\mathscr{L}$ gelina.
Strame
 and iodifficiom.

 Anathamatie), The 仹. En wird an Anvipidien gessupt, wie die

 Pormustations gnappeen, abtratete fruppou), dosk päuman anch andere fotion espresfen, 2.1. Grophementhordun. Anim Desteffrioren, d.t.

 leistonn Holbithmiaschenen alle Art gente \&imesto. In sitriges Afordert

 äquivelunt ai-h.

Prkblash.

 Zamuikun (Commux. Noll. Helo.)

Mu dis vow b. L. Heghl Anffutillten Einhtionalglaichingur fir div 8.4 .48 hidafinstionen indefriets produtinour kormew in dic Meovi dus antonoyheer vinhtionew fin time der Heckerchen theonis Ae Diviebletribier) Eivmoorduen, ist der Begiff der - Antonoyphen Wellurfonio des Dinenvion - $k=(n=0,1)$ linkufintum. Das seotem fintert anf antonvorphe Loimen eimes Esptuin wow $k+1$ pastiden Afferentrilglichingen ik+2-tw Odming. Ais Theoiv gntattit Anhoudnigger anf div stitturicti dec indefinitur Anadiatichens Eonien. Es ngsom tich enphiste vomuls fiov die vow tigel emesifitution Dantillmpsainafe.

Inhalte konatanter Roumikniminny
Alls einfachistes Rammelement diene diee dopeltvechterimbliye Syramide des yhaltes $\frac{5}{4}$. Atan Weanten a und Flachenwinkeln α wonde dewch Sauss eine Daintellung $\quad d S=2 \frac{\frac{2}{v}}{0}(-1)^{v+1} \alpha_{v} d \alpha_{v}$
angegeben. Die Atus shcidung der Kanten arfordest Einfinhming von $\frac{\operatorname{tg} \alpha_{v}}{\alpha_{v}}=i \operatorname{tg} \omega$, wo ω mabhangiy yon \sim bleit $\alpha^{\alpha+}$; damn gilt

$$
t_{i d S}=\frac{\sum_{0}}{0}(-1)^{2} d \alpha_{v} \operatorname{th} \frac{\cos \left(\omega-\alpha_{v}\right)}{\cos \left(\omega+\alpha_{v}\right)}
$$

Wind die angegebene "Oyotho" "hyramide asymptoth sch ergannat, so jelingt eine geomettische Denting voin Conotshewishys Fitferahl w Setst man die Symamiden analytsich nech positiver Raum Rosinimy hin fort, so gelingt die Wharihmelrmy der beiden YRanteri-
und Winkeltrijel in ein Sextapel voer Elementen $\omega_{y}=\omega_{y+6}$ und duwh Polarisienngy engtastetht dis dencertore Inteyration
$S\left(\omega_{0}, w_{1}, w_{2}\right)+S\left(w_{1}, \bar{\Psi}-w_{2}, \sum-w_{3}\right)=2 w_{0} \omega_{3}+\pi\left(\omega_{1},-\omega_{2}-\omega_{0}\right)$
 Ivensrandente evachien (1) schon bei N.7.e. tbel, debei seheiden 2 damanoter aus so dass (1) aits mur 2 turamistrighe Anssage fir Inntationen einem "Eerànderlichen yefanst wevden kame.
Allgemeiner reigen sich bei wiedesholter Dolarisier. ung 6 Jgramiden verkettet. Die Aussheidung trigo nonetrichien Elemente duwch $\sin ^{2} \omega_{g}=\sigma_{g}$ zeigt langes Schléflis Sechererkette die micht limeare Differenrengleichung $\sigma_{g}=\sigma_{g+3} \frac{\sigma_{g}+\sigma_{g+1}-1}{1-\sigma_{g+2}}$
Diese newallgemeinert ouf den koustant gekinimiten R_{3}, west Napien und Sauss ahs Auramernhang dem, pates ciranlares" (mod. 5) gefundenhartten : Rationalisient man die Kuyeidresictke noinlich durch $\sin ^{2} n y=S_{g}$
Maier. so gilt jo mach Sanss
2.4.48 Konforme Abbiloning i. Extremal probborme ha mehtifoic tusoummankaingenven jobister.

Dei six for chem Re-awmuniuh ang niter ote Exinvtion des Riemonnooken Rabillpaingpsotzes able Loioning nes tolyenden Exthemacpirbbems feliefors. Finntiture हloses: $|F(z)|<n ; F(0)=0$; Exstemator denty : $|f(0)|=$ Nox, Soi momfachen $\mu \rightarrow a n m e n t i o n g$ spalted wil ctieses iNoi wesobicedeme Pitabhen ti Man Uonn row dow $F(z)$ fordom:
ten blan-pscreden Eindoritijlinit, cranperaten Schiolaheia. Lo"sing wh alnist Nic Fwindounensakabeildingy hor irmiresents. iberlagoving f laick, die un N cine isch chblilowng ont ator laings Vou tern Asischertuis bogon antjucllitzth Ein heipsuresis (somo nadifingiftiel erctoume mite, naot dern ariese abblileki ang frimar. Aidn schore ant andoven Voye femoment int), die on h) in a die EOMiloming ant are $(n+1)$ =bli stinje usoisoo<nyas ($n+1$: Yusoammenhanys take). Rofir mid sin weiner Bonvis gejeben. formoly

Enic axiomatiche Cheratiterisiesmy rom co. Newe man ely Vitowen Hrule
 $3.4,48$ esi hiserer Ravin\%. Es lith siL roach deue Mustur der axū̃osti-
 deud v. Newnamen evic sotche Cherethrisiong oms wd geton. Dii Villtaind.jkils fordeseng runs diual dei sdivifore du toprevgister Volestiadiglist wis fiem du castar. Seilocken Filter theric essctat werden. Des Fithestegi/f covist oil auch fir Duinuximspagen resurti.L. Hud du VEbtand der atgesolessence Tiskinme ditt sik /hie dire Antteme heranzichan. Korthe.
-61-
3.4 .48

Berient sive funmumen abed lat H. Hoil: de ssagfisi's
 fis Elementactectem ambly gin Dieac'rien. Distac's
 wimfinad 16 . Erch veraleguremenay: $2 \beta_{m}=\alpha_{m} \times 1+1 \times \alpha_{\mathrm{m}}$.
 a-yn: 126,3 isved. Dersthlenifen thifonde 1,5,10. twere veralyuncimery: $3 \gamma_{\mu}=\alpha_{\mu} \times 1 \times 1+1 \times \alpha_{\mu} \times 1+1 \times 1 \times a_{k}$ fren Amsedazieren sixd des Kencouends kerdhet bewutst: Vel thi Ayetme Lim gudea a inournple Telegechns enthath, st the find jeder dirtieleny durch 4 Kether. Mien enhatt 3 derdelturyen des firete, $4,16,20$, usiew dis diveresion 672 folgh. Watweat Kemuers 5-m.10-xkye Aksolluges enm spin O bor. 1 fletiven and venuntbet gac. Mesonen asien entsprictien, folinita die dier

soenver. Meýlivitet des massenverhítheis ju bestiomenca.
2.4.48. Baike sache. KR. I Priludium B, Prifadien une Payen fi, Fir, f Mopurt, searketung des Leybettos an dem kherinétilen quintetti, Rondo a. Suthoren, Sruate soemer. me. 104.
 aif gined Wievernke leetfurden, speruell intte haromFiching sinc yon H.B. Aitt gepehoin Fonn des allpeurenen Wieventar Taiker-Sctres. in duleluning an cinv besi Hiddae (The Theny of Haplace Traws/mu) sesetar Denteleing, bsise
 dof dir a versemenes Jathe in phenwefale des emmor-
 hellittion sind.

 im sim dibwfift nint Onsining gri grusinizu. Shi

 tivn. Snilfinc tive anume suo grefult: i.) $\frac{1}{x-y}$
2.) $\alpha(y, x)=\frac{1}{y-x}+\ln |y-x| \mathscr{L}(y, x)+\mu(y, x)$, no \mathscr{L} anos \mathscr{A} yruys sininationan finc.

Siur sin fixbatting niuar Grubynvigge in min

 sin Ansinysingm inugneat ot firmeingruo firs: finbotting sinns uiaticersfuninu inviyns vist Ginbinmunut it (im sirce mon Ore) màgliy, fuas

 "Formin Xtiny", "preiynombxumin", if niu bxiffine fior minum Dhicy, sur sin Oreifen Kusingn̄ny murenge; tastarnue ith six onginutition shes onverpue veeno

 1. Denterearte tean/tarininot.
5.8.48 Ensamminffessende Tantillung tibe der Reprodutiermystigmschaftm periodisime mienNlivier (Desimel.) Bmolentrinduryem (dond vinnidfoltigny, Bitotnny my totisimen
 anthmetiosmen mide gemuetrisken Reikm der Biffom, altinestom Bemkentrindungm usse) vom simem vishistlism St momprnat der linfrituing vinu Andlogiz fun Tumatimstrgniff: dic me untrioculuod ZaRC (Jumatim) mad di Besis de Entrinellay (inodtingige Vmandertice) madem mininomour in im fundetionile Burilumg gobudt, di: dimn die Bmodentminctung selbst rumittilt sind.
6.1.48 Reperat site E. Pfeanz: Viber eane Verallegemeinenugg des Vefahirens de Kombination non Neutrisiduo Methoote und Rogenla folsi zur Auplosing unes Geisctung $f(x)=0 . \quad(Z A T 1+128,174-22(19988))$
Der in Anochluss an ohope Artent durchapfil ine Vegated und den Nearton'schen No'lhermpistefaliven hiothere andunng sergt, dass der Rechemanfwand bei otheer Ver allepuncinering iia. en Vielfaches des A-p -remdes tio Anvendiny der rerallgemeimez-) Martro'schewn Nathemopsmeterde ciner gleadien Arduung betiagl, ABe Verallgemeinemy son Eiffeans somit nur ein vorwiegend theorefisches hiterne beensorndien dat.
10.8.48 Nenere Beitiage zu Theorie der Platten grenzochiel.

Bevict ibber theoretride Untersondungen aun stationiven Girenzochict an des länp angestionten eherenen Platte, insbesondere ither unveritfenthictè Baiträge von

Ch. Pisot (Oberwolf ad 1944) und Boris Pumnis (SFocthohm 1945). Ansfibiliche Darstellung des einfacken Esisteng beweises und Berechumpoverfatrems durel Iteration mach H. Waye, Concerning the differential equatiom of some boundary layes problem. Proc. Nal. Acad. Sci. USA 27,578-583 (1941).

Ine Bumenter Aiyn-ngo jerieurg.

 Tyus herisegitener entu froraffer ($5, f, 8$) int, wind tints

 Anthits bedingungen $f_{n} x_{n}, x_{v} ; y_{n}, y_{0} ; \varphi_{1}, \varphi_{v}$ gevmmen ion an Finm:
$v_{n u}+\frac{\partial}{\partial_{n}}\left(\frac{c_{n}-i_{v} m^{v}}{A_{m}}\right)+\frac{\partial}{\partial v}\left(\frac{c_{u+b^{2}}-k}{c_{n-2}}\right)=0 ;$

 Atry 1) Sestiment, dumit of en dis veeti:-lige Reymyp. parse mit 2 meluincikno Fonthimen teximoms, miluenc ahi

 sinh.
$-65-$
12. 8.4. Bemerkinger när Pintardixher dutinumer de bompenletire.
12.8.48 Beweis fie to Bestinmearhait siner Pisede duede ivien vougegehenan staifon bei volgabe der hiten Suandoum und doe Srmme der Hayptaicummengouadous ab thine. Acouen der Parameser. sins.
25.8.48. Vier die Hermiterden Funtetionen 2. Hht: $h_{n}(x)$. Diese Enntetionen sind die 2. Lisungen der "termitesden Rifferen = tialgleidumeg' $y^{\prime \prime}-x y^{\prime}+n y=0$. Diskentiest werden bei ganzzalligem $n \geq 0$ die Ennktionen reellen Hrgumentes se und rein imagivären Argumentes ise. In essten Fall treten Nullstellen anf: fis h_{n} genan n in offenen Intervall, im letzten sind ferie Killstellen vorhanden. Weiter werden asymptotische Entroidelnugen für $h_{n}(x)$ und $h_{m}(i x)=i^{m+1} \widetilde{h}_{m}(x)$ abgeleitet fï grosse Aggnmonte se. Die Mntersuchungen sind zoung in Reellen deadyefullart und tedienen sid nis = besondere zue Lage ermitthmi der Nullstellen des Oojillatioussatzes in SLime der Pruffersier Beweismethode; in entsprediender Mibertragning der Eergebrine evier Hrecit von Quade (Math. 3ts. 194P) werden Schzanken fïs die Kullotellen emittelt. Thodapp
26. 8. 48 Herleiting der Heluhotgoinen Wirhabiate mist Hilfe eineo invarionten integrals in Ansteinp on. है. cartan, heças sue les invariacits intégraane.
H. Bieravo
liser das Plateausitic Proben \& Smonue
3.9.41. Zwei Blutben kongmemea beissen vershisiche die Sluther nith p-acemeive soeil rueith dans die Brempentle anf dem eineen is ela Bremen eteren durth den wreciter ffogen und mi zotohes. Es entrhell 20 enie Figue um nie flenth to gincure diéreila un vir Eferech firilum. thit Hilte den tatb in vauanter Difleien tink on unvin Ë́g butiv un EFiniteryf. (Rendicati: Polerms $9^{2} g$, ss/4) nex hergheicert.

 dis an rajgeghenem frole age hrainke vere acuduen, desten, Aowending die Trunnendur de cusints des कrunsendent. hehaucter Rablen liefert. Dur Bemeis dizes Sontes Corsin thase. Ans. esthinem wind) int den Traunnendenslenceiso vase

\qquad

16.9.1948. I) Beriat riter dic wiothigsten prakeiscter Vopoknem zur Lösury limewere gleidungsigsteme mit rellen Korffizienten unt zur garedinnory dar regirroten Hatrix: Gliminations varpaters, Benntenry der Schurscken Relation fir $\left(\begin{array}{ll}0 & z \\ < & j\end{array}\right)^{-1}$. Orthogonalisieneigr ropataten, Jteretions verfathen. (Teilwasise suech 4. Bodenig, Kon. Neoberl. Akoul. 50, 51, 1947/48)
II) Herevitury simes Varfetrens der quendratischen Theration zur gerechanny der regiprotem untrix $O=O \Omega^{-1}=(Y-)^{-1}$ mit ow Rectemranchrift

$$
x_{r+1}=x_{v}\left(2 \notin-a x_{\nu}\right)
$$

voler $R_{v+1}=R_{\nu}+R_{\nu} \dot{R}^{\nu}$ mit $R_{0}=y$
Angate von Bedingungen fir die Kenvergeng $R_{r} \rightarrow X$ himiuseich X_{0} byw. \hat{R}. Firs de Fellermetrizen $Z_{v}=x-x_{v}$ gill

$$
u z z_{r+1}=\left(a r z_{v}\right)^{2}=\left(\pi z_{0}\right)^{2^{v}}=\left(z-a R_{0}\right)^{2^{n}}
$$

(Vg.S.Jchuf, Zo.M川, 13, 1933, r. 57-59).
Methoden fir Kourergeng berchlennignng, Vervlegemeinerrungen.
ginmbr Jchulf
$-68^{2}-$
17. 9.48
 thi siapar Quffenfiniuy lopfan fiy sis sintagmegranuatififen
 Aiman her Gringps geseiduen. (Vge. Dettucit, Podesilitis géonctriques). Shal Barfagrew moish sutspistell yuv aw ser havergivoysyripp thiglowifift.

 peighntrmier Qffinititiour samgerat.

Greniter.
22.9.48. Üher projetative Inodntioun des M-dimensionalu Raimes: Die $\left[\frac{n+1}{2}\right]$ versdiedenen Tijpsen $7^{k, \lambda}(k+\lambda=$ n-1) usit deu zueinauder sindsolicefen Fixpärmeu $f^{k} f^{t}$ werdere disde eive Mindestauzalul vor involu. torisduen Punktypaeren dearakterisiert:
$n=2 k-1:\left(1^{1}\right) \quad k+1$ imodut. Phtepaare $Y_{k}, z_{k} \in y_{k}(r=1, \ldots$, k+1) ; die t Geradeu of, ,., gh beatiueiveuug $2 k-2$ die

$$
F_{k+1} \in f_{2 k-2}^{k-1} \curvearrowright \mathcal{F}_{2 k-1}^{k-1}, k-1 .
$$

(1 ${ }^{\rho}$) $k+\rho-1$ involut. Phlepaare $Y_{k}, Z_{k} \in j_{k}(k=1, \ldots$, $k+\rho-1)$; $y_{1}, \ldots, y_{k+\rho-2}$ best. ine $g^{2 k-2}$ die Inoolut. $\mathcal{F}_{2 k-2}^{k-\rho, k+\rho-3}, g_{k+\rho-1}$ sdureidet $g^{2 k-2}$ in $E_{k+\rho-1}$ $\in f_{2 k-2}^{k-\rho} \curvearrowright \exists_{2 k-1}^{k-\rho, k+\rho-2} \quad(\rho=2, \cdots, k)$.
$n=2 k:\left(2^{1}\right) k+1$ involut. Pktepaere $Y_{k}, z_{k} \in g_{k}(k=1, \ldots, k+1)$; je k Geraden of liegen in eivene $g^{2 k-1}$, aber videt alle $k+1$ beraden ojn in selben $g^{2 k-1} \not 27_{2 k}^{k-1, k}$.
$\left(2^{2}\right) k+\rho$ involut. Phtepeere $4_{k}, z_{k} \in g_{k}(k=1, \ldots, k+\rho)_{i}$ $g_{1}, \ldots, g_{k+\rho-1}$ best. in $g^{2 k-1}$ die Irvolution $F_{2 k-1}^{k-\rho, k+2}$, $g_{k+\rho}$ sdureidet $g^{2 k-1}$ in $E_{k+\rho} \in f_{2 k-1}^{k-\rho}$ वि $f_{2 k}^{k-\rho, k+\rho-1}$ $(\rho=2, \ldots, k)$.
the den Dinuensioneu drei ned vier wrodeu die firr deu Induktionsbeveis charakteristischen Beweis methoden auf. gezeigh. Die Untersuduing der Frage made der Realität der
anffretenden Firelemente finht ouf reiec auschanlidiene Hege su deue Ergebuis, dass uir in den Rämuen nigerader Dinuension, und bwar unr beicu Involutious. typ $7_{2 k-1}^{k-1, k-1}$ die beiden Fixränure $f^{c_{k-1}}, f^{k-1}$ iure. givion sein kionnen; sie sind, falls siberhaupt ime. ginàre Elernente auttreien, konjugiert imaginär und enthatter keinen rellen Pht. Die Aobildury ist also devere, ine Recllen betraditet, fixpmetfrei.
sumemerie Kretschmer.
Whes ai Difforen lugghidny $g(x+1)-g(x)=g(x)$ Ist $g(x)$ rom oho Koness sind sind $\lim _{x \rightarrow \infty}(g a g-g(x+h))=0$, so hntior ohi Ghidy $f(x+1)-g(x)=g(x)$ sin bis 4 aim addition Kanat ani-

 dixg $\lim _{x \rightarrow \infty}(g(x+b)+g(x-k)-2 g(x))=0$ granj g. $g a v$ bent

 hhe Fand", ohi sis dhe gemmbish Aoshoulideleer andistel,

25.9 .48. Kaner
27. 9. Y8. Tie cindwije Kerleghertiet simes Kuotas in Privatindan.
 in cine aldo fintult binge, den wrline Fleme in mar
 abs ithoe terei weree thathen, weum men des thourtepertate in der EAkex feradling sertiudel. Ar argponingliak thowten heine dhi Provelth or hides so err kettenen Haoter. Gin Aivkintes Lt cim orlaber, hei
 ther thoten list in tis af dis Reshenfolge nindei-

Agerhkine is Primitente xolegen iveliol dench diene ingetued sin dateg hadiume.
27.9.48. Fungusing now nigtem, indtrpucurn niperabiesigen tiv afficum Geonettion, orvafyating traw 21.9.
27. 9. 48 Enimpheriesonug won Eigenverten nomader Matritan.
 Uomman, $t=\left\{x_{i}\right\}, y,\left\{g_{i}\right\},\left.\varepsilon_{\left|x_{i}\right|}\right|^{2}=1$ mkouphese
 wormese ratrix A gitt, dii $A g=y$ afices und genem dis charetes.

 won a cuthier. Unmigsith sind dik fretetem, thie geni aufoefor offeren racturugel von 5 Peaki finden. Daherenthiel jide

 Siken whilel im wesenkithen ales himetheiestumpnaite, tie vemaic
 gatem fien dis Eigensethemen dett der sipenarate.
 meinizur Behoudining der Lebenquesokue Tusic, nomi

 Randrer 分rocuenc.
29.9. 58 über tine Verallgmeineung der Bekichungan awiohen oten-tial-und Tunktionen heorie. Berveio des fiege iden La tres:
\qquad

Itt $-(x, y)$ eine in einer Umgebung van $(0,0)$. regulairelisung

$$
\left(a_{0} \frac{\partial^{x}}{\partial x^{x}}+a_{1} \frac{\partial^{x+1}}{\partial x^{n-1} y}+\cdots+a_{n} \frac{\partial x}{\partial y x}\right) \cup(x, y)=0,(x)
$$

soläst sich $U(x, y)$ in der gestalt $\tau(x, y)=f_{1}\left(x+\rho_{1} y\right)+\cdots+f_{n}\left(x+\rho_{n} y\right)$ darstellen, oobald $a_{n} \neq 0$ und $\left\langle\rho_{\nu} y^{\prime}, 1(v=1,2, \ldots, x)\right.$ die if $\left(v i r s e l_{n}\right.$ der ${ }_{n}$ aharakteriotischew Glerichung"

$$
a_{0}+a_{1} \rho+a_{2} \rho^{2}+\cdots+\rho^{n}=0
$$

Beweis mit tiefe der sugehorigen Tunktionentheorie, weche nach. gesicht ppol en triebelt me ird, wie in Vortrag vom $18, \pi, 48$ dargelegt y wurde.

Beotimming des Aonvergensbere. einer inder Unigebung der telle $(, 0$) ies kegul arren Libung von $(*)$, die in Btenkreikenentwioblung gegebenint

Geometrische charabterioicrung de s durreh die ougehorigen jeegulaien hypectk omplexen Fuxb tionenvernion teeten Abibdung.

Laminel

 hueguem
0) 7.3.49. Finigs star tis tigrift tam B.r. Freytag-liringhoff:
"Gutoukeni juir Degiertzfía Der Bagpematit."
Gasicta.
$0,(x)$
 Inor Gerigfratiythrit shos Rinegrelermsuten Arsetien
 untrine unif, wef Is bogniffeigh formulixsing mor = un̄ten lílor. sio Rrmpitionitít ser Gringentightuit ift

Gf 1 ii $i, k=1,2 ; j_{1} l=2,3$. $\left(a_{i k}\right)^{-1}=\left(b_{i k}\right),\left(b_{j l}\right)^{-1}=\left(c_{j e}\right)$. vinusi/k

$$
\left(\begin{array}{cc}
a_{11} & a_{12} b_{23} \\
-b_{32} a_{21} & b_{33}-b_{28} a_{22} b_{23}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
b_{11}-b_{12} c_{23} b_{14} & -b_{12} c_{23} \\
c_{32} b_{13} & c_{33}
\end{array}\right)
$$

Ifrineary.
4.3.4g Nach Mohrmann hat eine rlelig pewundine en fach gorolofsene Raumi bure die g anr ant dem R an chrer Konvexen Hǐlle liens, mindeHens 48 bition iie Schmoeng ebentr. Es wusok ein Bequir im B laschler dien Sables dkizzel, ans dem war noint K. Slen becker. die Veir nheitit. situe der gewohinlubser, ellipotinhies unh hypectobinken feomelui -tarich. Puyeletion ge usinnea kaun.
28.3.49. Analytiver Beweis sines Bliefeldtrhen fatros acos der Geomatrie der vahlen, de uñfuil oüs derataïnlō von 2 3ulginationspotenion folgt.
29.3.49. Zwei né̃e infacke beweise sive Ninhowshichen

Th. Ulurides.
Nuphines new howveie korpu mis hittlelf It. (Dilatationssativ). Eerner eiv simpicer Beweis eives Mablernhen Alterciotiosathes, nobts siver Amherfing dessethen: Sei $f\left(\frac{y}{6}\right.$ ' 'Dinangfstion wom $Q($ Ealher $\mu)-d \quad f(y) \leq \frac{2 t}{\sqrt[4]{v}}, 0 \leq t<1, v 2 v v^{2}$
 so existiver stats nü beliehigen ay $=\left(a_{1}, \ldots, a_{n}\right)$ lim ganomelliges $\frac{6}{6}$ ， dan die Rugliilin $f(y+\pi)<\frac{1+(n-1) t^{\frac{m}{2}}}{t^{n-1}} \sqrt[n]{v^{n}} \quad(n \geq 2)$
Th．Mhusides． erfillt int．（ $x=1 \mathrm{ist}$ inminterencuat $)^{t}$

29． $3 . \overline{49}$ Vhoun Futnyometronifformontionen，si seen innutilsion

30．III． 49 Unterswichingen iber cla Zivemmenth ray zwishe den un ajfidon Stosithiven ind den thengen von A－Wgen in＂Fächom；d．i．ünendlidien，preislosen，そwisammen． hängendan Graphen enderchen Grades mit 引1 Indpuinkt． Rht dan Begriffer．＂Rute＂wive．Volleverzweign＇y geling＂ eine weizgelade Beorlreibring in einer Reike van Síten．－ Anwen diengen a 7 liweave Pinktmagen mit der 7 dee： A－Wey \rightarrow Kanténfoge \rightarrow Erfform folge $\rightarrow p$－adischer Bride，es enbfreolen sirl dame Razan ind robievte Puinkle，soustge．A－Wege ind Häffingspinkle，Föckn lind abgesclessene thenge，Vallverzweigaige二nd perfekte thange．Daher sehr eirfache Benvise fir vielh S àtzo liber p inktuengen．－the weitere An wendring Bewr．des folj．Satzes：shellt un on in der Polynom larstellny River Oudi－alzathe die Expoi nentem wischer ds Palegnome dar，deren Exfonente wiederin，i is af，so sind wech endlich vielon 7．Qahage jr．Shnite dle Expowente $=0$ oler ε－Zahean．

 dentan hior gant. $a=q$ Rrr \cap auts. $g(1)-f(a)$ rd. $r=0.1,21,4)>$
 de fiwnuth. In b $2 \pi / h: ~ f(a)=1 a / \sin a \pm \pm r, g(\pm 4)=3$, da ρ hew 1)... 4) selton, in $a=\frac{3}{4}=\frac{6}{2}, g(1)=s(8), g(6)=s(8)$ ix ahe sorthe jede

 Undorring of 3) In: 4estar. fil ish wikl erekimetsit"
 whorj. Femier gilt: Findinlise x int shets $\sum_{k=1}^{n}$, eutar-

 vir $f(a)$ anich olue sy meft.
4.4.49 Berishl riber sine Arbeil Nom F.SCHURER, Jis theorie das Balancierens. (Math. Nacts. Bulin, 1 (1948), p. 295-331) jedook intos Herleiting das SAQbilitét-daritriäns unil Hilfe den LAPLACE - Irams formetion.
H. Bilhars.
2.4.49. Viber Kovore Bersiche suit Mottelpunt.
 des plope moth. Inst. W.A. Jeothoff, MKN1. NL1. 4, 1932, 5. g1/

Shumen Vaitimes bupunst it, arimen chitle pactes thitet Hesifai

7.). Tmethhaill. henningrytum.
3.4 .49

1ther Schaitel bei: Ramntenveen.
sus den Krünmungs kugeln einn Raumbuve Same eine indimensionale Unglsoder so anspesoudat
 kaygen higg, duen Buristyspuent ant om einem Snite des

 Vinshibiesat burisun hol, wiel grapp, dass hie shear
 it is. duch kuri Pumble At Kurve sich evis Yboure gelyel wadm hamm, velthe heims vituen Punile mis Sh Kuoe gumem hal. Die ase Bedingny it effiter füs Krim mung himion enf seiftheken, dis evite fü
F. Peher Keloeer viets adumy, iti not siffacien lije.
3.4.49. Liber gescheosseue Gerdilische (Uushersik, Shvireluaum; Topol. Vethrdeu sid. Var. Rechumy)
duf sives 2-dive geshe Risinemshow Vrenigfaltigteris vom geskhert o gire es nimdesters:
eutreda 1. 3 gesterssous doppelpleppeic. geoditisthe ansiniedeuer Längen oder 2. Yive siker soluer geod. gleicher Lënge, sody durd yeden Ples. dis Fǐre unind. vine hivduigets sud sine geod. verschiedever Linge
oder 3. vince files von gescle. gerdi, to dep duvir je 2 Plen der Feicle unnad. Pine bindurdigell.

Aumann

Behnke
Bertling
Bilharz
Boerner
Bol
H. Bückner

Bullig
Burau
J.J.Burckharat
H. Cartan

Ehresmann
v.Freytag-Löringhoff

Gericke
Görtler
Grunsky
H.Hadwiger

Hasse
Hapot
Herz
Hirzel
Hodapp
J.E. Hofman
H. Hopf

Th. Kaluza jr.
H.Kneser
M. Kineser

Knopp
Köthe
A.Kretschmer

Krull
Lammel
Lietzmann
G. Lorentz

Meak
Maass
Magnus ${ }^{*}$
W. Maier
$\frac{\text { Seite }}{52,53}$
$2,6,8,9,10,42$
22
$16,17,41,65,74$
$7,9,14,20,21,2 \%, 33,50,61$
$\frac{1}{45}, 3,55,66,72,15,19,21,23,31,42$,
16
54
27
58, 75
30
21
15
$11,14,16,18,33,37,50,51,68,70,72$
$5,6,16,17,64$
$12,60,65$
46
22, 23, 26, 35
38
50
15
65
17, 22, 29, 31, 36
23, 24
73
$19,20,24,25,34,39$
41
19
60
69
$34,43,60,69$
48, 71
71
$2,6,42,47$
1, 4, 5, 10
43, 58
3

Seite

G.Müller 76

Onmana
Ostmann
Chr.Pauc
Peter
Petersson
Pisot
Quade
F. Roger

Rohrbach
Schiek
Schlarb
Schneider
Schubart
Schubert
Günther Schulz
Schwarz
Schwarzenberger
Seifert
Sperner
Stiefel
A. Stöhr

Strubecker
Süss
Svenson
Tautz
E. Ullpich

Vietoris
Volk
Wielandt
Wundt
67

40

47

3

29
40

18
70

63

43
28

63

64
$22,51,57,61,65,74$

22, 75

1, 6, 8
49, 50

55, 57
$6,8,11,55,66,72,73$

15, 18, 67
$15,62,72,73$
$2,3,5,8,13,14$
$2,14,16,17,22,40,42,45,56$
$12,13,32$
$11,17,18,36,65$
$33,57,44,70$
34, 44
3, 4

70
18

