Vortragsbuch \# 2
4.4 .1949 -
5.6. 1952
\square

At in votagarton Sarke nud Nittatbiter
the sursituts.
 de besatgaygomitchee wackiomsuen gn kounion, tien aris alle Viviagoenton, axper then Siree to varagos sime hange Incabsangabe in den voragobouts sinjuangen.
 vim.

Inhaltsverzeichnis für Vortragsbuch II。

Ancocher	107
Arbault	34
Baier	178
Bapner	38, 67, 110, 175, 178
Bartsch	175
Behnke	99, 165
Bernays	44, 128, 184-185
Bilharz	172
Blaschke	41, 106, 176
Boerne	44, 59, 69
Bol	51, 59, 91, 179
Bompiani	187
Boothby	63
Bouligand	81
Braconnier	21, 28, 37, 62, 64, 68
Braun	142, 151
Bremermann	173
Burau	122
Certan	92
Chabauty	86
Charles	33, 152, 181
Collatz	95
Cremer	9, 170
Deicke	55, 57, 58, 178
Deny	$90,2{ }^{2}$
Dieudonné	17, 18, 20
Eckmann	4, 88
Ehresmann	6, 137
v.Freytag-	
Löringhoff	182

Gericke	$42,43,53,77,79,136,148,150,179$
Goddard	109, 153
Gonez	26
Groteneyer	176,177
Hableht	5
Hawwiger	49, 111
Hasenjäger	48
Hasse	42
Haupt	24
Heffter	102
Hir sch	1
Hirzobruch	119
Hönl	101
Hop 1	3
Huckemann	169
Jaeger	143
Jeger	108
Jehne	28
Kaluza jp.	16
Kanole	56, 72
v.Kaven	47, 186
Klingenberg	115, 185
Klooster mann	154
Kneser, Hans	141
Kneser, Helnut	14, $23,38,43,64,68,180$
Kneser, Martin	24
Koecher	146
Köthe	20
Koszul	72
Künzi	159
Kunle	55, 56, 58
Leichtweiss	17, 39, 80, 114, 174
Levi	59, 98
Locher-mipnst	110
Löbell	127
Lorenzen	184
Lorey	43

мüler, Claus	131, 139,139
Nastola	148
Neumann, B.H.	124,126
Noumann, Hanna	133, 134
Nevanlinna	182
Nöbeling	9
Noll	149
d'Orgeval	15
Orsinger	31
Ostmann	50, 71
Ostrowski	84, 100
Peschl	157, 166
Petersson	154
Pickert	17, 33, 82, 188
Pfluger	166
Pflugfelder	25
Reeb	2, $30,41,54,60,62,65$
Revuz	77
Richter	182
R1ss	65
Röhrl	167
Rössler	76
Rohrbach	89
Roquette	97, 145
Rund	71, 19
Schlarb	$52,57,60,74$
Schnidt, Robert	98
Schneider, Th.	135
Schubert, H.	20, 93
Schütte	46
Schwerz	52, 59
Scorza-Dragoni	50,51
Seibert	173
gerwe.	282.36
Sonmer	172
Specker	189

Stein
Stellnacher
Stoll
Strubecker
Süss

Taussky - Todd
Tautz
Thome
Tietze
Todd

Ullpich

Viet
Vietoris
Vincensini
v.d:Waerden

Wette
Wever
Weyl, Hermann
Wittich
Witting

Zeller
Zimmermann

1, 155
140
155, 158
$11,51,104$
30,81

40
75,103
25
93
36

96, 161

150
5, 12
7

101
189
85, 143, 149
160
87, 95, 164
122

61
44
\square
4.1V. 49 . Jerimpinthtimen unid unictigfitentum sin woundigh fin ktionm trif offumm Rinusumpin fli' fu.
jurir Cunsin- parbhen 2. Ons inf limketum Jerwaintotas iffume Reinmoumpfospaigh sp Dinig uniltigfitantion thistormory

 bepfimins. Tryible veypirs suif juter offe mim Timunnjpfu fligf imm jorimplinte. swom, li lif usin lir uta Noivplapp onif
 fin town unfoids. - out in. os. finmoses ys ines fachims invericijbles.m. th. fink.
 undris by bugtinund 7 ins.
4.IV 49 über die Sestimmung der 3. Pomotofiegruffe emis enpach zustammenhängender Raumes. Sie 3. Foomotopiagruffe π^{3} einies einfack zusammen langender Daumes M, der Kevie 2-dimensionale Torsion besilst, urid durch semin Kohomologiering bertimnt. π^{3} besitat aine Untergruffe Of, die Faktongruffe π^{3} / g is ismoyh her 3. termologiegruffe. of iot ismonfe $\frac{*}{\mathcal{F} / \mathcal{K} \text {, }}$
 Homomarflismen der 2. Kolomblogieg wffee z^{2}. inhy2. Homologiequiffe is 26^{2} sind: $\frac{*}{J}$ it die Unterquifle der Symmetriccien Homomar. phismer, 䓞 die Untegrufte der tomomoyplome, welike durch Bildung dos S-Proorktes mit Elernentein aus der A-dim. Hemologiegunfe
errengt werden.
Seveismethode: Über M urid cixin Prorukte inntreise gefasertor Paum \tilde{M} Bonotruiert, dessen 2. Homologiegruffe verchurindet; nork teurewics iot dam $\pi^{3}(\tilde{M})$ isanoyp eter 3 . teomologigrufte an $\tilde{M} ; \pi^{3}(\tilde{M})$ iot iomoye $\pi^{3}(M)$ Lie sestimming ion $\pi^{3}(M)$ folgt dam aus der Bertimmung der 3 . Homologie pruffe von \tilde{M} in Rahmen der Komologietheorie der gefaserte Räume.

Betracktung der Gutten mod p liffert eine Lineeiclende und nothvendige Beringung. fïr die Ralyung won π^{3} in emin diathth Sume.
5.IV-49 Points sinquicies d'une forme de profe analefigue complithenct instegrathe.
Soit w une forme de ffoff andigtivue comestetment
 wadmet un divulopranent:
$\omega=\omega_{1}+\cdots \cdot+\omega_{p}+\cdots$, oi los coopficients de up ont dopotonomus homosinues de degxép et en particalier $w_{1}=a_{i} y x^{\circ} d x+1 x^{i}$ coondenniés canonityues dums $\left.4^{2}\right)$. cif (aij) de rany n,

Supposono de plus $n \geqslant 3$; dans ces condelion:
a) aij ist symilnique. (Et par suike m pret xegaoser que (a_{i}) s it la mahie unite')
6) il saint une fonction analytique folinute au vaisinage de tórigeine de 0 , dont le développernent en séric entiöre commencepar

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}+\cdots
$$

et telle que froit instignale premite de cersmanfion $\omega=\sigma$.
f) peut se dimonhar in xramenant par uneharsformation unvenceble au cas d'ene forme w^{*} difinine: dans $S_{n-1} \times C$ admuttrant $S_{n-1} x$ of comme intequede.

Eachlonene kornplex-analytische Mannigfaltigkeiten.
Eine n-chimensionale Mamisfaehglest $M^{n}, n=2 m$, heinst "tiomplex-omelytioh," wenn sie mist lokalen tomplexew TVordimatengystemen $\left\{z_{1} \ldots \operatorname{tim}_{n}\right\},\left\{z_{1}, \ldots z_{m}\right\}$, n-m devart isberdeekt int, dars der itiergang vou tines Lystem' tn tinem bernachbarten dunch analytioche Treus formationen erfotgt. is werdew geseheosene derar hge Mn betrachtet und in riembich kuisotun atiselor Weive verichredene, mi betreffersde Fragen besprochen:

1. Verschredene Marhoden tor Konsloulifres vos Beisfirelen devartiqer 14^{n}.
2. Analytische abbrlatangen $M_{1}^{n} \rightarrow M_{2}^{a}$.
3. Es liann vorkommen, dans es in einer formologrevilame eine Mn genan ernew makytisoken Eykhis gits
4. is kamn borkownew, dass es zn enus anabyhischen M^{2} a M^{4} kerme in 14^{4} mevoruorphe Finktion $f(\neq 0)$ gies, shi anf M^{2} veschuorindet.
5. Bie husahe der Un bestirmatheston-
promble bines aup M4 mevounorphen Fontifion of wird in eimer expliortew Formel olwrch das Vorkalten von f auf den byklew eimer 2-dimentronalen Homologisbars ausgeorrícht.
5.17. 49. Kmplet-analytriche Mamingferighiciter mit Histernchen Metik.

 Sm, dith eime poritio dapinite Mesmitescas Natrit mit dee figendon prosidelen Eigenodeaff: man liede mit dem Fundementilteator $g_{j k}$ dic inmme Difthentialfonm $\Omega=\sum_{g_{j i}}^{m} d z_{j} d E_{k}^{-}\left(z_{1}, \ldots, z_{n}\right.$ lotale tanpene Nondin ation), mike es sei $d \Omega=0$ (kiste, pas. dors. Hounfing $19 s^{3}$).
 fighior, to is dis ampynggte Motio dmpaces to'flensch. Bup.: Kmplese pryjestirin Raum P , deso alla ain = ein danzj in P eingetoftem eluehaischen Marrigfalty. hitu.
Hno dh sisitene simen Na"lle - Methik anf M fogl, clan
 Sottichan Zaktan B_{e} is den guaden Dincaisionen tid >0, in an ungeradon guade. 2) In Ghmologiersing the M itt de. Prodult do Keawe am B mid sine Ghomo logithlame $=0$ de Dimension $\leqslant m-2$ stot $\geqslant 0$; eho $B_{r} \geqslant B_{r-2}$ fin nsm. 3) Be M^{\prime} anagitich in M ingebtet, to it M' eb zgeins sufpefant in M wiche necelomolog. 4) In joder Dimaxion man silh dis Homologis Kearoen in vundhixave Tyren vali": tm , Than to in dis mon teplest is elghaistem Manorigfeltigasith gemadel umd. W.A. Die Burrise shition tich ayf den Begriff der haz.

- $5-$
monichen Form (1todge), und anf since Rolle san for = mele, dii in wescutlichen auf thodge Emnidgelion. Itm then lime tich auch da forgenple tat Recaiten.
 regula"es Diffrential (dih.eit A_{i}....is rind anagtibche Funditionem den liLalem Mondinetin z_{j}), und its $d \alpha=0$, to ite α Rnmonisch. Doram foege lival: Ire β eive belieliges awegtiches Differentiel, to ist in selbe stet $\alpha \beta=0$ (ako β Rnmonisce).
 13. EAknnan. 6 N. Yq

 abqesallomine kisyen. Tir oolde quit dor terkgingsat (Jukegrugg vi kntich vich eivater nobli Be.
 mah Enovitinng me $4 \pm$ ver liom absialin Mannig fatiotent. Imetuenostait mentheciventin-
 sion definiens. Mit thel/ himetrenke thest

 Liny noit lasiaio of dosivion enethor for alementary alycia" (Rune/rugica, yerg).

Whor don toprolopinclen Inhalt des Fundamental= salses der algebra.
 rbaskint in hompateter Raum
2) E it ausamumendingene.
3) Sicoluad ein nielt Reonstondes Polynom ramittitite ablianny $w=f(x)$ it tetig in E.
4) the it gebiets Alew, A. B. Biblet offeree changen auf offore Manger ab.

- 6 -

Duba it $f(E)$ in den Cibbelene abgerlonen und off, soo $A(E)=E$, witour Fith Aviven it

$$
|\mid((1) \mid>0 \text { in }|f(z+1)|<|f(z)| \text { sibf, wocuct der Bewers holon }
$$

sime formalen Käre in Unong ggeminiter rem on du Segendertien Axmakny firtender Candy-nher Beweis it.
dhen baum bee Obseis dedurch verreinfulen, day man dis afficauy oter z-thene aund $/ f(s) /$ anf die Hacegeiode $x \geq 0$ of aractung tumient. Lie it theti nond go'gecrictitely, was wist mitoun thegenenhen Bernuchung geide ledentend it. Dmit it olas Bised abgendlessen ind offer in our thosgereden $x \leq 0$ und sitith bentiuch.
L.tivoon's.
6. IV. 49 Ḧher geblällerte Mannigfultighreiten.

Depinition siner gellaitterto. Mannigl oltigight V_{n} unit Ailfer ron zuci Topoologien $y-i \%$! $y_{\text {un }}$ difféngiunimen iall widd sine Blatserning definient dunch ens weletiondig integriubaves Feld mp-dimenvinulen Contactelermenton. Beiprich vai geblaitenter Monnigfultighaith: Beittennig sini longel S_{3} wo ein Rompabit BCatt exiftient.
Bomerhungen wher die ungelistan Probleme des Evirting Miver Blitteming auf eiver gegebine Mannigfalts kail sowie der eine qigebene Blïtrening.
Eigewihaptom sines Rompabtan BlatraV V_{p} : Fules V, 0 , mirt die Ender- CA'ncareíhe' Chamk.
tristik mu V_{p} gleich mill. Verallgemeinesungen diess satges.

Fules nin BCatt aup sinen Punkt zusam. mengiebbar ist, x
Pioblem: Gegeben rei eive Unter monnigio
poltigkeil V_{p} mi V_{n}. gibf er dawif enting Beavionny in eines lingehning von V_{0} was. vow. V an Beatt itt? Pie wotwending and thiveidende Bedingung hierzn ist, dan der
 ime dijferete Stinhtingmper AritL. Fall V_{P} simparhzusammenhängend irl, muss diser Fascuramu das topoevgische produbl rou V_{c} wil der Fuser rein.
Berpisile row thetamannigfoliffleiton, die sicht Bealt eiver diffinyiunhucu Blätheningen prim fonnuen: puajehtive Gerade ion tor Romplexen vijo tive 它fene, u. s. w.
 mi'l endlicher Funda montreys mppe. Die Stinhtiognpie des Fisersamises der en ter ortingoninn Vebloun it dann eine -ime endlich enblichiche Drehungs guseppe. Guwitmlibe und riugpläre Benstes. Charbs Ohresmann
2.v. Soit s une Sur certains champs de cönes attachés à une hyperdurface -

Soit s une hyprersurface de E_{r}, M $e^{\text {inin }}$ quelconque de ses points. A Hachons arbitrairement mais invariablement à l'hytresplan tangent en M un point dèternine, se fagor
à obtenir une correspondance continue (M, P). Les directions que doit suivne M fur S pour que les déplacements corresporidants de P leur ssicut orthogonamy forment un inve quadiatique (φ_{M}) et le champ indiqué est comstitué par l'éviember des cónes (Q_{M}). Chaque cone (φ_{M}) fait partic of 'un Laisceau dout e "un des cônes bases est le cône asymptotique en M, l 'autre e'tant invariant p ar diformation de S (en cas de deformabilite' . Si S ent dans $E_{3},\left(\varphi_{M}\right)$ se réduit à deux droites enveloppant un réseaue. \& étude des particularikés que pent présenter ce résean conduit à de nombreux rapprochemento entre the'ovies d'apparence atty iloignées. Déformation des quadriques, congruences harmoniques à une surface, réseaux, de Guichard ex res'saup corjugués pessistants de Voss, dypormation des suffaces spiciala corresprond anees par aires équivalentes entre les deux nappres d'une euvelofpe de of heires, Solutiones persistantes de l'equetion de Caylyy des systèmes de Lamé, asympitostiques
Virtuelles ete... Toutes els Virtuelles, te... Toutes ecs questions peurent être placées dans un mième cadre particulièe ement harmonicux, par la convideriation du réseau précedemment défini.
-9-
7. \bar{n}.

vise georohutha hreurge, dirue Blween mis grobour lat. B unstutane be-

 sai live Jopolayic lingyintor, induon jedrue Elument A wir Bluenel \bar{A} A_{3} "whysintoremen H ielle' is, solu folgmede 3 Arsimue Mien riud: 1) $A \subseteq \bar{A} ;$ 2, $\bar{A}=\bar{A} ; 3$) ons $A \in B$ fory $\bar{A} \leqslant \bar{B}$. Colins 1 inn mun d es joumen Begrith-meel Swh ay-ken der grobether Topolag'L dur Remene arel deae laps. Mrime ithertrogen. Noicheses side Anckis dr hathematik', $\mathrm{Bl} 1, \mathrm{H} / 12$ wiver dus bentrumperoblein (der Emidtimentteori) G. vàhelning
4. IV. Dis nselpentes heipt in Rentrome des envely tisetere Finuhim $f(z)=o_{1} z+o_{2} z^{2}+\cdots \quad\left|a_{1}\right|=1$, mexn sich $f(z)$ in der Xiygebing des Nollernathes als trans formivite Drcking, el hi in der torsm

$$
f(z)=\varphi(0, \varphi,(z))
$$

mit

$$
z=\varphi(w)=c_{1} w+c_{2} w^{2}+\cdots, \quad c_{1} \neq 0
$$

dourstellar hipt, swobei Y I (8) die Umbedr firption mox $y(w)$ bedentet. Unter dem "Bentrnmproblem" verstedt mou die Ervepe noech notmendijen ader hisreitherden Bedingnyere dafis, dups eine vorgyebene dentytirste Furtion $f(z)$ cin Rentrmu besitst. 2 ns Lentrumpioblem onduet sich in svei grope Loteentraise organisch ein. Der eine ist die Theoree der fteroction der rationulen und der gausen Trunttionen, suelele insbesondere vose

- 10 -

Pulier and Foton antmidelt mondenicst; She laine mupliste, erst 1942 derch tiyelient schiedere Haxpplpregt dieser Theone nock der
 Folge der Hernistexं hangt ay this exyste mil dem bentrimpiroblent arsamence. Dir 1 andere ist die Uxiformisiennis theoni; hier fand des Probleen bei dinem Vorsick, die Athitethaskest der koipurlizter bete ayf dee Treisflicte se bemaise, bereits des thterexce von K.S. Lehmais.

Lifel benvies $1942, \operatorname{drp} f(z)=\alpha, z+\cdots$ stets cin beviboum besitit, siverin der clentliplikutor n_{1} des Bediynny.

$$
|\log | a_{1}^{x}-\left.1\right|^{n} \mid=0(\log x)
$$

Gexiyt, dik. mean shi Potterzen of " die I sillt, 2e gut" "ఖproseimiven.

In" sryminsury des higelscten foctues mind cin Jots benviesex, arelcter -grob formentiest besayt, dop cine nutthiveeve gense Fonthin $f(8)$ judenfalls deunn kein bentrim ion will ill. puiM besitat, memin $g^{\prime}(0)=\alpha_{1} \xlongequal{\left(\left|\alpha_{n}\right|=1\right)}$ eminen, neur nom Woaks tome von $g(2)$ ablimpenden dengen der Mirethigtent des tontinums
 des Hocolimeands eten D'reitercisesentes besondess eimpuct and duratsiettij.
7. IV. Liker Vier scheritel saife
bíuf di Forveln

$$
\begin{aligned}
& \left.\begin{array}{ll}
a_{e}=x+9 \\
y_{e}=y-\mu
\end{array}\right\} E_{e} \quad x_{1}=x-9, y_{r}=y+x,\left\{E_{8}\right. \\
& \begin{array}{l}
y e=y-\mu \text { Ahbicaring de FE: } \\
\text { wro cine Ar }
\end{array}
\end{aligned}
$$

dendelucent $E(x, y, z, x, q)$ des sotiopus Ractues aul di лйüticaru (Ee, E) rizw मhur $z=0$ ge geder, di sie rotioxu racive ur geges. Mirk ar GAVSSnbu tha, Eriey as Fioichmelument aup eci kügel darlelet. (Val. den VorLias nom 25:10.(945). Ring itien "Jaratakrink ebaielty " wint eincu. hav rarallehejojem kièvon ($\left.c_{B}, c_{r}\right)$ en; humeies Nheifen, cirum daes iovietunku Kī̃ven erisor Rovw tuiniègbreifen in
 anf ive Eiféicas gileyna gevheorven tiruc obuc Dogen qüиta iñ finpulanionter surideñus pl les totationais be vikmich Btwieg abeue, kot, foest dani", daís swei caréve. besppuilitizuir. Ce, er 甲pecirdu. mizdertur drk en tripe bund,

sind. Daraís Hacu wan bivat du, Blaukkerfiiss deon Virr uhertelsets de relociven Differen tial grosuetur gevrvan, mach duve our giveixaralaíhego geven Eiti riien vurzdest vicr Phelenpaan eertlieen fit weleke dias Ruisucyb verkiat wis $x=x_{e}: x^{\prime}$ NaZions M. dee.eg cios huchy whe fhenerKingo min faken entrble deraidu Negedat añy anf puri ivorueni:hken, südacigb ylerken Erer. nuive ep, or wiwdert vier
 exikielen, sideuen deri Kuinel? uningen gleich nve $\left(x_{e}=x_{r}\right)$. Zu moterter Rañue be der' hen diese fífir eriefack Via wherkelcízs for Ahverict. Nhiten foo. KMieninegothie ten, dei bi Eiliviger therther. Heirve foli thts ecreivabairl kiof nach ceiv 7 rवद>CK6 Herglofs nhen Va formen thewiesen wierden Köcuece. (rpl. Math. Zetuknter 5I, 1949, ¢5リー $\sqrt{73}$). 1. Puicbures
8.4.49 Arciomativtes aur Walundeinliltaitsredmung. So It D im Moole-xher tirbuld Somen A, B, \ldots in Simue des Vortuges v. 7.4.49 des Teren Noblecing, dame elth it sedi lingfy die Quef.

- 13 -
jabe gentelt, die Lomen is ingend cinserr Linen au meston, z. B. Moblew in der abterken thengerbhe, Hin our die Mengen als Lomen behondalt serden, disse Somen durd Angabe iner Zoll, derrall iluer Obmonte plewntet werden, in der Mostheorie nit einem thas (Jordan, Lebeque u.s.r.). Duol die turfimale in ier Wohwteinlidtieitslehe sien sitt Zotlen bevertet suerden, nüulit den Wabuoteinalkeiten. Io fle Qes Klassinas Baiynil zeigt die Tegencle Mefinstion den
 vorzujolan. Alum obfiniont curwent eine Veygliं bung xher. Iomen in perignolunheise Int cine whent Mensing der Connew eises Terbunoles gegegebem, dan defiivad sie eine von der urspuüsylidan Ver. gleidung ser Pomwen in algeminien feerscticiel = ne teilweise Brohoung, die sum Untorctied oon goner $x i$ mit \subseteq bescicmeten mot \leqslant boseit $=$ net sei. Q , ind nánolid $A \leqslant B$ jemannt, die kastzakl von A nictt prosfer als die von Birt. Int $A \leqq B$ and $B \leqq A$, dem heicft $A=B$ sorkes immer $A<B$ ooler $A=B$ rour $B<A$ giel. $A=B$ bodertch aber mielt die Jolontition. Alle X, the in it A in x, $X=A$ gitt nige die Lchicthe ron A leisfar. Sive tabreise Orolmap aises Tiabondes tl in aler $\angle, 1>$ diese Qijenthaplen Robu heiste eive Cohilfung sox von 71. Hit eiver Menury der formuntist a coo immer sine Lhielkung gee
 su hommen bowdll es eber noek erien chartotates an den die Loxun mit der \leqslant Oretienurg youmesson suden; 讯 2,0 . Lieform in car ebobhetten Mengertehe dse Mengen da Rellwöther $\{1,2, \ldots, 2\}$. ax die Comen sines Inststabes, selde por dofinitionen mitster zzallaw un forprtet serdaw. Fode antere

iher Slemente mit obr bolewortmenge $\{1,2, \ldots, n\}$ verglishon und po.aledual gemessa.

Alulic feam muan is per Watudeindit: kitsthesrie vozaben.

Nan folgt in Berilt iter die drbit "IAter dow Begriff der Wolreterinlidkeita") "Mordthe f. Thatti.52," des varbluagenden, in ver dieses Progrenm durdodefilat vird. Auf etras iltere arbeiten von B.O. Koopmen, annale of lleth. 41,42, dund die diese Unteimenking angeregt it, rabol lingporiorec and raf eten suilinglew Untoustided Aisageriexeron zwivber den beiken Standpunfter wind hingeriere.
12.4.49 (zugleich unautorisieiter Benicht üter cincen Dishtryeion non Hen. Sperner am 8.4.) Steinitis (O.f.-.r.w.a. Mati. (137), beries, 2,B es zu imem beliefigen (Emminutativen) Kiöpurk inumer inven alpbraiochen, alspbraisck abpeschlossenen Oberköper gibt. hierfier get tre perner einem gegeniber 2un Brstellemgen man Steinitz und van der Waerden (Mrhme Agehna) orceinfectiten Beveis, In vm trr. Simumermann (Frihuy) henn̄kitua daxclben Gounigpoaniken ausgeht. Dem ourde se frlemer Bevcisidee gigemibergestellt. Fie Menge Ω aller elgebraischen obelioper wn K is such di
 uni zwar indultio (vge. Bourbabi, Elements or Anttienatipe I_{1} (th. or. uns.) S.36-37) mid enthät orker mach surn Sits om Zom" in mesim des Element. Ficses ist in genuerte Obekomper. Hr. Sermer vante mit-Recet sim, 2p/ die Menge Ω vilingunechavtl ist. Diesenn Einavand entsht man so: teat K dic Michtijkeit t1, no hat in algebraincher Obarkionen offentar hïchistens die Maditijecit $\$+2 k^{2}+3 k^{3}+\cdots$.

- 15 -

Sei M irgend inve Menge prößerer Mëclitigkeit; sie enthalt K. Bie Menge \sum sei folfurnongen estlist: ifve slemente sins thilenengen von M, versehen nit Köperstmieturen Kanthaltende, die sie Strebtur von k 「forssatzen. I ist teilweise gorinet runch ori folgoner Berickung: $S \leqq T$, wemm sie Menge S is h Mouge T enthelten is uns die Kinperstrukter von T die un S fortsetst. Siese orinung if indectio, also gift is in maximales slement S^{*} in \sum. Waine S* nicht algebraisch abpeschlossen, so gabe es eine ecte egebraische Enviterny, und zufolge on Michtijkit ven M. läßt sich diese als Kïperstukter eiver S^{*} utheltenden Eilinenge von $M \frac{50}{d a r-}$ stillen, 8 of sic stuktur von S^{*} denit forpesetot hisd. Danit ware S^{*} incht musinel.

Anch on Sats ux on Iromonplic aller algebracicifen, -epuchom algibaischen Geaköper un K wis an natürlichstm mit Sm Zonuschen Satre beriesen.
 Famo hat iis Ina tiomalitiv Diewn Hemmiffiblybat, bewinom. Donif Bomis ist enie Ronteunamen ou Hachon mit atlon Generen 1, Dic riber essic
 Ahabmiltan labm, sint: Th beke suicon semberan Bernis geqcom; Das qosuaif lis Burcies it Dic Benar inem, Yap leic Lentommme' B. In'qumg fis li
 enhblasmichos dyotumer y kich ser: This evic ManciyJeshghit, wome mon wlle ferar suth ebvich,
 wh fencra 1 tatom, ister da' Ehishom wit athon Yourn \bar{D}. behizen za verier Fincor Tho he

-1pecten Son Weibe Binos Nimmeno π, mininid yonks enien siben gie FZack liegaite bueres. Qu Qawm R^{3} extromicht Pem Genver $\pi=$ 3, hem punci instatamith Flicton sinit riutu csinnamy
 witend ia; ist cive Famifie empibumenstom Eithun In Manemafot. Sower Fficton mit int bentmemton

 P ïquinthans. Ir Iom minlivion Fillom, nib mun Dis Dimenimen Io dystima Suan $\overrightarrow{4}$ unt bince satibres. Pe. Wha Przchnow; Mern dic porec
 Theritionct -
 in qeajen Panmar, die gimonsimesummumy gitt, bation form sïsung, ung Dueep fervist Du Enetim whitat on K^{3} -
12.IV. 49 Ewei Perumzationen heissen hokordant, wemn keil Element is beiden Permmiatione an gle.chen $P e_{2}$ ze stelht. Es seien $k(<u)$ paarisese diskordante Peruntiatione (eice Verb-otsmetrix) gegoben sid die An$z^{\text {ahe }} P_{i n}^{(h)}(4)$ der zi dle Permizatione 1309 ler tiehrior M diskordante Pevumitatione jes richt. Es werder 3 Formeh ($n!e^{-k}$, $(n-k)!^{\frac{n}{1-k}}=-l$ ave $\sum_{0}^{n} \cdots$) regeben, die bei fastem k lind wachsende u vinab. hoiyjy van $h^{\text {b }}$ eajuptohoul gelten. die qwoithe ind divtle Formel könnem fir gewise $k, n, 14$ exakhe warte liefern. z. Dialize jor.
14.4.49. Die 3 zum Unfleañ nipur ebeven Searmetrie gebrainoten Atiome wun Riebert (vge. Anhang (V) bosen sid dince eim schuáchos Niomannytion erseber; man braidel stath es lebsen Hieborbscon theiouns mir on fordern, dop ingenelenti Pámile der Ebove winh die sugnely. Selblabbishinigen der sügindezely lan gañpe mir beochiy nas antinande ind mie beriey uaDo anisinander gebrach motdon Simmen. Melhide V Vrveblosudigning dergagnindegelusten ginnpre mil Ariefe gines Riagomal. verpaherns.

9-8-4y Expró du but, xe la méthode et du plan des "Elimento de Mathémaliqne" de N. Bourlaki Le plan actuel at le suivant (pour la 1"partié):
I. Ensembles aloortriis
II. Algione III. Tepologie ginerale
IV. Fonctions I.Differentiches I. Exprces VII, Mesmes
diuncrovaible it ervietios vectorices it distribetions
vell. diferentiables IX. Toporovipes X. Gromes de

i.5. 49 Algitraisch Behaendeny des Helmhrteveden Recumprieuns.
TO se' eic s-dim. Vetctrmecuer ither decu fhackloapun (Chamat. t2) unde ge eive Congfue
 geonduch, st bedeste H (man) dib folegende
 fee m hiver inndhaigye Clemente \in to, vogik es guren ais $\sigma \in G$ mi $\sigma A_{i}=\sum_{k=0}^{2} a_{i j} B_{k}$, $a_{i, 2}^{\prime \prime}{ }^{\prime \prime} \in \mathbb{R}^{2}, a_{i i}>0^{\prime}$. "Eive Brivenofinn $\varphi(x, y)$

- 18 -
keist, posites definix; "reune $f(x, x)$ fir $x \neq 0$ enes is

 Ejeue Engetrisioe: Jf'n=3 und tícige angeorducter dospue, cio dem jedes prikuc Cement soe Quatrat st, s0 beduith H_{2}, den Q
 wrechewite foe $\operatorname{tin} n=2$ (H_{1} stik A_{2}) is paide.
 stbenpere itr के dir Lyennteff H/2 damer, dien q iinolk Aleopme foypu ist.
 gleirchbedentund dir beiden 'Mesouper:
I. Á fostintet aive alg. Ordmusy, bea. der of die Ljeundeefa H_{n} hesizl;
II. The कि ox jeden Lewient $1+x^{2}$ ciei कundrex and q ist imènextioponde kmppe, vnic shenfues:
$\frac{T^{\prime}}{9}$: Ar quitutes vice ay. Andmainp, hes. de q din Rigainief H_{n-1} besibat.
 I int eive cijentide athapon le Cmpre.
10.8.4g Theiove de galris pour les anneanx simples soif K un corus commintiff, L im som-cosps tel que [$K: L]$ wit fini. Soit d l'anneaures enomoxplismes due grampe abelien awitif k; K peut the iDenstific an sons-arneau x a formé ses afflications $x \rightarrow \lambda x$. Sams a, le sous anneau of commutant de L of C'armeare Is enoomoyhismes x, considert counne espra vectorid sur L. Es est un aumeau somples conterant
K it tel que $[K: K]=[K: L]$, it L iot Cocomonitans de ${ }^{\circ}$ suns or. Cethe thisnie, rue à Zacoborn, gine'rulise h therise x gitais: K oot galrisienome L borsque É eot engenirí por los L-antrnaptiome Iu corpo K (antrement sit form' les combinmiono linesinis a téls antomoyphismes à cofficients sans k) Gindralisation oux yumeaux comples: Soit E un ospace rectorid 'sercimenaion formis n our un comp (commantifi on non) K, or l'annuan des entomnphismes ou grompe abilien E; K putananc the identifie an sons annean x or forme'des homothities $x \rightarrow \lambda x$; ksans-armeme A de a conmulant \& K sano O est l^{\prime} 'annerm ses eniomophismes of l'copace vedrid E, armeau smple. Pour tont anneau simple $B \subset A$, Ceconmmant C de B rano $O l$ eft un anneane somple tel que $K \subset C$, , B cot le commantant \& C dans C; en outre la degré \& A aur B ot eigal à culvi' de C sur K. he cosesponioner à la thoris a galris proprement rite et olvi où C est formé de combinions ericaicice à ooffiriento rano K, ∂e semi-antomosphimes se E, c.a.d. J'applitations tinnivoques $x \in E$ min wine telles pua $u(x+y)=u(x)+u(y), v(\lambda x)=\lambda^{\sigma} u(x)$ $\lambda \rightarrow \lambda^{\sigma}$ automophisme $x K$. On pifient alors ses therremes qui gonéralisent les theorcmes x la therrie classeques if aus oe cartam-Zacobsen, pui correspondent an cas particulier où $n=1$, $E=k, A=K^{0}($ गposi de $K)$. Voir Cormmentarii Mah. Helv. E. 21 (1g48) p. 154-184

101. Y9 Eedegping eines Kuotem in Prinklenden.

Wiederbdany des Votrags tom 29. 5. 48.

 nuten, ton denen neer mulleidnile +0 mide, कo the
 $4+w$ dex lamm ta $(\varphi, \xi), \varepsilon \in \varphi, y \in \omega$ anduhnolfarite

 0. Thplits and suit untennelt and a ayob sib tive

 hisuren Raimes bewitisude Wheitung angegthen, di m^{2} furs dun miterm Suaposunugipn da Nomolform wsith.
12-8.4g Erpacs (F) et $(L F)$. Intritution.
An space (\mathcal{F}) it un ippocectocitiment comaxa, métrisate if complet. Um unace (2σ) E it Cifini. conme suit: E if reimnion Jiune mite cusissanes $\left(E_{n}\right)$ de sons-eppaces vectorids, sont chacam ost muni J'inne topologie G_{n} pove laqualle it st im espace (F); G_{n+1} inonit sue E_{n} la topologie ζ_{n}. On prent mu E la topdogic \bar{c} ojpinic pare les unsumbles converxes symetíques v dont l 'intosection avec chapce E_{n} est un vininage de 0 four \bar{U}_{n}. On dementre pure b° insinit la topologie $\bar{\zeta}_{n}$ sur E_{n}; tout appace ((\mathcal{F}) est complit et non mexrisable Tont ensensble formé dane E ist contenn dans un E_{n}; toute application linerive de E rons un eppice locelement comesce F, qui ist conternce saus chaque E_{n}, it contimue rans E. fur le onal E^{\prime} गiun uspace (\mathscr{F}) on $(f \mathscr{F})$, on

- 21-
considire la topologie re la comorgense uniporme ner les parties forncés de E. Aver atte topologric, E' ot complet. On rifirit de meme le bidual E" Re E of on montre que Epeut the canonaipnemant plonge. iass $E^{\prime \prime}$; prom que $E=E$ " it froit of il smpist que tout exsermble formé sams E of finblement fermé soit friftement compact. It en est ainos-loregre tout unsentle forne' smo E of forternent formé est fortement compact : on int alos que E cot un ispace (N) on $(R C b)$.
Pane deferner lis oistributions se Jehwastz, on consivere l'apace \& Des fonctions Definis sam P, iniefiniment rereralles et à emprost compact. Dit \& l 'asemble des $x \in \theta$ oe nuppost conterm dano listewalle $I_{n}:-n \leq t \leq n$. An preni sum θ_{n} la Sopologie oofinie par bs semienormes $p_{k, n}(x)=$ $=\operatorname{mpp}_{t \in I_{n}}|x(k)|(t), \theta_{n}$ est alors in espace $(v b)$, it $t \in I_{n}$ oophis \& connce espace (1 V右) ai partir Os On. Res gistributions sur R sunt les ofement du dual θ^{\prime} de 8 . Sand θ la dérivation $\varphi \rightarrow \overline{\varphi^{\prime}}$ is continue, a qui permut e geginivi sans g sa tranopsié $T \rightarrow-T^{\prime}$ connme une opiration contimue, ∂ on tonte une, Frie de rumarquaples propinites (of. Nhwantz, Annales of frenobles $1 g 45$ ef 1g47-48)
11.8-49 1 Si G est un groupe obehei beolement compoat, \hat{G} son dual (*), F la réuncion des save graupes comperts de at K la compos ante connexe wir de, Kn F est un saco.. proups compont comexte of $K=R^{\star} \times K \cap F$, G/F es un qpaupe abilim. discout dons taus he e'lements $\neq 0$ sont d'arpre os; KnF it G/F
 FIKAF est un groupu tololement dis contoni done be dud
est $F^{\prime} / K^{\prime} \cap F^{\prime}$ (F^{\prime} runimosi des se. ge. compentets de \hat{a}, k^{\prime} compras ante commere de o ds \hat{G}, car $\hat{K}^{*}=F^{\prime}, F^{*}=K^{\prime}$. Wels; de drool de FTKAT ist dime durai PDatemunt discentün.

2. Soit $\left(G_{L}\right)_{L E I}$ une famier de pravple ab. lor. camp, et, poun tout $L \in I, H_{1}$ un zuws qrumpe denert compoet de. G_{i}; Soif at be swuo, grumpe de $\prod_{C \in I} G_{i}$ (sano taprevini) forme' des $\left(x_{c}\right)_{c \in J}$ wels que $x_{c} \in H_{e}$ excepte' pom on nombre firi $d^{\prime} L ; H=\prod_{L E I} H_{c} \subset G$; un systeme fonda. imental de vtismiopes de 0 dows eo trpolorgue quriuit de celle des H_{c} sur H est un sypt. fond. de visis de 0 dains une tonolegrie cempintile dwee la structuce de grus. pe de $G: G$ est appelé en zemme diviste creale des G_{i} I nel mx H_{L} J: 3 sí p est un ention presncir it si G est Fot discontion, sori G_{p} liensemble dis $x \in a$ th que $n \rightarrow n \times \subset$ Z itant muni de la korolorgel p-odique) airt contcrive; b_{p} est un zuws eyroupe ferme'de G quion arnelle la empus ante P-rirmiaqu de G: fi G est tohotement dis untmin dimani que sind ourf
1 at si H est un dous-grompe ounnt compurat de Q, G est somme dericte evanle des $G_{p}(\rho=2,3,5 \ldots)$ reel.dut $H \cap G_{p}$; an notear yue deux grompes peument avain mêmes compasontio promiduis sams être is omaphle. An e'tuduei duno une purchani conferien a es comprounts pir manto d'em graxpe..
(*) Koii A.Weil α inkegoutain...., AS\&J. Pain (19.hoo), et mon Thise, Jaunal de Liaurible (19 ki).

13-8-49 Homalojie d'me urètenente fan Pa withode ds chaîn harmonipues pean haceomuir In andogie awee to thicie es foum divpíulith
 Bidue of re Rhame), B. Echumame a introduis le wotion an chaina hauma vioper then un complexe simplicial firif (over. 1944):

Idencifiant ae fasom comonique duainer or. eochecinn, il aifum Cofjutom cobond (noté d^{*}) pun ls chainus ot is apfolle chanies harmoniquer ver chasine c, tele que $\{d c=0$ ot $d *=0\}$.

Se fion pend yun coupficionts de coms R ds nomiur ribs, un vaisounameman
 montres que f'on a: Toute dame a'howologie contiour umes chaine hrmoviper or une sule, exactanaut comive don be thivinume \& Hodge.

Dans un actice dev bolldien of the Am. M. foe, Fiv 1949, Echmam appique abte tedrinques as pefterme de P' homologie d'm verêtement: Sïk un complere fimplicial fini, \tilde{k} un uvêtement fini, f le groy du
 d'homologis ton R da K^{\prime}, G apies sus $H_{x}(\tilde{K})$ do feyen eividener in f'on a : $H_{n}(K)$ wr coovingler au sas-apacer rectorite de $H_{n}(\tilde{K})$ fruní do finiws

La dimourluation est tís timple, il suppit de sunanquen que Pa puojection ac
 cier ladenent un isown yisure.

Der von thri. Sckubent bekendectan Zeslegung 11.8.49 von Hisoten wird die foleende Zerlegeng von Memingfetigleiten gegeniebergestell: Rus zmei n-Mannijfalgikeiten wird je inn n-Slencent wegplemen und die entstckenden Rew-n-Sphirin iolentificient. Bri viner fertleguny der Orientierungen itt des Srgebis bis aut houdomonphie bertiunnt. Niere Zuopnnmensetrong is kommentatio un anrciatio die paieve is das neutrale Slement. Prin - $\mathcal{M}^{\prime \prime}$ int-ine solebe, Lie sich nur danen als Zusavivensetzury encibt,
 linpt der Rarcis, dg/s sich jedt Lamigh. aus Pinnnuaniff. iessainmensetrt, und zerar in sesentlichen aut nur eine Weise. Si Barcise siew den bein Kintinpurblern sefintion visfach analof; mur bein Kevis, dass die Pinizenlegung ruoplis ist, fehlt eice Tuvqriante, Iren Vesclevinden des neutrale Elunent leenzeichnot; desheef
mus hier anf die enotiche Zellen darstelling der Mannisfoltijleit zurichespesifen verden.
13.8.49. Kohomologie in Alpebren (5. Acochochild, Amn. of Math. 46 n. 47 w. Duke Jowned 14 1947). A sii sine Alectra endleichen Rampes eubu dem hooppor K, P in rarineitijer A - Modue, Can die Smype do toez. K s-fack linemen Attiblingevon A in P. Cin opuator δ mit $\delta \delta f=0$ bilbet C_{n} homomorpt in C_{n+1} abs. $t_{n}\left(A_{1} P\right)=\delta(d) / \delta\left(C_{m+1}\right)$ lu's'st die n-dinemionate to homologi gryppe. En jealem Horke Dessictint in Moolue A: P, on $S \quad H_{n+1}(A, P)=t_{m}(A, A: P)$ it. $H_{1}\left(t_{1} P\right)=\{0\}$ fis alle P int äquivalunt tu - Ait rpprate $\left(H_{2}(t, P)=\{0\}\right.$ fon alle P bedentet: $2 t A \simeq B / N$, wo rottes in B im Repi-Ẽrentanturnyitem mod N, des cine in'"n alpebra it. Dies enthalt als presielfall den beknum ton Satz uthe Algetrem mit supareblem. Radikalrutllasson ing.
15.VIIT, 4.
 Arga. Ne2, A. (inn, 1948) Envijedi abr this addisios Ashult itu vinem Prolesohen Tuband \& (wotri it ni uirm

 whivunt then Leberpusdete ter die Aleinh rrllitiendie Enviteming $j /$ Lent-

 qeorimanden 6 - Vded allu j : hilltaili in f.

Jelkieser
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1
15.8.49. Unelques propuétés des vanétés-bods. x.

Sort V^{n} une vavete borvientable, bod d'une varitérrentable M^{n+1}.
Lipplication $V \rightarrow M$ definet une upplication $f: H_{p}(V) \rightarrow H_{p}(M)$ poun 1 homologie; ct l homomorphisie chal $f^{\star} H^{P}(M) \rightarrow H^{P}(V)$ pour lesgroupes de cohomologie. Soiont K_{p}^{R} le nojaur de f lans H '? ol l'algithermage de f^{*} dans Cachomologiè de V_{1} On etablet l therreme de dualete suivant: K_{p} et $O 2^{n-p}$ sont isomaphe (ledomaini iescouff etantun corpo). Devers conollavis en sonftincé, en partionlui: Porr qu'une variété V^{n} joit un bode, il faul dábod que sa caract. $X \equiv 0 \bmod 2$; wee iacige, it linvent une vasiete non bad que $n \equiv 0 \bmod 4$, sort $n=4 \mathrm{~K}$. On dimontre alow (xule caps des váls): porn que V^{-4} soit un bord, il fount que la formequadrotigue definie par le V-puoduit sur $H^{2 K}$ admette autant de cansás posiffs ype de canés négatiff. On definit ensuite les vanies cobordantex montre que ladiffirinie $\omega=p-q$ due nombre descansest, monis le norbe des cunér negatif est un vivanant pouncetteclasse, Avec cotte iquwalenue, linsemble des varittererientablu forme un anneau, fton montre uinsi l'cxestenve d'une ∞^{1} declased non mulles poun les clemiension $x=4 k$.
16.8.4. Den B-Pemeden mif genhloweren U-Figuren lommen thmmpreciche Eugcosdnct werden, in dencer folfemes Aniome golteni dir Exiotens cinc Eintwis. Rlmenter, der Gidernitioon Inrersen, dic tincundh gaicl vinde und einc Vele, ali das Amoiative Gexck rsent. $(a b) a\rangle c=a[b(a c)]$. to bake csevich maden Amanigneyn gennent, Ei Alloeminine nutative ham inc incovic argeitile menden, dii gem dh Anprentlenia Enlsmich, so dommen nen nock vBegitf alwe Aswoicraten, des

Anriaters $[(a x) y]$ aga y] die des Tansfomirta und commutatoren is els Q.-Th. entproah, iti Acravipugn geleen all Oidnerrgs- i. Irammphie sabte de fruprenthiovi..
Lommurutive Quazipugpra vom endach Oxdmang hid Siukt Veodult de p-Gaanipugpa. Nmm pto int in dic Qnanigrugite eine Anepu.' Es gibl eles m p-anovignipis ven Drcipolions denung. Triden Gruypr pist dé holnury 3^{x} innelez Aotgonde Cravaion gelem: $x^{3}=6$ mod z,
 merden, indem man cin nuw delletijlalat cinfritht: $x 0 y=x^{-1} y x^{2}=y^{-1}+y^{2}$. At th lom. Eucnipupy Dom anderernits in Permatation
 dah wine cin lette ven Auarigngs $Q \subset Q, c_{\ldots}$, , so dan $Q_{i,}$ ain Untingmanigmpee xon Q_{i} iv. AlC Gmaipm wobte With sinde divelte croclude von dm Ent Qunvigiugre mir Aoseat Mre Ollaptier?
$10 / 8 / 42$ Enppra.

Fonctions muniésinues quicialisés idruragibres le orle: Dous
 gibe de rab, onsidírons la relatin d'épuivaluce mivixule: F (1) est oquinalute à $H(A)$ " sigaife "F(A) AH(A) at ler neiver himites à diate ta quuche, $f(x+0)$ of $F(x-0)$, ac applla forotion trute
 frime' de tom lor ousaulle dika cureundle E. il ya assempmencee hive

27 -
oflecuant muslaticie distictutif fipmi cit soniplef ea suane templs
 ditu fricies froswaut alon uu lattier vectriel SOluatad, hefenne teery n nca

 on appolle liux. sup. A\& f de dare d'ósuinalute \bar{f} de Φ fornuce der $\overline{F(T)}$ rà

 funceture et vue veration lónithiour sur Φ; los frotinn sevi-contruces

 $f \rightarrow$ f on un cinneosfinne ente b lattio Φ ot l sons-lattie de \varnothing forme des forcitions $\geqslant-1$ et $s+1$, if cumaniulte pare rapforf ouck opiciations
 que up $=0$. Ailinuent th enctimuitit "y bas qraud ilicucuct de \& sur
 tions appartuxant à w_{f}. Dreue las alginces de Brale toprlagiques daad
 fencueture est compact et aussi entences daus G, hnes diumsithoes que tont residuel est pestact duue (Thinduue dibaine). Dous cuens
 untament que $\omega_{f}=0$ est end. Meiessaie of ruffisante forer pre froit

- 28 -

7/8169. Stuctere des graipes p.Minaies cobiheris ler. amp (Ovite diun expisi míudent); si Cese un at quapu, sm duothen est un; tant graupe p. Mun ani est dove LOA, dircontīs ainisi querm dure. Lr houtsur de $x \in a$ ess $\&$ Nhis pand ention p^{k} is que $x=p^{k} y$ sorit valuble do G. SiGest un p. ypunge diseres dont tañs les el. Sent de ham. lein ∞, ${ }^{\prime}$ est sumure dinicte de ss graupes $A Q_{p} / Z_{p}$
 sont d'dzche a est prodinis de gruevpes is om à Z_{p}. fi Gest un p-graupe compent, G 'est prodinit de grou. pes cycliques d 'ardus p^{k} avecdest Garne's. Si G est evr. comport p.miniare es as. ef to ardre fini, Gast iowomaphe à un saus groupe auncet d'un qraupe p-punieni \mathcal{G} qun est un expre wect c non Fopol. Jion Q_{p} at it que $\tilde{G}=Q_{p} G$. $f_{i} G$ est un p groupe loc.conp., Gest iomarphe \bar{r} un sans. gereype curver d'un \tilde{G}, pordint d'une famild de graupes $\left(G_{l}\right)_{l+2}$ isomia $Q_{p} / 2_{p}$ (anee 'er Enpoler. gie suīants: si H_{c} est un sous gurape firid'arche fanne' de $G_{L}, ~ I H H_{L}$ est aunert dans $\left.\tilde{h}\right) . D$ 'autes u'a suetats of entre.exemples sont undiqués, aisiei que qualques qevevolisotiens (ELüde des A. morduleo lor. compurts sur in annean compert A).
jian hnacouncér

Cinking und liemmifaligkelt abelohe- Hrgeheen nom dimsoy

 cher-So galion he met der frapee og int der die uthen

1) 0 itatrinopliarmingrappe von K / Ω 2.) $\mathrm{K} / \Omega \stackrel{\cong}{\square} \cong 0_{\Omega}$, th.
 1) die urgigetene peberonmipe O) an $K / 2$ eme Gmpienerselleroing $y=(0, T, N)$ Vin O, chas (lesioiet dum ha die dow.

 ouctanui jede abeb de oHgeira. $K / \sqrt{2}$ mank diw ohigen

 1 on 2 eine abebole Hegabre exeapist.

Th eime-vholysin des motieme chatl marot, vom eimet
 witwendiym and lumeichervitio Beding onngen tor das

 in cimem amograturen Jaketnenzyitum $C_{1 i y}$ der GeuehnomgsAg kime (i) mand (iI) deris vorgegeden4a prappiainvisnivation ITand E hnvina. Hawn kamm zeigen, de.. (II) gevan demme

18,8,49 Trajectoines formées de certains sytimes difficenticls pertuabes.
On sait (d'anis Poincare', Nryloff Bogdioulof) rammere l'ifuce des solutions páriodiques de l'iquaction diff nentielle
(1) $x^{\prime \prime}+x=\mu\left(1 x, x^{\prime}\right)$
loü μ est un plit ponumitas, à l'étude do zaios d'une pondeon numúnique (ρ) othnuepor simple intignation.

La neussik de atte milbode ist deee à la cinconstance suivank: les hyyctivies de li'guation $x^{\prime \prime}+x=\sigma$ forment unefibration du plan $\left(x, x^{\prime}\right)$ pointéen 0 . Dbx lidíc de l'appliquer à l'etude des hayetoines d'an abamp de vickuns E_{μ} difini dans une variel' v_{n} ct dijendant due paramithe μ, le chams E a dmettant comme hagectoing los fibues d'ene filhation de in en ardes.

Deter champs E_{μ} se renconhunt dens hospootermistingamigues rinants:

1) Orsillakuess barmoniques coughis dans les cas de neconnmene.
i) Probliame reshaint des hoi coopes.
2) Elude des giorlesiques seer une ophores?.

Om peact namena l'tuade dos hapectoines de E E_{μ} (porar pptit) èsilm de des ingularite's d'en champ ode vectauns \tilde{E} difinin sen la verietk' J_{n-1} des haye cories de E_{0}. Si E E_{μ} admet un invariaint inti'sualldutyy de la dynnamiquel il en ut de minne pona E^{2}.

Enfin on put anocier a E E_{μ} un duesaìme danno de occhers
 formès de F_{μ} se ramine a l'itude des sinquelaritis'de Δy.
18.8.40 Sinfarte Kampeaturngen vow no elpmetho-tio hereichon and the Kevises,

$$
\text { deder Sechua } P(P) \text { divar sime Pruat o }
$$

 -Lak $f(D(\theta))$ des hileinemu vou $s(\theta)$ are gentenibomen sazikes viou of gugeaviner. So 16

- 31-
 sLlinder. Hat \& theive Randedration and LFheremo abzäLliaw vide Orumbe der wat, dap mele as eime Jehue s_{0} Nuut si hiurduracigeth, pas the $f(\theta(\theta))=(A)$ minimal in, so hat f sinen
 Armite P Laben uom eine singige, trinimad sehue": Wathe man fur $f(r(0))$ the Atrikeninlate ds blasueren der beiden wius (θ) in \% imbernainetenew Shofordiciertre, so reath mav Hir deroseten gedauthlithon fhitomen the veu Radow 1912 geffundencon Sikerethe mis
 messern". On nociser $f(s(\theta))$ dor Lañge vou $s(\theta)$, so gise s hai nur siman Prumik mir miche as civer NEivimatiedue auf flovke 10 cin sive Cavahtavisionny des Heines, watboud bei zuvi oder curben volen Anomakmagmuntan sis L a fyprothatichen Loppelypidhontrurven elgeden, leven Exisheng abl Rilinion bis hante niche fosidbur zu sain shaink.
19.8 .49

Einfacher Bareis des Brunn - Minkowskecichen Satzes, des E. Schuidfochen Soiegeltheorcuss und der isoperimetrischen Eigenochaft der Thegel in Riemanuschen Räumen konstanter Trimmung und belietiger Dimension. Eo sec
R_{n} ein Riemannscher Raam konstanter Jtrinmming $K \geqq O$, K eine lebeogue - mepbare Punktunenge in R_{n}, $V(\beta)$ das Maß uon k,
γ ane vollkugel mit $V(\sigma)=V(\beta)$, F_{p} die Vollkugel uit dem Mitfelpunkt P und eniem Radius $h>0$,
$k_{h}=U \gamma_{p}$ der k-Parallelkôper you k, $k^{h}={ }_{P \in h} \gamma_{p}$ der h-Spiegelloinper vow k, $O(k)=\lim _{h \rightarrow 0}^{P \in k} \inf \frac{V(B k)-V(k)}{h}$ die Ninkowokische Oberfäde or k. Damm gelfen die Säfe
(1) $V\left(\gamma_{k}\right) \leqq V\left(k_{k}\right) \quad$ (Brum-Minbowskidcher Sakz),
(2) $V\left(k^{h}\right) \leqq V\left(\gamma^{h}\right)$ (. Sdwuidhches Spiegeltheorem).

Ans (1) folgt uninittelbor
(3) $O(\theta) \leqq O(\&)$ (isoperimetridide Ungleidany).

Innerhalb eiver gevisoen Tlasse van Morpern \& tritt in (1) bis (3) das Gleidheriozaiden vur foir $k=\gamma \sin$.

Thre Formulioung und then edten Beweis fir die michtenklidischen Raünce verdankt man E, Schmidf [Math.3. 49 (1943-44), 1-109; Math. Nach, Berhin 1 (1948), 81-157; 2 (1949), 171-244] (Vofaheren der Rotationssymmetritiering).

Angeregt durch einen Baveis von P. Fa adariger [Elemante Math., Basel 3 (1948), 25-48] fir kowvese Köper un dreidimenocionalen enklidishen Ranum hat A. Dinghas [Math. Nadr., Berhii 2 (1949), 107-113, 148-162] eiven einfachen neven Beweis vour (1) und (3) mit Deweistechuischer Verbesserungen des Vorrragenden gegeten (Vefadren der Steinershen Symmetrisierung). Mit denselber Methoden hat der Vortr. anch (2) bearicoen. Anper eninighn allgemenien Sátzan der Maptheorie werden dabei fast nur rein puntithengentleoretiscle Schlinse verwendet. Die Gestaltung des gleichazeitig fir hypeb-olische, enklidisde, sphàricle sud elliptische Réume belieliger Dimension gitetigen einfachen Vorfabuers wird dureh die Verrandung von Toordinatem y_{12}, \ldots, y_{n} ermioglicht, in denen das midtenklidiscle Map enier Punktunenge durreb dicolle Formal gegeben wird wie in enklidirden Ramm, Bamerkenowert ist norh, dap die Festotellning des Exthmalkorpes porm (3) in wesentlichen ans evien evingigen Sdeup sestelt.

- 33 -

20/8/49 Geometruiche Wahrrehembichbzeit. Gitere pour le choix d'une deusiti de probabilité: invariance pour un déplacement quel canque - porit \rightarrow dxdy Drocte \rightarrow d $\theta d h(x \cos \theta+y \sin \theta=h)$.

Mesure des secantes à un contour convicace

$$
M=\iint_{(A) \text { wournut }(A)} d \theta d h=\text { Langueve de }(A)
$$

Calcul du nombre mayen d'intersections d'ine secante
(A) à (A) comvere avec
(B) quelcanque (ructifialle)

(A)

$$
m=\frac{2 \text { Longueur }(B)}{\text { Longueur }(A)} \rightarrow \text { Lougueur }(B)=\frac{n}{2} \text { Langueur }(A)
$$

D'aì une methode de reelification statritiques d'sure courbe on utilisout un nombere suffiriant le secautes Δ à un contaur counere A de eangueur connue extourant $B=$

$$
\text { Longueur de }(B) \cong \frac{1}{2} \operatorname{longuaurde}(A) \times \frac{\text { momber d'siterections }(\alpha, B)}{\text { manbirede sicanter }(\Delta)}
$$

- Farmale de Grogtan

$$
\iint_{\text {Aumer Rat } A}(\varphi-\sin \varphi) d \sigma=\frac{1}{2} L^{2}-\pi S
$$

B. Charleb.

Knergyita thesgunserter hijgranowionsenpm. 20.8.49.
K nompitions $(\infty, 2)$ so chankoju K, K ane E :
 $\operatorname{mom} K$ is $W_{1} \rho 0, \mathrm{lop} \delta_{2}=K^{2} \pi$.
(\vec{A}, \bar{c}) ins $\left(\vec{a}^{\prime}, \tau^{\prime}\right)$ futive ajünden, mune do Jimunpfiniesies $\tau^{-1} \mathrm{~T}^{\prime}$ ane $\mathrm{K}^{-\quad}$ ext K^{-1}
 losk。
Fre fyeoner: $\hat{A}=K \vec{T} ; K / R$ /miye sin
 Lin fins $\sin y \mathrm{~m} p$ min an $/ \mathcal{H}$ futi bmpant
 (Rg is Almuring poosif). Is jetter si Bign:
1.) Muen des sinbth forsits do yorten thilene nm k is te hy. K wi kijn $\%$, fo ent.
 Rec Keffue ofvinemetr Kimptize $\left(a^{*}, \tau\right)$, fi mely. $\pi^{* *} / \pi$ equenty $\%$.
2.) J/k ke equenfy cansuique in te, fo a/hes priffor tu tumpashoo f inse dee from hropo. ne gon K / E von. wircienhazic jount-

Lhi veiniy (J.f.M. 177 167) find By

 हT, mely. aing Anjir to fingur gotw ning
 ohin trivarlartue Enverioflyinayus nifi nophion ofluis. Suier feivera.
20-8-48 Couvergance absolve des séries trigonométriques: Etudo de l'ensemble de convergence absoluo d'ruce sívé $\sum_{1} p_{n} \sin \left(u x+\varphi_{n}\right)$ - On pint de contenter in frictant an besoin une itrauslation de l'itude do Ipis sin nx. Thicorimes de Saleun (Duke Math. Journ. 1941) domont une condition vécessaire do convergonce abolue pour
 rel qu' il exis to uno s'riéscrwveryeaut a bodmurcut sur P, mais uou parto cet)-NoEurmibles: S a des coeffeciento P_{n} ne terdant pas vers 0 - M exisé des en. sembles Nopui se sout pas N_{0} : ex: $\Sigma \frac{\text { Siru! }{ }^{\prime} \pi x}{u}$ $\alpha^{\prime \prime}$ ensentble de convergence de $\sum p_{m} \sin ^{2} x^{u}$ est un N. ensentle, mais pas force'ment un N_{0} ensauble δ_{i} lim $p_{x}>0$. Exemple. Classification: uesembles N_{0}^{p}.

L'usemble de couvergaice aboblue est un groupe additif; on fent un dédvire divers théorimes clas

- 35 -

Siques: Synitris (Fator), baie (Steirhaies) - wedurd unlle (Denjoy-Lusiu)
A wu N seusevible, si ou ajoute un dévoruhable, on oftient u dévonubrable (ideu N_{0})
Si \sum pu siu ux covverge sur E, il exis te uue sérié I in sin $x \times$ convergeaut sur l^{\prime} énseuble $\sum_{\text {fini }} a_{i} x_{i}$ $x_{i} \in E \quad a_{i}$ natiounel, saus cowverger partout

23-8-49 Thirönns de structun pour les algiers només conmuntation. Applications (d'apir bo liware de Geffond-Raikor, Mat. Sbormik, Aghs).
 Yn $\|\lambda x\|=\mid x\| \|\|\| x+,y\|\leq\| x\|+\| y \|$ et $\|x y\| \leqslant\|x\|$. $\|y\|$.
Thisorine 1: Tonte al yike wonnele conemetrive, à it wití, at vimifione h condition $\left\|x^{2}\right\|=\|x\|^{2}$ yontoct x, an bownhle 2 une Bon- algithe do P'o-

 fair per es anavión or bs iciour manainowx an P'aljibe se couspeJomer fioxivg remere.

 (aritin \& Cowly), symitiqus ot telle pre $\left\|x^{2}\right\|=\mid x \|^{2}$ pous tout x,
if isomantue a $p^{\prime} *$-alpilue do forction contioner to un compact.
 Pbinume "hormition" $(x$ " $=x)$ a ve tpecter véf -)
 ane uximine a'appxination is Stovi. Wainstioss.

Application:

1) Sait X ve mpis toplofique compjetorener xigution, $E(x)$ l'aljite as forstion

 Kakatma'.

- 36 -

 sionguention spture os.

22-8-48 Modem Numerical Analyxi - the muthemates relevant for high sheed automatre digital calculating machene's. Basic puricupler of $a \cdot d . c \cdot m$. : then cany out a sequere of orders on mumbers. The orden are upirsented in crde by numbers (whid can be changed dusing the consse of the computation). The numblen are e.g. 40 linany digits. Aniregards the length fo computation: e.g. a dayjs out pit y an a.d.c.m might be a conpuitition aviolving 10^{7} multeplication (to gether arth a ressaralle numbler of other oforation $t,-$ (Such take much les time than multyliation)). Thi mean $\mathrm{e} . \mathrm{g}$. That unverson of ratrica of 150 mos and colamur is fumible.

Enm in computation may be 1). Tuncation or 2) Round-off. Stidy of haucation emrsis fanviliar on aurgsi and in clarricel xumsial anegnis. Pand. If em munt he stidoei in modem numeric \& an efs. Contar: eroruffles wese divursed shrving the offect of tho cmm: l.g. it may thepten that for this cansor a finile mather ma, afpeart live a enthures, spectrum.

Prucesen mund be stided both from the prout of nei of thew lengti and their stahtit.

- $37-$

1s. 8.48 Grampes de trans farmatione
Si E est un exporce loc.compart of $x i \mathcal{X}(E)$ est be geampe de ses home'm:; on peut munir H (E) de 2 Eppolonpie : be $=$ Fop. de cono. unif - sue touch compruct l dano $t, V(c, U)=E(\mu ; V(x) \in v)$ (c compert, v enbunnge) decont un eypten fore. damentiol du wisundys de l 'identeh; $u \rightarrow \bar{\mu}^{1} n$ 'ast posconki paumdb., de. est difinivi par un sypteinn find. divnio de $l^{\prime} i d: W(C, v)=v(c, w) \cap$
 dex(E) es ciec eo - fiin de sestojureozies tils que $(u, x) \rightarrow u(x)$ sonc continie. Etude des suvs. graupes diquicontemis de H (F) (Arens, Dieidomaí) + fie est una prougre,
 (avee e_{e})) des antornayphiomes de E; tincle de $y(E)$ (namolionteur, centandiouleius, noycua) fi E est obchei e x \hat{E} ex sunderve, y (E) $y(\hat{E})$ zont iommouphen; "pplaicatioss $\times f i d x$ eat co mesure de Hear uue $A, \int f\left(\sec ^{-1}(x)\right) d x=$ $p(x) \int f(x) d x$ el p est unu reprea. eantinue de cy(E) dams $R_{+}^{*} ;$ si E est obe'len, $p(\mu)=$ $p(\hat{\mu})$; si E est un capps et x $h_{a}=$ $x \rightarrow a x \quad\left(a \neq 01, p\left(h_{a}\right)=|a|\right.$ est ine wa. leun ohsolue surk, d'an lo the'ani de Jowhsm un les comps lat-emmunts.
22.8. Die Koefficienten c_{n} in der Potenzreihe

$$
g(s)=1 / \Gamma(1-s)=\sum_{0}^{\infty} c_{n} s^{n} / n!
$$

surden asymptotisch ausgewestet. Aus dun Thenkelschen Jitegral $2 \pi i g(s)=\int_{-\beta i+\infty}^{\beta i+\infty} e^{s z+e^{z}} d z$ (mit $\frac{\pi}{2}<\beta<\frac{3 \pi}{2}$) folgt $\pi c_{n}=\operatorname{Im}{ }^{H}\left(e^{f(z)} d z=\operatorname{In} \pi \ell\right.$, worin $f(z)=n \log z+e^{z}$ gesetzt ist und H den nebenstchenden \rightarrow : Weg bezeichnet. Iur asymptotischen Auswertung legt man H über den $P a \beta$, dh. die - hie men boicht sicht-einzige Wurxel der Gleichinng $f^{\prime}(z)=0$ in Streifon $0<\operatorname{Im} z<\pi$. Ist diese $p=\alpha+i \beta$, ro ist demit β festgelegt. Naheliegende Mbschëtrungen fütiren in dem Ergebnis
(1) $c_{n}=\sqrt{2 \log n / \pi n} e^{\operatorname{Re} f(p)}(\sin \min f(p)+o(1))$.

Mit deur Ansate $p=(1+q) \log (-n)$ bekomunt man die quichung $q=u+v \log (1+q)$, warin.
$u=-\log \log (-n) / \log (-n), v=1 / \log (-n)$ gesetat int, uns die Lagrangesche Unklaehrrihe gibt $^{(k-1}$

$$
q=u+\sum_{k=1}^{\infty} \frac{v^{k}}{k!} \frac{d^{k-1} \log (1+u)^{k}}{d u^{k-1}}
$$

woraus sine nach Potewzen von $\log \log n / \log n$ uni $1 / \log n$ fortschestende Reife für p gebildet wird, deren essta qlieder $p=\log n-\log \log n+\frac{\log \log n}{\log n}+$ $+\pi i\left(1-\frac{1}{\log n}\right)+\cdots$ lauten. Uu aber: $3 B$ aus (1) des Vorzeichen von c_{n} zu erkennen, mispte man In $f(p)$ bis auf $o(1)$ kemen. Hierou ist eine mit n wachsende Zahl mon Qiedern der Reihe firp erforderlich. Daher kann dic Aussage (1) nicht ohne Verlust an Iuhalt durch einen enstichen Auserude in elementaren funktionen essetat serden. Relneser.

-39 .
dise Paorr vobbiidemes Tebuedus Lare, des ies Beglillelonudel rariomudl vint;

 riding wis mith Komplexpioner.
22.8. Begninding dor Elementargermetrie des Ravim drina Trausfurmationngnippen.

Zeare Montgoury sind Ler Eippim haben mach dem thister Hillerss (vig. "Gnindeagen d. Germotie", Anhang (V) dir Elementargeometrix ds Ravimus mait thiffe eimer Trampurmationngrippen 6 begnindet, dic zis diind folgende Axsumne x^{2} chararterisierten (Traws. Vor.48. NöA.)
1.) $G=$ Giripper
2.) En exintionk eim finst P, wdys die thutergnippe Gp wim 6, dis diren primer ferterpr, enigenteich in Giwhalton int. Weiter gebe es rime pimblunge P_{n}, die gegan P komozriert, welg p die "wahen thigotn" $G_{P}\left(P_{n}\right)$ alle zetidimensional sind.
3.) Ein dem 3. Hilbersdarn thion anohoges haivm prir parmrlepase.
Es mirel then Folgende gestig1, dys ide dires Atiorwonoyplen arif fulgunds rethizisen laju:

1) $G=$ Grinpper
2.) E_{\rightarrow} exishist pin Rimat 0 , woly G_{0} Righithis in G enthalen int. Whiter entratere $G_{0}(P)$ uindesteng 2

$-40-$
 seimem Inomern euthaits, mil pugenden Erigenschafteo:
a) $G_{0}(P)=$ imendliche pimertmenge
b) Sis M_{1}, M_{2}, \ldots eime Folge vorn Mnigebinge un P mil den Erigumbuflem $M_{n+n} \leq M_{m i}$ $M_{n} \cap M_{2} \cap \ldots=P$, 20 gebees jerseis fir jers M_{i} instir alle Trounformationen ain G_{o}, dir Pmier festlaszen, aber disen pimert mider avin U_{i} heraisprisan, jentis sine, sodgs dexen gunigend hwhe potenz P anis b- heraisfishat.
4.) a) Zn je 2 primerter A ri. B des Ranimes exiviste sime ende. Gabe $\rho(A, B)$, velgs dis obere Grames aller erireid. Entfenninye $\overline{g(A), g(B)}$ fir Lel. $g \in G$ gerude $=\rho(A, B)$ inl.
v). Wemm dieperle. A; enowergisen segen A, ov fugly, dy ρ dic $\rho\left(A_{i}, A_{i}\right)$ gegen O enturyista.

Der Bewtis grimelet sich alleim arit finen Sat triber hampark, ふäsanmenersingente Frems pormationgrnigpen ds Rairmos (Vom D. Moulgomary, hin Joum: wh. 61)

Auschrigend fuggl sin Referat riber ckn erigenteicher shiftemi der Gerometic ain der grientgenomiter Arbet vor Moutgomery.
23.8.49 Probleme anf dem Gebiete der eypentomplexen Syonteme mis reellen Koeffizientts and endlicher Basis werden behondels. Im assopiation Fall weroten sisbesondere Fragen, die in Verbinding mis funtetionentheovie in allgememin hyperteomplexen Goobern Systemen stehern,
behandell (mith z. B. O. T., Comporitio mastemoticis 3, Sefond Quanterf Joumel? 0.T. an' J.Tod, foumal London math. Socie'5'7). Oga Tanss zTodd
24-8-49 Proprietés topologigues dus a l'saiverea d'èn
Invariont intiqual.
On considèn dan une veriefi' Vn un syptime diffinential (Ito). admett ant un invericiant intignal da type de la dymanigua) $\omega=\pi-H$ dt ou Fent lipanmife tomps, at oi 11 est une forme de Pfoff sur vn et Hune fonction numírigue suer V_{n}. On nepoose de plas que n os pair, et que π ont de nang $\frac{x}{}\left(c \cdot a \cdot d \cdot \pi^{p e} \neq \sigma\right)$.

Dans as condition:
a) Les houctoines de (F_{10}) x^{\prime} admettopistas une swidle' de section Tompack.
b) Si foutos les Anaretorizos de (\sum_{i}) sont furmios, at x leur periode $T(x)$ est une fonction continue, alos T est fonction de $H_{;}(\cdot \dot{a} \cdot d . \quad T=T(H)$.
c) Avec les hyp thise de bl les hauctrive de Tre formenat une fibration de le varitt' $H=c^{\prime \prime}$. (ith firration n'admet pas de section (4f a) , De pho le varisti' de bare de atte finctinn admut une forme formie de deque' deux et de rang maximum; dep par suik jo nombres de Bitti ads dimensions paius nesont ras nubs.

27/8/49 Difforentialgeomehre tweidimeussibualur Flosthen inn Entbidsceten E_{4}. Bringt man dre Tangenterebeinen einer F_{2} im E_{4} mot dem Formroum P_{3} ales E_{4} zum Schmit, ts entsteht dost eine gucadentengriewre C_{2}. Monn konw dre C_{2} varscheeten, deum hosigt dre Bestinuning dre zugchorigen F_{2} von dor $L_{0} s$ ung eimer limearen partivilen os Rge. 2. Ordg ab. Bcrsinning tour charaktursititer. Jstars E_{4} Enklsoloseh, to P_{3} elliptideh. Dic (gurenteten) geraden G ales ellipt.

Roumes latsen thch cimeindeutorg ouf dre Prntete enveres Kuggeln abarlolen $G \leftrightarrow\{l, r\}$, dout den Berregnyen angerraudr ouf 4 da Drehungen ehs Beiden Bildtrugeh L, R entsprecher (Cliffurd, Hjelmslew, ribini, Study). So hat dor Floiche F_{2} im E_{4} zuver spharsine Bredur out elen beroen kughen L, R. Gerklossene vichthare F_{2} geten demmach in 2 genvorate igen topolagovehen invarranter Anlass, nismerdi dem Bturdechuygrahlem λ, ρ uan L, R.
W. BuASCHKE

Sole in Ammali di Matematica ersecheinen
26.8.49 Yunatiauth niveuzaifuing goloinffor Söper euit

 aof hlisbige galoifye Roiger tutt orer ancices

 Sunariacite it hiws Trlapte affocinthr, korwenci-
 wit laguilarifáffrbraigiong.
[forpfrimat in hiselof yourmal, horaugarge ine Anging D! Mareficu.]

Boluit Hasse
29.8.49. Arpinginth \%ytramaptaigate.

5. Gruiden,
8.9.49. Der Satz vm Zorn folpt durch ince einfeche Anvendung des Suswahlaxions aus dem folgenden lemuna (s. n.Bourbaki, El. de math. I (th. Is eres.) S.36-37): It in ciner indeutio (tiliweise) geordnaten Menge Eeine Funktion $x \leqq f x \in \mathcal{E}$ gyeben, so gibt es in $z=f z$. Bies Ceunna kaim man nock dem Muster sowohl des asten irie des zweiten Zormeloschen Beweices fieu den wollordunungssats bevisen. Ein Bewis der zweiten At wird angetragen.
te.kneser.
12.9. 49 U'tur Brife tolix Kheirs an Fudisut Vishmen (18 tz-1sfy (Eatacter ins Lia-huan Vorlay rantemin Todter fre Bueser -i Areukion-Atreaberl)
 Keoonl-hidamon: Math. Auna, kenm Engh tainiss

 Heminufy mad Dactimor. Jee Dtaleireige

 wammork tavir:
 mypil on vatreder uns fercailler "
W.Anc)

 finsma.
gunive.
20.9.49. Carathéadory's Kínys wy tmo teer der Varietions reckurey. H. Soemer.
20.9.49. Der Sutz von Zorn behauptet, dass eimer induktiv teilgeordneter Menge maximale Elemente exisfiecen.

1. Diendouné leitet den fatz von Zorn mit wilte des Auswahlaxions ans tof gendem Le-ma ab: Esei eine teilgeordnete Menge, $a \in E$, f eime Abbildung vow E in sich mit $x \leqslant f(x)$, f du, Syster alle. Te:l Nungen XCE, die folgendon $3 B=d i-y+n g e n \quad\left\{\begin{array}{c}\text { angen: } 1\end{array}\right.$ a $\in X$, 2. Aus $x \in X$ folgt: $f(x) \in X, 3$. Hat das/mich come $Y \subset X$ in E eine obere Grenze b, so ist $b \in X$. \geqslant.
Unter diesen Voraussetzungen wird be-ha-ptet: 1. f ist \cdots icht leer. 2. Der Durohghwitt A alleo $X \in f$ geuort zn f. 3. Sin $x \in A, y \in A$ beliebin, solist $y<x$ oder, $y \geqslant f(x$ Der Beveis des hemmias vor-tierdo dicht dem 2. Zerme Coschen Beweis dies Wohcord.... satzes.
27.9.49. Betracotungen iher die verinueigte Sitafen-Theorie und verwandte chusaitre. Rusself a. Whitherds vereweigte Stuffu. Thearie war Belestet durea die Kopplang mit dem Problem dor Reduction dox ballintheorii suf die tagite, Die Behelfs-daunnahme dor

Gixfuilrung des Redukierbarkaith-ctocians Lam inn wesentlichen aup den thbergang sur eirfarten Stufen-TReorie linans. das Programm von Weyl in seiner Yedrift "des Kontinuum" ist deshall nicht eingehender distutiont worden, well is zernamm Woyl selbst sich bald neek Esscheinen der Sterift dem Broüwerschen Intuitionismus zuwendte.
Beilàrefige Bemerteang: Bine dor Browversiten chettade a'hnliche ctit der. Behandlung dor thalysis jedorh in dor ctot eince strifeten deduetiven Formelismuer ist im Rehmen dor rekerssiven zehlenthaoric möglich, indun die reellen Funktionen durch Folgen rationalwortiger Fruktionen rationabn Angumentes reprasentiert werden; dieser Sesiodts funbt wind insbes. in chbeitin van R.\&. Ioodstein verfolgt. -

Firn eine valle formale chugestalting des Woyl'reden sigstuns bedary es siniger meniger Hinsufigungen. Insbes. arinde cine Yigbolies dr Aunginbildung, thwa in $d d x$ ciblistim Form $\hat{x} a(x), \hat{x} \hat{y} y(x, y, M), \cdots$ uw., nebst cinem heciomensidema $\left.\varepsilon(a, \hat{f} O(x)) \sim A(a), f\left(a, b, \hat{y} y z^{\prime}(x, y, a)\right) \sim \mathscr{L}, 0,4\right)$ (tuns.) sinsufihmen sein. Eu becoten ist, dess dic gleichleit ewisflen dengen zwex in der üllishen Weise (ime Yimue der Extmsionalibi't) erkeiert vierd. aber misat bii dor Bildung van dengen verwendet werden dart gidempels nisat uneingerchrankt).
S:~ Ein modifisierter Formalesmus der versweigten Stufenteare, uunde

- $f(x) 1938$ von $7 . B$. Fith acifgestellt; hier breurdt man Rein Redudierbarkitsaxiom, es werden dafirr abes gewisse andere Ferstainkungun eingefierst, insber. ince operation der endlirhplerkn Iteration siver Besichung.
Neurodings ist ein Sinstern ähuliiker Atst, jidorh wesentlith eingeschränster, von R.M. Martin entwictelt worden. Heir treter, wie in Feyel's Systim, gebundure Vâriablen nux Individuuvaribbln auf. Die Judividuen worden jedork on vornherein mit dor Besiehung ac le eingefilhst, tudass oic naturgumaiss als dlengen zu interferetieren sind. Ahy diese Weise wird sozudagen (gegeniter der ctaordnueng in dun Primoifie death.) ine stresfe gespert.

Sas Cllentin' the Iggstem - (dieses wiod des Nàheren beschrieben)Let menole Vorsugge, jidoth ist nirht engunehm, dass die chusdriohe von Joitan in denen Zalluveriabln auftretur, hier stits als Uernsehveibungen anderer Sortse gedeutet werden missen, die keine Zaklonveriaden enthalton.

Insoffirn erscheint es els vortichapter, ze dem bloskn Formalismus don verswsigten Stuputheorie von vornherein die eahbutherretischen chaciome hinsusunchmun (in dan Cirundgattung) entyprethend wie er 2. B. Ssoblel bei dem Shastem der Prins. Neth, augefiihrt hat. Hierbei ist dann insbes. in evvaigen, in wedder Form man sorkguness die Regel des c- Yymbole (Kannseichmungen) einsufistrun hat, insbes. in Heintlirt auf die blablienng dor rekunsiven Definition. (Wegen der notwendeligen Vermuduchy des Imppa"diketeven beun Lirfiir des vixpharen von bedekind sowie das var Lormsan niret rernuendet verden, jedoek kam man meoh der dethode van Kelondx sorpedren.)

Paul Bernays

 auf die sonst mblichen Sypleme der LLoght ansadelinen. \&s wurde in Fomaliames mit den layiochen Ğmadreioken V (oder), $-(-\operatorname{int} 1)$, (x) (atle x) enturitels, in dan der Ggentsenste Thanptaats gill. Whid dieser Formaliamus zn einem zaRlentheoretisoten Toodifikal erweitest, solt dusek Hinsumahme der formalicienten vollit:digen Induktion die Gubtigheit des Thanphealses verloren. Sor Heamptiats kamar abis gerothet werden, wemm stath der volestardigen Indution die shàbese, unendlishe Irdution" anfgenommen wiv. Sie Fherbitungen sind sies alo unendhike, finit beokritbave Thit Tiguren ansusohew, Eine Tontrable mber sie Thmphizienthicil dieser unendisiles Ferbishupen ertaill man dued zuorknung vor Ordmungasathen des I. and I. Zaklelarse. Her Wrder sprumapreihoitsbeweis mid duch eine inkaltlish angencendete

- 47 -
tramafinite Tuatition sbervin Anfargretiok der I. Zakliseasse gofokist. Man thomut an folganden ingobsis: Wtid ant fonnalisienter reisen Zablentheosie die formalisieste tranofinite Induttion bis α hioisigenomonen, so iot die Kidergerntofreiteit dhuch bine inhelticke tranafinite Indetition bis 2 ur neitstan af or fregenden E-Zehl brwisbas. Sie entsprestende formblivierte thanginite Indution iot in Kodifinet nichs moht herleithas, wohl aler lis in jedes theimesen Gdanngosase.

乡ir entopereckender itiderspsomofreiteidabeweis fis tie Ragsis yelingt na bei zugrandolagery eiver versweigten Theorie, is dee reetle zaklew veractiedener timen an untersheiab aid. Ei solker Bewris wnste angegoben. Ther opiolen die britiscken \&-zellen tirsuthe entacheidende Tolle urie die garoktathen ε-zath. in Todifiteat des Zaklentreavic. Die Widersprustofreiteit des verzweigten Analgis einschtiephik der voblotaindigen Thathtion id nashweishas mittels traspfiniter Dadnticicn bis zus erster teriti-
 thitisoten ε-zakl larsen sich duuh firit beochreibhase ZeRlzeichen eiffinsen.

Turt shiste
20. 29.9 .49 Kumturktive Guindegn-g du proj. Geometria.
$1, \%-13^{\circ}$
$15^{\circ 0}-16^{\circ 0}$
$15^{\circ 00}-16^{\circ 0}$
$20^{000}-22^{000}$

Oas fix der kinteromich- ist dis Gerimin
cimer tragfilaje. Sn=alay de proi Gam.. In methuchische Sindialt ist Komsturitiv. Estrotem
 rom semmenten $\approx d$ das Vorkmijft ron Elementer. Oro
 don Voukmigfut=hr Riv Relation Disidenz.

Qas eigunte:c Nari- de A-pluar= liagt in der A-f-

 dap sime ain Komistrion gilich betriffind, water. Arroger im waiterm Komstrinksims varta-f mist foek wordon Kaum,
-d un. foble mist wase.

 falle din britiff, win air Entscadis arfole in.

Qie Latfordoruegen sckinkm dir nom do Konsm=koimo

 silnimenden Geliede gerade die der projilktiven Germions. Qi-

 endlix vilem.. Findamutalsätere", dis hasamminn ah Gmineng du forme an= serchin. Afporix älmelt des Fande.
 sethan aribt rik ater strung fotematiok wir giden terin

 $v_{0}-\mathrm{byg}_{\mathrm{r}}=$ den.
Um Aten anerkannt . Manjee" an mithematioken fymbole ehnohofe, antide α_{i} zilh- $p q 00$, oro 0 nom e.nyfons.
von Kaven, orfenct.
28.9.49. Iur den pridithatentalkill der esten Shinfe mit doublitit gilt:
 so ist H im Nroz̈hlboven eupillhar. Es genrigt, den Satk fïr Stolemsith Normefformeen $H=\forall थ \exists b H_{0}(r, b)$ स̄̈ heserinan $\left(1 r, b \sin a_{1} \ldots a_{m}, b_{2}, \ldots b_{n}\right)$. Es ind ein abräther mencthicer Berecich T hemiktst, in dem n Fintetionen $f_{1}, \ldots, f_{x}^{20}$ erpleist sind, dass diese sish aif belichige end. liche Bereiche, in devers n Firiestionen g_{1}, \ldots, g_{n} durch "symbolisote

Oniflisang vout' singefinhts sind, homomarph abbildm lassen. Jede k-zeblige Espilling ergitts diuch festleging dur füntetionen $g_{t}^{(A)} \ldots, g_{n}^{(A)}$ ind Wall des tiomomor phismin φ_{R} eine erfïllende "Beleying" B_{k} über T fir $H^{*}=\forall e r H_{0}\left(\mu, f_{1}(r), \ldots, f_{n}(r r)\right)$ cooberi in T an die stelle der Jdentität eine Gleschhait tritt. Die Mange der Belegingen iiler T aind $z \bar{u}$ einem kompatten Sopologischen Rairn won der Strintiur des Cantorschen Disoontinimims düch die festsetoing (E eine Beleying, die mis endlich vielen atomaren Unisctrictern den Wert "wah" gith; $U_{E}\left(B_{0}\right)$ die diuch E bestivinte Ungeting won B_{0}): $B \in U_{E}\left(B_{0}\right)={ }_{\text {of }} B \cap E=B_{0} \cap E \quad$ (gleichwertig mith sinem Chusak von Mostowab bi $(z b L .29,100$

Die Mengen $\mathcal{H}_{H^{*}}$ ind fyolt der Belegingen, dis H^{*} bzw. die identitähtheoretisoden axeione erfiillen, sind abgeschlossm. Nach Vorainseetsing hat man insen dhich viele B_{k} in $f_{H} \cap \cap f_{y d 1}$. Ein Hëinfungppenttot der B_{A} liegt also cuieder in $\mathcal{E}_{H^{*}}$ und
 sigentliche Erfiillung von H^{*}, abo aich von H^{-1}. Düch geignvete Wahl der φ_{k} bame erreicht werden, dass B^{*} inendlich viile Heassen hestimmes.
y. Yupmiar (Miunster)

Additike Fmen Enine ace lesi formereon tivipoote
173.10 .49 Eh an dextneh vim enin septixtt ju fer H-1215 frgen an Nag: Nem $P(A)$ un ut ace Heani der Ronsdit Riepare A exinduntiy definaiven
 frinhm Siquenckaflen [uge. Figuis]
I) $\varphi(A)=\varnothing\left(A^{\prime}\right) \quad A \simeq A^{\prime}$ (Fine quangisivasing
III) $\varphi(A)+\varphi(B)=\varphi(A+B)+\varphi q A B)$ (ANuciniviti) A

IIII) $\left|\varphi(A)-\varphi\left(A^{\prime}\right)\right|<\varepsilon \quad d\left(A, A^{\prime}\right)<V_{\varepsilon} \quad$ (Iheigtein) anjperits, giet

$$
\varphi(A)=\sum_{\nu}^{k} Q_{\nu} W_{\nu}(A)
$$

 liegen dm witeridichm Ranimes nixe $\operatorname{Mr}_{L}(A)$ $V=0, y, \ldots t$ di Mintertriterichm cucimen inglyener vuche dsw Kípa A witenmmen. An tin- Jaf
 Fg. 2 Furman un Caichy, ountro, zexrelliee ua,

15. A. 49 Kionpu-servis du inporimetho ehm
$15.15-16.00$

Thif pischm fiu al pis che mem teng en ats K- ofin vittectiais chm Rammer.
Dietungenwhy sina mash mit du Mintehrotide Ne, Alupe vieh aningesporsehen

13. 18.49

$$
20^{\circ}-20^{4}
$$

Shi-utior Euتlilictinte Pinge unit endentiner Gatiaflimerbreregins.

It fortgiteming aives an 1.4.41/vgl. Vorturg befled gechetain vortrope, dersas wantice tile kīs siedatelt uñdan, wird gesargt, dop atsesda

 surd, in deren Chuotientingts his zwif lingí' Vanticourtheregy eindentiy int. 2) Nothatasio in. Limantorcto Beatinguig dafin, dap $[[x][\xi]$ (f) hioper, x Naussurn
 uid 4incp aighehow. - Whiter ushate mek
[1/ mentretripes, dop hervins baveis ans herum 5 Arep, nied sumal anternaio int.

4-III - 1550
$11^{6} \cdot 11^{45}$

Alcume proporicta pa funzioni neali di olue variarili wa. Si- Yia $f(x, y)$ ime himil pmuzionc, Nisimitie nes quowhato $Q: 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$, e contimine pepravetormente winpetto $R x$
 in modo regalare vippitto or x cy. Per le funsioni quaxi. continine in modo regolane si cortireriso be tconio degtesi integali unwilinai (he pnos enese eyorlicata a dimoortia. Te ile Viounre di Yïbonom-Mmenoff). Si introdnce pai

Catini, par ionidine, ad tua quasi-compattires ugelare.
ly. Heoran Dragami

Vangans eppants Alume entanien dei Fixpomizenätic
di Browner i Yparner, isensiterando mathe ix cans dhi Karofomaszioni phrrinote

4y. Yove Diongem
W-Stink len ryvons. Momplexflicion, Plophtiv-Vinimalflächen
Die Lee-Quadriken der leiden Bremm flăder $20^{45}-21^{30}$ einer W-Kongrueas in den Bersikusurpo powteter inus Kongruent verdles sthneideic sich in eivam unund rifiefon Vièsseir.
is unse bevichted ither geomelwithe fiagen, dis uil diesem Salh 2a zaminen hoingan
$\int 12=$

Eigenrlaptes nonofokabr kepel9.3 .1950 nkurth lonurith sel eixfach dineeh мive jür Mereogaphinben AAbildiúr dieale Aabildtuin diver Keplubr ithaetf
 sacleñur eimifer wichtiger fiftr ater das Lhenizveihalken wurukeuch Fiokbes givi Re Oitain, deid rizees eiteforen thewern river Vareegreurivereñy as fath van boudelin ruwludet, wir eive bisclenjernhopt dos wouplokalen kepehearizem, 2 testa grovter Rebure $2 a$ (Eleituen gus. Heplibeen fowisingreveplaer $\mathrm{La} \rightarrow \infty$ parabes)
auf rik er efach geowe tuixh At hw juterizu, di meckousth Tri Pơnhe deweutaign orueturah O. Erwusleber T949 sifiusdes labs: Alee wowofobalen klletyn, ferter Houptacherlloieg La, dicheéeh eiven ferth pet Dpken, sist Cu'llen limer Clipre, di sesegresereses neku den fortin Rewerkt S is horerfocialnber aīes wode P olf pivitin newopet Lat. S7 in spunvetwivebe os Heillellitue, ilee Howptachen it Ya-r, woum $r=S P$. Veralyuwiveving oaf den kyzerbelin d OMabelfoll. Zusocureenkary wiz eiven quaaten we申hauinken robleer (Bokinhe seeipun fert Dopi-
 int enmelofragetellitury a rlacestes kewopien. Ciguivalutas
ker hicbucu (keres vitu).
 sun fin onsining infferaderuct in sin gruenin
 bxi Fylus. mon 2 tpmetivtucus. -
9.3. 50 Gimerminter in mintomoesen Kaipem. sot lim fel. atyesche. Kosper k im n-dim. Kanine feftem, os leann man die jraje steles, wric gron man dic recerminanitis $|\Delta| \neq 0$ limes fistess saiklem dous, sodm bei gesigneter Lape won R annes O mindes. Iim wsitters filmerpmist in R lifps. Sim Brichfelatsecher taro fesays, dass, wolno K sim bechs, Koimper
C. Non Vol, V_{k} ist and jode punthtonifferent $k_{1}-k_{2}$
le- (mis k_{1}, k_{2} ano k) in k liept, man $|\Delta| \leq v_{k}$ waithun daup. gas Anffinden simes masinutun koispen k fins niektenotsen koisper k ist nchrieng. Multender gitt cime 2.otim. Liming firt simen symmetrineh sime θ-painht sizgudelen Stembersim. in sis fegiten anco

$$
|x| \leq a \quad|y| \leq f(x)
$$

$(f(x)$ nelig, eimwertig, proi, max. finlend, difftral), wotes x and y prs., von 1, frade homey.
P. jinnen von op bew q verainderlicion sind $(p+q \circ n)$ sot k feg. durich

$$
|x| \leq \alpha \quad|y| \leq f(x)
$$

of $\min \alpha \leq 2 a$ nad

$$
F\left(x_{1}, x_{6}\right) \equiv f\left(x_{1}+x_{2}\right)-\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right) \geq 0
$$

serm. Millundur fitt sime j'on $\varphi(x)$ an, dis das beistet mod reseshmis dar vobsimen V_{k}.
 gitt er line joege ive j'oum $\varphi_{1}(x)$ an, dic das Voe. whe K kenstans lannm mid seine
 simes die beiden Ondrinoteriadisun bel. Achmal wrind. Ber Blichfelditinche fart gies dame mach wis ore und gertalut sime howenomy anif dic simuietome appeosisuation relles Tablen $\left(\alpha_{n}, \ldots, \alpha_{n=1}\right)$ durch tsrishi mis punsimanmun numus, wober rich agists:

$$
\left|\alpha_{r} x-y_{r}\right| \leq \frac{i}{C|x|^{\frac{1}{n+1}}} \quad\left(C \leq V_{k}^{\frac{1}{k-1}}\right)
$$

Gerda fehlarb

 sis jribloifigen Tyyubformon fomualifily aids the Brmuin?
$-54-$
pizning abyshins: Grapatier sin Eyttaue sero vingew S, M, P, \ldots geunuut heysifer, sünt grilyen sípan
 torufition ite: ais $S<M, M \in P$ follge $S<P$. Nor
Griver. Cuspaganterthit mint humizt.

16-4-50 Espacs de Riemann dont toutb les giodevinumes soat formés.
Problime: Une variett' numénigue V_{n} sena dikt de lyye P* on pret la munin d'une shue cure d'ispoce de liemarm dont touts los giodéxigues ont forniés fct de l mpucan contimua l upers suik cons tantel. On ep papos d'examinue cataicins mosneite's'

 mogetifs uibs, compleas et quatmiomiens.
Par aillums si V_{n} et di type|, la sariek' $V_{2 n-1}^{*}$ dos limedts de contacts oxintes' à une dimussion, tengentia a $v_{n \text {, }}$ admat une filuatim encudes, dunt la base ma dexignei pai wisn... Il
 que le conde caractivintique (mamin oblatade) a de $W_{2(n-1) \text {) pout }}$ de la popnilk's surrank:

$$
\alpha^{n-1} \neq \sigma \text {. }
$$

 mont pes nubb. La fibnation onviaqgé ne samary thetrividale. Los giodésiques ffunis) ont hom oloyusea zeiolaocdinixixal.

En utikiant hos ulations daskicual(b. Luag) ankelogroupro, de Betfide $W_{2}(n-1)$ et $\left.V_{2 m}^{*}-1\right)$, et enent cample dos mpnsitts'
 x saunat itu di typr T. La munm dimowhation mantuast touinn giminal du prdais's du cype $S_{q} \times S_{1}(9,2$ impais $)$ ne sement
 ma sah atilile de lyper?
$-55-$

1. Beweís eines Salken aus uiner hrbeit 17.4.50 von Chabauty: Sind 2 gitter $A, B \mathrm{im} R_{n}$ gegeben mit der Eizuensetift, deps jeder Getter= pount won B in eimer Gilterrichturng von A liegt, 2.0 liegt mued jider gitiopsonkt wom A anf eimer gitterviditumg vom B. Sievers mit Heile eines Lhemmas: Es gith žakl λ, acolays $E=\lambda B \subset A$.
2. Primzakirzengende Funktion (U. He. Mills): E gott reelle Enhl A, so daps $f(x)=\left[A^{3}\right]$ fiir jeden pos. gancen went von th eine Primsad ergizt. Beweís ruforund des Satres von Yrghom. $\rho_{n+1}-p_{n}<K p_{n}^{5 / 8}$ (K fent för alle n), most JEEH/ eines temmas: Fier $N>K^{\circ}$ gitt eo Primeakl p mit $N^{3}<p<(N+1)^{3}-1$. Mrno Seicke.

E, Nrerde ïber Ninen Saly vm 17.4.50.
Th. Skoten beridetet: Vargelegt itt cine Folge ven Fumblionm $f_{1}(x), f_{2}(x), \ldots$. , urim. gang-positiove trgumunte zugebassin und un gang-pos. Frunktionsmarte ungeich nind. Doum bäpte nich dis Esci-
THung einn ebenveaken Frumbiong (x) zorigon, so dap firr alle gang.pos. $x>x_{i j}$ (mod $i<j$) steh aine und unere ine dor Bryiehingen
$f_{i}[g(x)]<f_{j}[g(x)], f_{i}[g(x)]=f_{j}[g(x)], f_{i}[g(x)]>f_{j}[g(x)]$ srfület iss, weun $x_{i j}$ ina passend be stimmente gange $Z a k l>0$ bedentet.
theing fiunnee.
8. 4. 1950

Abschätrangen des kleinstm poto Potenrenintrestes eineri Prmizalle. Noune Kutersinhtingen iber ungerade voleteommene Xahben. Elenemsterer Bewis des Sefpes: Fiur jede Prinzate $g>23$ unt
 vony keaimer als $\sqrt{9}$.
Ein ungench Zall $n=q^{\alpha} \frac{r}{11} q_{s}^{2 / \beta} ; \quad(p \equiv \alpha \equiv 1(4))$ kame sisit vollermmen seim, werm $2 \beta_{1}<10$ nut $\cdot \beta_{j}=1$ fir $\rho=2, \ldots, v$.
 former $\left(p-1,2 \beta_{\rho}+1\right)=1$ firs $\rho=1, \ldots, r$ mut a di Anvalle der Prrimesther bedentes, die in $q_{1} \cdots, q_{r}$ enthaltson sout $\equiv 1(p)$ sind, so forgt $\alpha<a(a-1) \leqq(r=1)(r=2)$. thmiihe Abschátsinugen gelten fis $2 \beta_{1}$, wemen
Hans-Youchim Kanold.
19.4. 1950.
I.Taie: liker rine Karse von Funlhional ghichung in $\left(f\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\beta_{1} f\left(x_{4}\right)+\beta_{2} f\left(x_{2}\right)+p_{1}\left(x_{1}\right)+\rho_{2}\left(x_{2}\right)+\varphi_{0}\right)$ und duran suwendung anf hiltoluerte dwr all. Form $\operatorname{ar}\left(f ; x_{1}, x_{2} ; q_{1}, q_{2}\right)=f^{-1}\left[q_{f}\left(x_{1}\right)+q_{2} f\left(x_{2}\right)\right]$ nach vimer Abbit vrm Acséle $(1947$. Fernm aniordan Avoendungon anf gavins. Frmbtimuon $T\left(f i x_{1} k_{2} l_{1} i_{0}\right)$ nod $U\left(f \cdot x_{1}, x_{2} ; x_{1}, x_{21} r\right)$ geyoben, die Varnleganninerungon vpen dit dastellon.
TTیil: Einige Fragm der Pringahlvertilning nach Erdìs und Turán. Bie Frage mach der Kownexitaib von $\log p_{n}$ and pos, wo pu die Proingelefrege bedentet, wurde veruvints. Egenant dic Mongerickungen

$$
\begin{array}{ll}
\frac{p_{m-1}+p_{n+1}}{2}<p_{n} & \frac{p_{m+1}+p_{m+1}}{2}>p_{m} \\
p_{m-1} p_{m+1}<p_{n}^{2} & p_{m-1} p_{m+1}>p_{m}
\end{array}
$$

mind fire muendl. vile n bys. m fillet. Hring fónule.
viler Mittelwerte (nach y. teriél)
Beweris, daps fïr cine Funbtion $M\left(x_{1}, x_{2}, \ldots, x_{n}\right), \alpha \leqslant x_{1}, x_{n} \leq \beta$
die 5 Bedingungen
(I) M it atreng monoton wactsetid,
(II) Stetigheit
(III), Binymmatrie : $\psi_{2}\left(x_{1,1}, \ldots x_{m n}\right)=M\left[M\left(x_{m}, \ldots x_{n}\right), \ldots . M\left(x_{n+1}, \ldots x_{n}\right)\right]$ ändent secitien wert mikt bir vertaunckung der Indines
(II) Refernivitat. $M(x, \ldots x)=x$
(V) Symmetrie in $x_{1}, \ldots x_{n}$
notwendig und hinveidend sind dafiri, day sich
M int der Torm $M\left(x_{1}, \ldots x_{n}\right)=f^{-1}\left(\frac{f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)}{n}\right)$
(fitety, otreng monaton) damtellen $\operatorname{con}^{n} 31$, 2h. daps
M ein symmetrisico ivititwent iat (I) -(I)) ist
notwending und Limreriekiend fir Dasstellung, $H\left(x_{1}, \ldots x_{n}\right)=f^{-}\left[q_{1} f\left(x_{1}\right)+\ldots q_{n} f\left(x_{n}\right)\right], \sum q_{i}=1$
(guaribiteter Wirtiecurent). Eine Fruntetion $\left[x_{11},-x_{n}\right]$, welche (I)-(III) exfiilet, läj3 side in der Form
$\left.\left[x_{11}, x_{n}\right]=f+1 p_{1} f\left(x_{1}\right)+\ldots+p_{n} f\left(x_{n}\right)+p\right]$ berw fir
$\sum_{n i n}^{n} p_{i} \neq 1$ andh in der Form $\left\langle x_{1,}, \ldots x_{n}\right] \cdot \phi\left[p_{1} \phi\left(x_{n}\right)+\ldots+p_{n} \phi\left(x_{n}\right]\right.$ damstelten.

Atrno Deicke 21. 4. 50

Sives drei tinhe ans du fernutsic der Tanken.
Fan aur corpits righ, elan man sevisis anf dic Anrahe der firmoninete in einum m. ohim. offenen, rentralsymumūnchen tenoresen Kisner' sehbiusen kann, weon man das volinimen dis hainsin ithe simochoiesonsten poryeous kents, das mieht muhs abo $2 \angle 2^{n}-11$ filinnflaitem has. In 2.dim. fille fits is pis sornese symum. Bnuike, dis ourne O keinen perince vines fittus der set, 1 enthatten mod aucm Bypunning sime kenve mito stetiym Knimumingoradim ρ ? $\rho 0$ ist, lime guramic otere gunte fir enn flations. inhias an.

Im n -dim. Fill wisd der Ksi"unomimpradion ersens murch den m-1-dim. Intiets $U(R)$, den der temouse koipur K ans siner gypereteme R anonchnesicit, die im Restande o (R) wen ser maibsten paralutur Tanguniacurene an K liggs: Is wender his den estun fitr an innd kanm sime, weun anch siembich gorke, orese Pchlanke his cas verinuen whe K amptrw, wenn K anineso
firda Pchlarr keimen firterppones simes fivters our 9 es. 1 entasuen Not

$$
22.4 .50
$$

Zum Prottem der Zelegn gighaidelen vm Pryyshom nad ciner nioh numeriff. thbit vre Hadaige, Baml. In duscerep an Argebuive inu shon frimen Hadnige veriffowthicem thteit gelingt is, naue Relationum ab notw. Bedingung fir die zarlgungighickenith greiv Polyeder anfzustiolen, an dener sid doun die bekannten. Dehurden Bedingunger (Hath. Anm. 1905) afleiten larsem. Fales sine berecknight Hrffunng in erfïlling ginge, dap nambich juen garrione haunjefectigheiten on mad Hem Frnevimalen $X(A)$ al identish crrrieren werder kïnow, wäion die Hadinjen aen Bedingungen and hinrevichend.
Haing fanule.
$24.4,50$
Eín Mittelwertoata fir Funktionen eimer kompplexen Virandercietien (nach Heinz Whber, zandid)
Iot $f(x)$ in einer Amgebung von z_{0} reqular und Iot $f(x)$ in einer anngebing von z_{0} regular und $f^{\prime \prime}\left(z_{0}\right) \neq 0$, so gitt es Kressschesbe $\sigma_{i}\left|z-z_{0}\right|<s$, in der $f(x)$ requiair und die dunod $f^{\prime}(x)$ auf erinen konvexten Betcieh aigobildet arind.

Dann gitt es zu jedem x aus I genaus ein ξ ind, fīn das gilt $\frac{f(z)-f(z)}{z \cdot z_{0}}=f(\xi)$. Thie Stelle ξ ciagt in dem Hreiszwiek, das den beiden durch a und \approx_{0} gehender und den Pand von O berriturenden Treisen gemeimsam ist, und aupperdem in eimem Treis um $\frac{z+z_{0}}{2}$ mit dem Radius $\frac{\left|z-z_{0}\right|^{2}}{2 S}$. ξ ist eine reguläre Funktion vori \approx in 0 . Utino Dieide
11.-22.4. 50, 7um 200. Takestye Jth. Sch. Javhs: des wodllemperievt Klavier.
d. Hoenver.

3-6-so 2 m Progektiven Differentiol geometrii der Regol flaidben.

Bew geaign ta Nomivi lanm sit weitu is du Flowet 2 bu Formele eris gike Envanive Hewen als thy pucoblinte Eninuinuln ein etere Kurve. Durch geciquilen Athile mrn Kamn man dii siaslich Kn miviane mill emm-en rehbmixph m-cenka S. $13=$
4.6.50. Wher romiste Moduch.

Den Elemertan a, b, \cdots axes beliaigen Moluch winc ese "Noms" Ingeorest sodens $\left.N(a) \geqslant 0, N \rho a)=|\rho| M_{a}\right)$ (fü rellese) und
 kowexen Bareation zugervant. Ste zorpllen in NCorses, dec den ithat-
 Diest klanse friden eciven ovelestaindigen Verbaid. Molwere Sätue de hormort zusammentaigen wuden shzzisiort.

 fomiffurnuvionne
$5.6 .5 \sigma$
Siver lime दrtris vom Mouna:
In sinem sult oon Koksma isis Theoric an diophantinchew approsimatimen

Ir verpaner sibertrage sinem experosimatimosolt Nu K Kotsma enf sine topolojinche Grimpe G, she produnt top oerginches Grippine G_{i} and erseal kompant sim soll, sodom enif ine sim rechts invariantes Maxs existiest. Si $x \in N$ sime at. raibltare Munge ans simem top. © Ranim E sund $y \in \mathcal{Y}$ sime bee. Munge avin eimem Sop. Ravim H, or ool thic f'm $F(x, y)$ ihrem writevartiat in 6 huten nond mur his $K(x)$ (ganswersife $j^{\prime} m$) Punnter y in das Intervall Q^{2} palem (Q sin tess. Intisocle mon $e \in G$). Wills maw in jodem x lim passundes smins arle num e : $I(x) \in Q$, das Aurich Munghingen $V_{i}(x)$ der mesits. U. $e_{i} \in G_{i}$ berimumbish, ordan dic kike
$\sum_{x \in N} K(x)$ m $\left(I^{-1}(x)\right)^{\prime}$ Emorgiest nad kmbeyiest dic tirnome sive die Panktmengon
 or whailt an lunt dic fistalt:
pirs pust alle Numinte a $\in Q$ gitte is hocuntan sime ende. Anouble oon pheten $x \in N$, hir dic es sin $y \in Y$ fitt mith. $\alpha^{-1} F(x, y) \in I(x)$.

Oer virparar filhts sxispich in vesehnidenen Guda fichlarb sopM. Frispun ans.
18-8-1950 Vorictes fuilletés. Fuwillo compades.

$$
d t=\sigma \quad[1-t f(y)] d \theta+t g(g) d \varphi=\sigma
$$

où f et q sont des fch detelypu:

\qquad Pencollement de duax examplaines de T_{2} XI en obtient en feuillethe้ (8)

$$
0_{0}=61-
$$

de $T_{2} \times T_{1}$.
Cet esample montr quee dans une shuchua fouillabé toato les powieles
 formic.
 deuc dens $S_{2} \times T_{2} \times T_{5}$. sen at wanylem wisizi le:

 af foment un fitinction d'un sasinarey de ty.

 avec dos hypothives inndifisabisas) it he Mírime 2 poue $q=x-1$.

Anvernching du Chacrie der F-Rärieme arif fimitienningoverfulmen.
Das Kanougensfeed cimes Mahiswerfaluems A (abs the Menge den

"chatm' anifgetalst werdene als cin FU-Rmim (des ir eix limean Kocaitiavtomemins,

 cintuesinander unituls Marrizen sink lineore, funas nind ólgenexine गhissagen üth his linearun Frimblicurle in FK- Rëivirm behnomts; dasallv
 lital nith wis trilfe son Mahien domsthten.

Híanii luasons rich râtre folgonien aul Aubilen: Juäquirivabursäth
 hilsisithe (Pechingingen dafin, dads sien permmemith Mabievelfabun mit

 eim subrescheäble; й.a..).

Erude des extensions de quaypes tonologigue casque furasow o \& Sme); Si. Fel B soul 2 graups top.a.un
 sip. contemie de $B \rightarrow A$ ut $F /$ Mut $F ;$ a haque tom. suri so. La Vhíani dossique de zossenh uess mon. he que si Bet F rust compnts, an diserets, aidere LV, ause rammi an es de Fobíheri. Slars $C e$ cos à hoque lasse de quayse de cohomolagi de dimin. 2 sel. $\alpha=\theta, \operatorname{sen} B$ to coll. do F, carseepond vie seteñacin B α 'exivariant θ agtont une pution untesnies. An montre dores que, si F est de hi (achan um), toult selemisuri de F
 Lï pas un po de leie es de lie con se nomense an cso an

 dien R^{n} nex an compart has set cois quiest un saves. quapes täs lo pode colimn doype sand mules). En uts. cisont le fail que, si F eet compent, Aut $F /$ ine F ost tor disumbuin ("i menfititese axi ri $F \Rightarrow A$ de hi) on manto que, si F est suns centes es B connesse, E est $F \times B$; is F es obreberi is B comnsise, E exs une Jean Bracominín, cxteño vier entides. ceo rioneltoh permest ent d'éhrekin 21181125 es quanjes es te counsue resolubes can se ramins ank exterowis d'un $R^{\prime \prime}$ on $7^{1 /}$ YM R an I I).
 (i) $x^{\prime \prime}+f\left(x, x^{\prime}\right) x^{\prime}+g(x)=9(x, x, f)$.

Levinem, Levisifz ef d'aube ont mahe' que moynnnant da Sypothiess naismathe men f, g its les trayectoines de cil tha'e's dans le phan des phases $\left(x_{1} x^{\prime}\right)$ virufient 1 'hypotixx wivent:
(H) Il suaste dons he plan (x, x^{\prime}) un coerbe de Inden IT Helleque les hapetoices de (1) rentunt dans Γ ?
$-63 t$
Sim supox msinhanant qua Int prisodigue urt, it a pour

On puct somarquen que (H) cet uns dione'stets (sos modifie legiumnt fig, ty, themeitt) contimecreste vinfiel. Far conke T'Appothox de periodiantence q en 'ut pas stuble.

Ere remangunitapondant gréon natiouce lusytiones des

 auhe typotiox quipesent llowentege dime shatle.

Regular Curve Families with Isolated Singularities

Wa Kaplan hie prored the following thervens about curve farsilies, F, which are regular (lecally homeomoxphic to peraller livies) in a asmply consected domain D :

1. Thene exists for each such aure furnchy F a continionse function u, without acletive extrema, and having F is leved curves.
2. Each sach family may he decomposed in to a countrate number of mon-oonlaping unsfamilies, cach filling a samply connected domains Dd and each homeomosphie (es a curve family) to the pasalle limer of a balf phane.
3. Fre each such famich F there exists a "eross-section "farmily G
4. The auve fauncly F isithomeomosplic to the livel ourve fomich of a hemmonic function.

I huve extended these thessems to the case where the auve fancicy F is allowed to have a (pseibly mfmite) set 7 isolated simgulasities of the multiple saddle poiny type: $\left(\frac{2)(C}{D)}\right.$ (c) Thun the extended thericm 4° cheractengies (typologreadey) the lovel curns of an honmonic function (with critiene points) dyjied in a sumply connected drmain. Application 7 therem 2 to the cose of analytic functions dyjued in a simply. connected donain decmonstrates the cestence of the decompositeoni 7 the 24.8. 8 domain into velatiorly smiple fundomental donains and gives some insight into the whborthy Deutsche
Forschungsetnerectiane of the Reimaon Suypace 7 . the moase funce term.
25.8 .50 2n-Manigfaltijkeit P_{n} nit ötlichin komplesten Voorsinnten u_{1}, \cdots, u_{n} heijst analytisch in sinein ihrer Penbte, weun sine offene Menge $U \rightarrow$ a und, in U giltige Kooninetin u_{i}. uns in U analytische finlatimen $f_{i}\left(u_{1}, \cdots, u_{n}\right)$ gegeben tion derait, $\partial q \beta \quad U \cap M$ mit der Menpe ragemeintenmen Null. stellen is funbtioneen f_{i} "̈breinstinunt.
"Eine leompelte, in jedm ikrer Punkte anelytische. Tilunenge ors projeletiven Raumes $P_{n}\left(x_{0}: x_{1}: \cdots: x_{n}\right.$ (homphn) ist ine elgehraische thennigfaltigkit, th. die Nullstellemmenge siner Anzahl hoins gener Polynome in x_{0}, \cdots, x_{x}." Firr diese "classical conjecture" hat heiliany CRon (Amer. I. Math. 71,893-914 (1989)) eimen Beveis grgeben, or die topologischen Eigenschaten orr analytischen Mengen kraiftiy heranzieht. Hier aurde dengegenibber gereigt, daß he Satz allein nit dn maturgenăßen funbtionutheoretixchen und algebraischen Kiffinittelen telfieser. beriesen werden leann.

Etude de entains paupe looverment amports (Jwasanu, qlerson) Un bon qeaupe est un qu. en. compont if dans equeul is exiciè une boc

 que W_{0} ($\operatorname{sesp} G / H_{0}$) sitim (G etant connance). Dans un lon quapre
 est de thi; No ext b plus quend so.gp distinqui' compert caneur de A. Tants
 qraupe connese resolube est bino. Con bon quqpe consure waside un veses, ground savo. geause resolubtle tis hin quí $R(G), R_{0}(G) s$ ' apmeter be voshais
 d'us q. de $t_{0} 0^{\circ}$ rocolx $\mathcal{C} \cdot G$ est un qp.connene, μ 'esuoti daus a wn whis grand ss.gpa.dist compant comese $\mathcal{K}(6)$ of un phe pronis

Fine Punthenenge M in einer kouplex-anelytischen .

so. q. distin gue veocluble $R(d)$. $a / R(b)$ ese prodint de proups de $L i$ innibles cinnents is d 'un grauge P secondenant nes de
lan sums.gt. ditinques $\neq\{\mathrm{e}\}$. Le 5° Problumie is Hillert est sinvi resoler
 pishaounivi proupes connexus sent lores.
 soit munis d'une wotix dhire.
 antécicus de degté' conshuits nu ta, et soit vic ('入tlla varist'

 dans $V_{n}\left(\Lambda^{*}\right)$ les formes extesicuases seivents.

$$
\theta_{p}=4 p_{i 1} \cdots i_{p} d x_{i} 1 \cdots 1 d x_{i} \quad \Omega_{p+1}=d \theta_{p}
$$

importint) on dina gu inevifine dons Th ene notio tain poule

due notieme du calaul des moriations $/ v f\left(x, d x i n+k\left(x_{i j}\right)=N i n\right)$ sont

$$
\Omega_{p+1}<v_{p}=0
$$

de aquipuciad è Tilude abe ilinuend de anket alenernd

Ele'ment de Calcul diffixerilial el Diohi balunis
sur le grocups abiliens lscalewnut compects
A tocter reprisectation continue $t \rightarrow s(t)$ du geoape addi if R des nombic ribes dams be groape abilin lvodement comport 6 on asscic la dér vation $d_{R} f(x)=\frac{d}{d t}\{f(x+r(t))\} t=0$

DFG
difuiri nur ceitains fruclims ansplexes $f(x)$
di finis sur 6 . D'eus untle $R(6)$ de loatis les repristente tims n pence to numie d'ame stuction d'apoce rectusid localemant anvexc on hi thanspatame gor dualité $\Omega \leftrightarrow \hat{\Omega}$ la sthudme notmuth as upriter tations $\hat{r} \in \mathscr{L}(\hat{G})$ do \hat{G}, dual dr G, dans $\hat{R}=R$ (four es $\hat{\Omega}$ an paend le Copologie de enveapera cmpocte,
 espace de Bainc). On munter que les mi. joupos empact H or σ tes que $\mathcal{X}(\sigma / H)$ inl eu didien frimene une base de fi etre $H(G)$ envageand var 0. d'inage of $x(\sigma)$ dam σ gor l'apficatm, $\Omega \rightarrow \Omega(T)$ es un smi feroape denve a ans le emppounto anmeace do 0 I ls r tels que $r(1)=0$ fonmend un sme youpe
 enupea de S l'aflicatin $r \rightarrow$ hor (h : limumoptins. me caumi qu de σ ger 6/H) is un homumurs his no de $P(G)$ Nor $\gamma(6 / H)$ adnettone un inverse hiréaine entinus.
 l^{\prime} 'ffication $r \rightarrow d_{r} f(x)$ est uns from liní aire entinue mur $\mathcal{R}(6)$, d'où l'm didint que foom conte $f \in D(6)$ (f entimue, entimünmerce dirivall, a sipmeit emped) is existe $H \in \mathcal{H}(6)$ telque f int cuntowti ne ls elans do 6 suivaul H. Cei runts de site enueeur (ave an pesdiel de confritin) un pene cushine as $f \in \delta(b)$ de xuppel enteves daus un ocroul dnnu' aesi p elit int-id. Onpeul alus itudies asplicchins aii valls d'an jupse B dans unaute $6^{\prime} \quad x \rightarrow \theta(x)$ eтune ibans alls qui
 de $D(6)$; pustul $x \in G$ is axst ales anaryecedin Eusiáair taijuite $r \rightarrow \delta \theta_{\lambda}(r)$ a $X(\sigma)$ dau $X\left(\sigma^{r}\right)$ qui, an mine dans b cos B cmoxes $d \theta$ curlinne, penvere de velumer
 devivale el cortinue of R dan 6^{\prime} r empnie x l'apfec 25-8.50 usud ds espces redinch) a R dam R (O^{\prime}). Uue diski butm sur 6 en cue fome einiain sor $D(6)$

 enterr dans, K, druetran $H \in \mathscr{G}(S)$ enm frory- de piviods, el súni de le lofologi do oso yence uи frume des fruturs es de dicamo l bern diriris. On dume Os funtin ol de dicame de leve oferres. On dnue

 lequel les ensevells bmu's srul enterns dau ls $\alpha(K ; H)$ d y rut bones.
 enfende un ons. apcu vechniel deuse, a qui peued de difiuir le produit tenoovil $T \times T^{\prime}$ d deux disliibn
8.8 .5 tink...... Di prin oi pals propriots' de dio hibutim mir R^{M} (Schrait L.) se dímentuel auts foor ls dislibbuten sur 6 (dshisuten $\operatorname{mog} A$ omped, travefruadn de Fowier, divirolin, ... contriles...).
29.8.50 Znis Pay. Diffeoulialyoouchí der FCindien, desen eive seive um Aogmpodalimim Kirum drithe Orolming nied:
$8(6)$ is.
x
tim $\Omega^{\prime} \rightarrow \Omega^{\prime}(1)$ or d^{\prime} une applisoters ad ir ralle (an rens
\qquad
\qquad

Kinn un'l Slinighlene der C_{3} grisanmenfallem, so IU. Bamus. bilder dic C_{3} Anymplolenlínim der FCrile.
29.8.50. $23^{30}-24^{00}$ W.H. Hills (Aull. Ans. Moth. Soc. $53,604(1947)$) hat gercipt, daß $\left[A^{3^{n}}\right]$ bei geignctem $A>0$ für alle gawam $n>0$ ine Primzabl ist, L. Kuipars (miog. math. 12, 5T-58 (1950)), Dap β derselle Sats mit beliebigem ganzen c statt 3 gilt. Das ist ein ziemlich harmloser Scherz; plemo es gilt.

Sii $f(x)$ stetis und wacksend fir $x \geqq x_{0}, f\left(x_{0}\right)=x_{0}$; sei P sine Minge reller Zahlen semart, ∂ \& fïn $x \geqq x_{0}$ wwischen $f(x)$ und $f(x+1)-1$ inmoer im $p \in P$ liegt: $f(x) \leq p<f(x+1)-1$. Berevetenct $f^{\prime \prime}$ die n-te therieste von f, so gist is inne reelle Zahl v, not derast, $\partial \alpha \beta$ is pür jurs ganse $n \leqslant 0$ im $p_{n} \in P$ gibt mit $p_{n} \leqslant p^{n}(v)<p_{n}+1$. (Sint alle $p \in P$ ganz, so ist $p_{n}=\left[f^{n}(v)\right]$).

Beweis: Sei $x_{0} \leqq p_{0} \in P$; ist p_{n} beternnt, no sii $p_{n+1} \in P$ gunaä β $f\left(p_{n}\right) \leqq p_{n+1}<f\left(p_{n}+1\right)-1$ gesathet. Setst man $u_{n}=f^{-n}\left(p_{n}\right), v_{n}=f^{-n}\left(p_{n}+1\right)$. $\left(f^{-n}=n-t\right.$ thrieste in Uumhiosfunation f^{-1} im f), so findet nuen $u_{n} \leqq u_{n+1} \leqslant v_{n+1}<v_{n}$. Daraus folyt die Behauptiny mit $v=\lim _{n \rightarrow \infty} v_{n}$. Bii den Primzahlen kamn man $f(x)=x^{\gamma}$ setzen, wern $\gamma \geqq \Phi / 3$ it; dum zarischen $f(x)$ unt $f(x+1)$ gibt is byen $f(x+1)-f(x) \sim \gamma f(x)^{1-\frac{1}{8}}$ bei gropam x inmuer Primzahhen (wach A.S. Kigham, Quaist: I. hetto, (ser. 8,255-266 (1937), woranf anch Mills unv Keiper verarisen). Schon ans Ucchebyocheff Ergehis $0<\inf \frac{\pi(x) \log x}{x}, \sup \frac{n(x) \lg x}{x}<\infty$ lept sich $f(x)=K_{x}$ fire $0 \leqq x \leqq 1, f(x)=K^{*}$ fir $x>1$ mit $K>\min$ als H. Kneser Grauchber nadureisun.
graupes abo'heins sans tarsion : d'apris G. Szekeres. Sair G un graupe siano taisioni, $a^{(n)}$ de saur. groupe de fo farmi pue es x de ea forme ny. Si peat un entier memin, $G / G(P)$ pent its considiré comme un spprce vela divie su $Z /(p)$; on di: no qu' une famile $\left(x_{t}\right)$ \&'el-de a eat titice $(m+e r p)$ ii ess edant des x_{2} danso $\sigma / G^{(p)}$ sont elines $\left(\right.$ sve $\left.\left.3 k_{p}\right)\right) \cdot G^{\prime} G / \cap G^{(p n)}$, mumi. de do Do-prexgie dais erquelle les $G^{\prime}\left(P^{2}\right)$ ant tee notionsorges de e pers itse complea' en un proupe \bar{G} qui est mumi a'ure strw

Lace de Z_{p}-module $\left(Z_{p}=\right.$ entiens p.odi'ques), ince fanmlli $\left(x_{1}\right)$ $d: \mu$.de A est wh lihi $\left(\right.$ mox. z_{p}) si les losses \bar{x}_{c} des x_{1} sens bivis dans es $2 p$. morlule \bar{G}, G_{1} ess extsint ehis (mode), ils now this $\left(\bmod \quad Z_{P}\right)$; si de neve a, ett hhi $\left(\bmod z_{\theta}\right)$ sen bes x_{l}, siexite un + quand h ar que $a+\Sigma \alpha_{i} x_{i} \in G^{\left(P^{*}\right)}\left(0<a_{i} \leqslant p^{k}\right)$ Dans vo conelhtinis si a est doinomberalle, un systinic $\left(a_{i}\right)_{i \in 1}=S$ (I initerratle de N^{*}) dnaximial diel eineo $($ sel $\dot{\alpha}$ z) ì une puissance quiest un unvarciuni de fo $;$ sois $a_{i_{1}}$ el premiei s. de S liene $(\operatorname{mos} 2 p)$ of $\theta_{1}=p^{-n_{1}} a_{i_{1}}\left(h_{1}+\right.$ grand untirs cie que $\left.a_{2}=G^{\left(p^{n_{1}}\right)}\right)$; definisuns ees b_{k} pen ricurrena nar $a_{i k}=p^{h_{k}} b_{k}+\sum_{l=1}^{k=1} \alpha_{i_{k}, l} b_{e}(i)$ ($a_{i_{k}}$ stant le memai sis $\alpha \cdot \mu$ s lilive (mox $\left.z_{p}\right) r, r$ a $b_{1} \ldots e_{k-1}$ at ko $b_{1} \ldots b_{k-1}$ wivs mox $\left.Z_{p}\right)$. des $\left(b_{k}\right)$ forment un sxpteins mot. d'el. Whis mod z_{p}; lo puis rance de $\left.I_{(p}\right)=\left\{i_{k}\right\}$ est dmu un miranomis de a_{i}; si $j \notin I(p)$, on difimib les $b_{j} j, n \quad c_{n} \in N^{0}$.

$x+1) x$ Alass bout $x \in G$ s'sonit α^{\prime} uns sure movieir sares eorfarme $x=\sum_{j} \xi_{i} a_{i}+\sum_{p} \sum_{k \in I(p)} \eta_{k}(p) b_{k}(p)+\sum_{i} \sum_{i \psi H_{h}(p)}^{\infty} \sum_{j, n}(p) b_{j, n}(p) \quad\left(\xi_{i} \in N\right)$
 pe G_{E} axant comane inivariants $I, I(e p)(p=2,3 \ldots), h_{k_{p}}$ et $q_{i, e}$

 les p-oxhypus $q_{z, e}$ ese un unianiant de b cqu-cononkeresi a, las. que G est p. primitus. de rany fiic Cep. kansies, a nne of noth, 3 P22. Pame que G soit likes, it pant es is mffit que I. Icp poum lout p et que rammir $h_{k}(p)=0$ namblaut k, souff purt tue poun in wonhere fiii de p. b/8/so x serait hemeut, mois ie sumberedifficue, de exmpleter eis asue lots.
31.8.50. DL Vabtay mon heron Rueb ace 26.8. Lat Luea nenen Authich Jywben, dic Rewllate der Vardoknmo nelnny der mohsfaden
 Veximbieske - , Mi kshar wer in funtabicer ohinbllny, w'ush inman'ext, fewrmen bowden (ARRCemare, De AnderWeyd, cowethiodny-iskemer, Lepage, seberer, tón (bove),

pu - Xertroges. Ant whunde unden diess Resuldate hat c.nvill kirs pesatumen pestellh.
E.m juditindies fold me Plákien deuculen kut (Guakinanys Kinys'4y") Arlgunde 'Eyeurdeyf: mina kann vrim jychenees 2nignac in har von der Bereadeny shaiges so suthateren, han der dulequend des vecolliats thè die Etenewte des Efiten $=0$, tiö whe andex $\rightarrow 0 \mathrm{am}$ fillek.
 sher bin dincyenz oher Ther einn Funblional delerminese

 dis Triensurralicts, whenter dio auch alk Pibleme int seireglichem Nand in tellandela.
 insone dppereatixe inmen. In $f\left(t_{1}, \ldots t_{m}, x_{1} \ldots x_{m}, p_{m} \cdots \rho_{a p}\right)$

 mix $\Omega \equiv \omega\left(w_{i}\right)$ nad $d \Omega \equiv 0$ ($\left.\omega_{i}\right)$ bretpt (Nii E. afontrung
 th begrinden som). De fealizionden Feller x ind Ruvth d $[\Omega]$: £vemupochnets, $[\Omega]$ an Ω ker Exepping as pix durdn
 unithileven fliettes itherten mule tivent. Sobs hou $2 \dot{i}$ so cubtioht diu Thearic in de thwder-Grege. Anf die
 dan des feadazinche Fele auch tríes versak Toyidebrien he
 24yt. - De quadrationim fliver in' Ω jcien qu dee serz
 in der suadatuch Forne Anlan, aic an the Legenta. ohur sedrymy rovkounte - Kisple hat men hac fi= on prock thatabix bio Ejhwertleriterime any
suemer. fostulle
$-71-$
3?8.50 Never futunains da folois nta Heones mack jocoben ind erman Vionty vom F.K. Xhemedt. Tutw Hewuraf5 des segrits de ermenon Pransformictimae sin Vefitova"nions ohe Strmensimebentiuks ssivcts berienk, or- y jidam Higimutakiziar 2 is ketichje Kkrefkijues imothetha erndeintiv ern cin Sinver erwe serissa Tyelyis akjentansan 1 Biy Gineore Tranfonmether In-porduet wedar kane. Sh: Toprlyis in or knīentan fyovlyie de
 vobed arjebraiente セine.z. ais y or: kiju notgehirdet. As lizega, in de dinge envewe flompromatie $x=k$ Kutejwippe de of-timonptrewargu-pye ciccle hinn anpricientet.
1.9.50. Uiber die Parallelvesschiebung in Firisher'schen Raum. Bei barten und semien NadIfolgan liengt die Parollelverdiabung von evier willkeirhich eingefüstan. "Fasenung" at, d.L. alle Messinga sind af evie osteuliern de Lodkatrix beggen, welde dund die Pichtung des villkirlida Eeldes in den betrodhtanPenitet fesfyolygt und. Aush der Paralblesmes hang't va dieser Richteng of. Hier handelt is sich un dic Bestimimung evies "Shohotom" Parablehrmes, welcher anf revi geactrischer Wege gernoht viad. Die verwandete thehode bernht hauftosidhich anf der thrtenuohung de Variation der bokala Mntowskísctan thethite juischa beradbarta Penkta des Fuiter'scher Ravme. Das so erhaltene, etwes umstaindish Renultat, lasst sich demok die Eu-föhring der sog.

- Verallgemenierka bhistoffed'scon Symboll" auf eivic rechnerich brauchbare Fom reduyiere.
-72-ix.
9.9.50: Sus la conoruologie des spaces fibvés due parul de ure des former différculielles.
Corsqu' us quosene de die comexs glère daus wue varrolé F, or défuif wue "algäbve diferculielle uuiverselle" (F, G). 'a struclure de ($\vec{\Gamma}, G$) est corrupasable à colle dé un eapoce el'algäbve des formes diferculiollos d'uu eopace fibvé de fibve Fi dorir la bare auraik poris alqähne de conoucoloqie l algetbve $H_{S}(\hat{O})$ des un arrauls sghéliqiques de la nepréseubalion luéaire adjoinle de G. On a eu particulies leo howo morphis wes laniques evhe les algäbves to cohouologie

$$
H_{S}(G) \longrightarrow H(F ; G) \longrightarrow H(F)
$$

qui corresporideut à la projedion de e'espace sus sa bare et à e^{\prime} infectione des fibver.

Si E est wu espoce fibvé diféreuliable compat de qhoupe de shucture G opérauk coruke reus'houk dous la fibne F, on difivit au veryen d'une comedion dous I'eopace froné prucipal cunociéx des howoworphismes \tilde{k} er \tilde{k}^{\prime}

compalibles avec les honuoverphismes daniques ef vedó pecioucts due choix de la comreditu. Ses propriélés cohowologiquas de (F;G) sout d'acces velalivecueut scurble of se vepercuteuf sus dout espace fibvé de Sibve F el de groune G.

Eu coliaboralion avec. A. WEIL, C. CHEVALLEY, H. CARTAN.
J.LKosgul.
8. 9,50 Ûber eine obschátrung bei Kreistreihngspolynomen. Ein Sate íber ein System von zarei diophantisken Sleichangen. Einige nenere Bedingangen foer di Srristour mugereder volekommener Zahben.

1. Wir berseichnen mit $F_{m}(x)$ das m-t Kreistailnigspulynom, dessen mer einfade
 die terlegang von m in Primzallpoteaneen miv als Abknixuny $x^{\frac{2}{2}=\cdots}=x$ gesebat. Damm gilt
$-73-3$
Fir $x \geqq 2$ geetem die Abscháternagen
$\frac{2 x+k-2}{2 x+k-3} \leqq \frac{F_{m_{m} \cdots p_{k}}(x)}{x^{\left(T_{x+2)} \cdots\left(p_{x}-1\right)\right.}}=\frac{F_{m}(x)}{x^{\varphi(m)}}<\frac{x}{x-1}$ firir nengeredes k;
$\frac{x-1}{x}<\frac{F_{m}(x)}{x^{Y(m)}} \leqq \frac{2 x+k-3}{2 x+k-2}$ fir gerades k.

exiticit mindestens eime Primizahe g mit don beiden Siganshaften
a) $g=1(\bmod m)$;
e) $q<2^{\varphi(m)}$, wemm $\left\{\begin{array}{l}m \text { ungerede oder } \\ 12 \text { gerade oder } \\ m\end{array}\right.$
$q<\frac{2^{\frac{m}{m} \cdots T_{n}}}{2^{m}} \cdot 2^{\varphi(m)} \begin{aligned} & \frac{m}{m}>6, \frac{m}{x} \\ & \text { ungerede. }\end{aligned}$
2. \uparrow, p_{1}, p_{2} seien ungerede Prinzahben; a, b, c, d seien pus.gh.

Damn kónnen die Eleichumgen

$$
1+p_{n}^{a}+p_{1}^{2 a}+\cdots+p_{1}^{(1 n) a}=p p_{2}^{c} ; 1+p_{2}^{b}+p_{2}^{2 b}+\cdots+p_{2}^{(p-1) b}=p_{1}^{d}
$$

mist zasammen bestehen.
3. $n=q^{\alpha} \prod_{\rho=1}^{r} q_{\rho}^{2 \beta \rho}$ sei inigarade and volerommen. $(p \equiv \alpha \equiv 1(4))$.

Es sei $q_{\rho}^{\rho=1} \equiv 1(\bmod q)$ fir $1 \leqq \rho \leqq a$; $q_{\rho} \equiv 1$ hmod μ fir $\rho>a$,
$(\gamma-1,2 \beta \rho+1)=1$ fir $\rho=1, \cdots, r$.
Damu it $a \leq r=1$;
$\alpha \leqq \operatorname{Min}\left\{a(a-2) ;\left[\frac{3}{4} a(a-1)\right]\right.$, verm $\psi^{a n 1} f\left(1 * g_{\rho}+\cdots+g_{\rho}^{2 / \beta_{\rho}}\right)$ piralle ρ;
$\alpha \leqq\left[\frac{a-1}{2} \cdot \frac{3 a-2}{2}\right]$ sonst.
Weme p eine Sampssh Trimzahe ist, ist $\left(\rho 2 n, 2 \beta_{\rho}+1\right)=1$ von selest erfiut.
Wir kornen dasm ausserdem $q_{1}=3$ amehmen. Wemm $\nsim>17$, giet $a \leqq r=2$.
\&s sei a die Ansath der Primzehlem ans q_{2}, \cdots, q_{r}, die der
Resthlasse $1\left(\bmod q_{1}\right)$ angehoiren. Es sei feiner.
$\left(q-1, \frac{\alpha+1}{2}\right)=\left(q_{n}-1,2 \beta_{\rho}+1\right)=1$ firir $\rho=2, \ldots, r$. Xamm muss
genan eiver der folgenden Fille eintretern
I. tha $\left.p \not \equiv \pm 1 \bmod q_{1}\right)$ folgt $3 \leqq a \leqq r-2$ and
$2 \beta_{1} \leqq \operatorname{Hin}\left\{a(a-2) ;\left[\frac{3}{4} a(a-1)\right]\right\}$, wemn $q_{1}^{\alpha-1} X\left(1+q_{g}+\cdots+g_{\rho}^{2} \beta_{\rho}\right)$ fir alle ρ;
$2 \beta_{n} \leqslant\left[\frac{a-1}{2} \cdot \frac{3 a-2}{2}\right]$ sonst.
II. Ahs $p \equiv+1\left(\operatorname{moj} q_{n}\right)$ pregt $2 \leqq a \leqq r=1$ mi $2 \beta_{n} \leqq\left[\frac{a}{12}(9 a+7)\right]$.
II. A An $p=-1\left(\min q_{1}\right)$ min $q_{1}^{\xi}\left|\frac{1+1}{2} ; q^{\xi+1}\right| \frac{p+1}{2}$ fogt $a \leqslant r-1 \quad \operatorname{mos} 2 \beta-\xi \leqq\left[\frac{a}{12}(9 a-2)\right]$.
Wame qu eine Saupscha Primzahl ist, ist $\left(q-1, \frac{\alpha+1}{2}\right)=\left(q-1,2 \beta_{\rho}+1\right)=1$ von selbst erfilet. Fir $q_{n}=3$ giet ibberdies:
-74
I. this $p=1$ min ∂_{3}) fogt $2 \leqq a \leqq r-1 \quad$ i $\partial 2 \beta_{n} \leqq\left[\frac{a^{2}+(a+n)(a+2)}{4}\right]$.
II. Ais $p=-1(m-\partial 3)$ fogt $a \leqq r=1$ mid $2 \beta_{n}-\xi \leqq\left[\frac{a(2 a+1)}{4}\right]$, wobic $3^{\xi} \mid(p+1) ; \quad 3^{\xi+1} X(p+1)$.
saus- Jousinin Kainold. $n=q^{\alpha} q^{4} q_{2}^{4} q_{3}^{2} q_{4}^{2} \cdots q_{T}^{2}$ kamm mieht volekomumen seim.
11.9. 50.

Mibes Givter mad Vohimen.
(Sine arbcit vom gadisiger).
Der trefarer reigt turallefmeineringen der fhithe Nom Minkeviski, Brichfeldt si: a. siter den inisanmemhang rwischin Giviter Nand Volnimen. hls fitter wird jetit ine bifictig in Ranim vestrilte Pinktninge thue Gaisifingspsinkt ime Endliduen bevichnet, mad dur verfance kam teigm:

Enthait sin beschrainkter josdamshuer Bervich in joder -Eage minolestans linen Gittoriminht in Sunem - der asif dem Rande, so kame es in line soldue Zage getracht wholen, daso is minoutens 2 gitterpmenter inn muesm enthate.
thit fiete chisess fatios lasem sich 2 sitre sitir die hnrahl om gittupumbtern im . Sinheitagitter in finam Kospes van Vol. $V=1$ and $V>1$, dic fint dic Grixpe der Tranalatituen gilten, axit die volle Benregninge grrippe n'tertragen and dami't vescharten ti:

1. Sin jerdanscher Bersich $\mathrm{mm} \quad \mathrm{r}$. $\mathrm{V}=1$ kam im Iinheitgosttes duch lime feepgnete Bewtegring stes in time solche Eage gehracht wholen, dass keim siltanpmbit brolecht wisd,
2. Ins jodansores fitict mit $V=1$ ramm ansor guipnete Burepring stes in sine roldhe Lage
g. fchlart getracht wrodm, das mind. 2 Gillmpmikto (im Simheitgittes) bedievt worden.

Therin der erres Raudwertaingahe.
 if iogondeen Seck orthect mi Lion: In̈r jeides Goitt Gedrex iner geasiten Ntarse so Gelestue (welehe sis der chenge aller Gobicte us bets? Racizues didt seni sole) mid fïr jider riekigc ItA süfdun Raude eineo secenu Gioxides sodt mieniduritiyon thire ckir tas Kunere des Gibicter eine bivis bxion berninumet verdun diesible recrig en cie R andwerte ausolcicsst. Sie Eu'duckisteon dikrer V̌iorduiñg herwibs mider Pegel acif dun Rurkande, das die Freútekibn wè Onmerce eiver

 tot, int deuith eix oprotor defixiert, der einueu
 u sis zunern oon T ixiorduex. Isirpelereideu

$$
u=\mathbb{R}
$$

sind be sobaithen mis onf lineare Prolelence. Wixt gave
 Qublet der Hixcerila's, ai gustres Phavinumus ruizits sied
 hesderair kven f-vilenge sad eiree tompascke u-cllenge
 enie Ginñaloisnivg" exvitert, di milurall ni einuen Qobitt
 dassdicx suer xon or dokaicph, lärt sise seipme, dan sei sin Pole nivedrtues die Singritarshät dey Klarboheu TVewtonneden ader logarttunsoden Posutials aufurint. Síse usokecinalso
 mügcithe, die declisuee Racemerkoperotarectotseken taun, Man Kan veoler seifuy dous hei Keavíoder Síngnilaribä́ der

der Raudwertoprovator aiè einuer elliptischeu e. entopraique uien.
$-76-$

M̈ber eimige Trinsfoumationen im R_{3}, die 11.9. 1950. als Vieraligomeisielmgen der Eentralkolli neation angesehen weiden Können.

Walluend bei der Zerwalleolincation inn R_{3} der Out der Insiderppeunbet (auster dem Kollineaticrissendium σ gine Elbene α und der der Bilder der Feripum keti cine zn a // Ebene ist, verder als die entsperechenden Biver fins die zentischen Veusandtsehoften unn kernme Feaisien (diefin Beeng arrf dis Zentsum O des Thansformatiouen ähmbich molntulich golegen seim missen) genvälslt und die Fridermig ter Dijoktivita't dor Reithen entsperchendes Punkte aufder, Ahablen durth O (rise bei del zants. Kolineationon) bibehabten. Ipsezial Palle, in derven die genaunton Ftädien Rugeln oder gerrise Zylinder u. Kegel sind, weiden närler mutevencet m. firm diese, da sie sich en Verallgemeinerungen der Teliepperspektide signen, zuerfunàstige Konstsubtionspuinkipe angegeben. V'on mehseren Satsen, die sich bei diesen Behartumgen eigelen, seien evráthert:
"Oransformiert uran einen Kegelschnitt ars seinem Bremppunkt withts senh. Noleineationspuit daselben Charabeteriztik, so haben die resubtiesenden Regelsh nitte densciben Pasmemeter. Jot p. des Barameter des gege6. Kegelieh rittes, c des Wert des Chavabeccistite, so ist dos "äsameter der beruitio. renden Rejelschrittes $\frac{p}{c}$. " und "Eic CelisinttRenvenciner Kegels 2. ${ }^{5}$. mit Elamen, dis dureh simm Punbe O seines Fokal aiehse z gehon, weiden ans allen Gimteten vorn z dreveh Kegal perojizient, daen Spunstentven urit del Ebene durve O sentereft DFG Eisutiofgenkeh rithe oon fertem Gisameter sind."

- 77 -

28. 8. 50°.

Gurick.
14. 9.50.
grick.
$15 \cdot 9 \cdot 50$

Eiviga Sragen air sor Gobifigtor har Magmenatike. 1. Krunaterieg an züm Periorititisforit leitriz - Nentore,
 finligteritan fercinesatrilew.
2. Iuminfarm isp sit Shagematio she' thernegritaltesb tarote?
 Enflappinigen sho ser Grinulagan her Shatoernatie.

Gagnisaleng her kinerwoteiffan Banmitioneng siover sew Grangfule sho limentominatiges anis ren tazs now Hajos siber nin innglagzonengoing lonlygar formippen, grasaige mittee Sigeur iber sin sfiniennuiter Bla = timen ahlefer Grizgan.

7unchmende Funktionalen.
Le problime foxé int le suimut:
Dans quelo cas, une fouction $F(x)$ poritive sur lićinss aucte difime sur un esprace X foumo d'une stuucture d 'àue pent ethe smsidivé cornve la melem frovi l'énsentle $E[y ; y<x]$ d'une mesure de Radonitire défine sue X. Litude et faite daus be conditives á-dessnes:
X^{\prime} est un anss-expace de l'esface X des affications contianes d'un ispace compact \& sur un espace sue'tuque a donsé है. Sa structure d'ndue de e est sufpoíc "in hermonie" aree la toplogie de E, en a sens que bs eusentites

$$
E[\eta ; \eta<\xi] \quad \text { et } E[\eta ; \eta>\xi]
$$

sut fermies.
Lane eccirnss $y \ll \xi$ pros esprimer que η appactient a^{-} e'ruténéerr de.$E[\eta ; \eta<\xi]$.
Et anes suffoson que on sequents $E\left[\eta ; \xi_{1}<\eta<\xi_{2}\right]$ out this un dianite fiui it que Ant x gunent, intounalle $E[\eta ; \xi\rangle\langle\alpha \eta \ll\}$, semi-segment $E\left[\xi_{j} ; \xi_{1} \ll \eta<\xi_{2}\right]$ et tunte inters ectios d 'un manhe fivis de tele ensenntes at décimpisathe en an pens À

- 78 -
semi-segments disjoints de liamitos infénieves à un noubre posili'f torne'. La nee'tuque et l 'indre de Espermettent de défivic un ordue et une
 pine la distance $\quad d_{x}(x, y)=\max _{t \in G} d_{\varepsilon}(x(t), y(t))$ pron l 'ndue $y<x$ si $y(t)<\lambda(t) \quad t \in \mathbb{C}$.
Du sins-mpace X de X, an suffore fu'il ponide les ferfiétés sui rents. 17 I ent compact \bar{a} distance finie.
2of bs ensembits $E[y ; x \in X, y \in X, y$ nou $\gg 2, y$ nou $<x]$ sont inufact.
sy X intient inf. (x, y) chaque fis qu'il intient x ct y.
 serifinust $\bar{x}\left(t_{0}\right)=\xi_{0}$.
hat ampusines que in $\xi_{0}^{\prime} \ll \xi_{0}, \bar{x}\left(\xi_{0}^{\prime}\right) \ll \bar{x}\left(\xi_{0}\right)$
Hypothise avalogne prou le pers fetit ilíment $\underline{x}\left(\xi_{0}\right)$ réaitiant $\underline{x}\left(t_{0}\right)=\xi_{0}$
 de X), a pent to usee evelque sist $\varepsilon>0$, do déments yet z tels que

$$
\begin{array}{ll}
y \gg & d(x, y)<\varepsilon \\
z \gg x & d(x, z)<\varepsilon .
\end{array}
$$

Hent à soter que Andes os hyppothèts sut rérifiés dass le cas ì G étant le regruent suménypu $(0,1)$; Eat e^{\prime} esfare enclidiur R^{P} adonné for la loi: un rectem ent positif i truto ses condonmés le ooct, et X espare do applications de 6 su है ay ant un module de contimité donné.

La fristionvele $F(x)$ est anfosíe lof positive 20 mox-dicinionate cint - dire one $x<y$ entraine $F(x) \leq F(y) 3 \%$ contimes à divite cétà dine en íma $F(1)=\lim _{\pi} F(y)$ ò F est le fieter ayant prue base bs enseutbles $E[y ; z>x, y<x]$
con' 'stant, mos intioduisws to syotines S comperant $p+1$ dínouts abbitiaior de X, ℓ^{\prime} mu note' x it os auther $\mu_{i}(i=1,2, \ldots, p)$ et séififint $\mu_{i}<x \quad(i=1,2, \ldots p)$ et ans pooms

$$
\Delta(S)=F(x)-\sum_{i} F\left(u_{i}\right)+\ldots \ldots+(-1)^{k} \sum_{(i-i k)} F\left[i u_{i} \cdot u_{i} \ldots u_{i k}\right] \ldots+(-1)^{p} F[-4,-4 / k]
$$

ne fent alns énmeer le the'rime smiment
La condition n'cesaire et suffisante pine que $F(1)$ sit
la palew pour lo sus-ussuntes $E[y ; y<x]$ de X, d'une mesure de Radon forsitise définie sm X ist que l 'm ail $\Delta(S) \geqslant 0$ furm tres os syptinus S.

aur fructives uissants de fusimis rauiesos réslts.
15.9.50. Thizge the Fanin tor Bomtiater.

Guives.
19. 91950 liber Parallolverschiebing und Knimmnmpovechietursse in Finsterschen

Raímen:-
 Funsleischan Raiumon assfuiblich daygostolet werodon, wando dic Paredblvendiebung nochnals erelairt (vergh. 1.9.50). Ttian anf werde die Krimnuing Revie begrinadet, siden ale Mass ds Knimmeng
 dem Antorski'schan Tangentibineun, a welda Jedan Puakte des Fusber'sch Raumes gugendhat itt, angeschan winde. Dicres fïht ge emiem Stuciuen des "Creodèterchan Atweicheng", worreus such

 Integratinshinges eshait man dam emic "absolute "triemmung des Fubler'schar Ravmes, weloho nuer wom ort abhingt. Cusch aquot
 on Jowti, welde ins erlanbt, Alssagen über Ppotbene in ornmio an jojetem. Des Krimmmuanon list sich awh gemehich sele Khar denter, indern man di unfinge der Indithria (Mankershaxide
 nit amiender renglicht, to beide Flechinen an den dien Puatt bjggon snid. Enie analoge Fornal ayabt sich ane and $\sqrt{\text { inis }}$ de Elichowtiole diener beide Flashan. Dasselle Nrimnningmess tritl auco in enier ze dom hlaniohen sing vou Como-Bonnet analogn Forvel fiin Firishith

 itherenistimne.?
25.9.50. Bericht riber eimen Sarz roun E1 Hopy (pror. nal. Acad. Sci. USA, 47-5
"ins sime gerolissene Fliche mill Riemaunder Metris, welde dis Eiguns haff har, dg Barif ihe laime geodistisd-lonjugistan pinithe existiven, $o \sigma$ gill: $\int K d \sigma \leqslant 0$; d. . Shat in foscledil $\geqslant 1$, (falls s orientiablar in1). Selben wir turains, dy $\int K d \sigma=0 x_{i}$, or poly $\operatorname{vogar} K \equiv 0$."
zīnn Igevier wind de Tangentialorañin Ω von S hurnu grovgen, in welchem sim inverimuls Volinumm β dirch $d V=$ do.dy definnist wind (dy ind des Wimedeldiffermtine). Diess Mop ish writs invoriant gegenciber allen thonviou orphisemen von Ω, die
 werden. Es gelings wesiker, anis don Srimingen der Jacobtisten VariaAiousgleriding eine Frimblion is des Tangentiahraiums Ω 2- bunstrinior welou îber Ω instegrabel inl. Sie list die Riccatiode Differentiul glaidming: $\mu^{\prime}(s)+n^{2}(s)+K(s)=0$ laing limer geodatischen timie.
K. Yrichnep Dos Endergenis esgits sich dam dind eime 2-malige Integention disio gesiching machds ind dV andernigen Munformingen in wemign Sorilten
22. 9. 50. Wherbese ithe reladive Sifferendiageowethir in afpenem Raum: -
 anfeinanste beypgermer. Atizten soive in kolusikege
 deve 'Vordagentan endwrioble nuit gojeige, ruve took Drive to sthbiche elemandare Pexplenthereov nida
 Mer Lonnogonen otffinisiten sum Blasdhe beyne. Sabhousiti ab fowdeffale inladman eapte. Dis un-
 tamit verbundene Seomerto nive dinigenulctuaren
 इच्ड. Weire cinbanaw.

23-11-50. Geométrie infinitó imale directe eh équaliors aup devives particles du $1^{\text {er }}$ adre $f(x, y, z, p, q)=0$
 cimme applications de P'analyse classique. Par exeruple be thiórem̀n de Meusior (lieu seo centuo de courbure des courbes ग'une surfau S tean gentes on $M a^{-} M T^{T}$ = cerde paraint par M gans un plan nornal à $M T$) n^{\prime} osh au Roie qu'une propasition presque immídiate de géonótié des ensesuóls. On C'obhent en introduis ant l'onoomble limite sea cercles ($M, M T, M^{\prime}$) où M^{\prime} ool an proins infinimeat torsin de M (te que $\lim M \overline{M^{\prime}, M T}=0$) our l 'ensonblh èturié. Quans les questions soulevies par l 'etus de $f(x, y, z, p . q)=0$, il ouppl
 Ce smh le contingent, le PARATINGENT (wir Haupl, differealial un

- Intogral Rechnung, 2a Bans). Au sela de be mithodeancioune de tagrange Citbreure au champ des mathemateques utilisables, c-a. $\partial .2$ mnant ro mithores approximation correctè, et de la no Thode de Cauchy, on eut cossinit
- justement porir montrer es propuistes de orablise donis bénificie altesermére à defruir
a) Res sitégrabes contingentes, enlicis on wou bo theiorie ses chamiper de cines comenes (of. Marchaw Compositio Mathematica, 1936) b) res intigates pariativgeintos, goit e'objectio the appared en sivers problemies: etcure ses oobutions diune

$$
f(x, y, z, n, q, \varepsilon)=0
$$

qui tenio wers une iq" auy siffirembides to molas non inteignuble [cas de $\left.(y-p)^{2}+q^{2}=\varepsilon^{2} q u i \rightarrow d z=y d x\right]$; wheusion a $f(x, y, z, p, g)=0$ de la theine fait pour bs éqn ofll so oñuraise $F\left(x, y, y^{\prime}\right)=0$ on vee or
 possivlite analogne pour les areito se whonas'. par pirjechion d'intégnales
 convinil en ospprimant ea cond" 'uite grahhbli d' unsyst.

$$
p=A(x, y, z, u) \quad q=B(x, y, z, u) \text { équia' }-a^{2} f=0
$$

signale cervain thevacy zecants
de M. Kaplan envelatis arte g. Bouligan? ceus de M. Marchaut.
24.11.50 My/troragumpten fleum.

Ju vies pryiblinu firene sarkee vey kee hagecy nov M. Hill (Tinjechneaplanes, Trunack. 54, 1943)*) Si peinth

 kuizh, foxep wey feintofoning cin penifou torsinue.

 goer $a+b=(a, 1, b), 8=(a, 0,0)$, wot in thesincturn hovif if ly. A Mnsmengineyt eeme quajiyonge wit keer

 sun. Dever th il' gsybhoisix teennuer visit the alfigetini.
If tal or estrince geixpfrätus wit io gotsibuit ve "hernim viragures" fis ri fyer r berlueu gir y-aff.

 yfir riett as jith $(a+b) c=a c+b c$ froin $a+b=b+a$. Sies
 conthbutye. As abibrify. Kme tor Invays on $a+h=b+a$

 fis $s \neq r, 2.)(a+b) c=a c+b c$ [ore thath 2.) siny: $(a+b) c=a c+a c$] gychu, to byt jro flewint a, fic nlifg or gajfiñ $c+a-c=a x$ asfindar $\%$, in Juitinit nल o.

 di flymone Finufifter ly.3h:
I, $a \cdot 0=0 \cdot a=0, a \cdot 1=1 \cdot a=a$
IT. $-x s+x \cdot r=t$ i\% vinikeniy anfictuer pis $s \neq r$
III. r.x-s.x $\equiv t$ it enfurter div $s \neq r$.

ज्i cumbiün is Ghue shikh fiy aīe ic zuir Cueorkeming
 -astar $<-$ ast br Alym muth. Ir goth loper aytuc.

 ui toogr (tonuwtion:'), nifoun (hiomponesiff devrituinf)
 syo the ett.
f. teizks.
24.11-50. Auflösuny var gevkmpxytemen. Es werden tur listerention en geeich wysps. tems $f_{0}\left(x_{1}, \ldots x_{n}\right): f_{2}(X)=0$ die friossen einge. fuihst

$$
\left.\Delta_{p}(p)=\left[\sum_{i}\left|\frac{\partial x_{\mu}}{\partial f_{v}(p)}\right|^{p}\right]^{\frac{1}{r}}, \Delta_{q^{*}}^{*}\right)=\left[\sum_{v, v, k}\left|\frac{\partial^{2} f_{\nu}(p)}{\partial x_{1} \partial x_{k}}\right|^{q}\right]^{\frac{1}{\varphi}}
$$

we die Muítive $\left(\frac{\partial x_{c}}{\partial(J(D)}\right)$ die innerse
11ratrix tur facitincpin 111 ixirix $\left(\frac{\partial \sigma_{c}(P)}{\partial x_{c}}\right)$ ist und $\frac{t}{6}+\frac{1}{9}=1$ it. Damn in des eritee Kouptergebis des Theorie, dans mern in $A \quad f_{v}(A)=b_{0},\left[\left|e_{v}\right|^{q}\right]^{\frac{1}{\varphi}}=\beta$, und in
 durch my Δ_{p} (p) indere und $\leqq T_{p}$ int, dawn dos Rald jener denje bing wrmöge $y_{0}=f_{v}(P)$ din jansen Beracien $\sum_{0}\left|Y_{i} \cdot-Q_{0}\right|^{\top}=\left|\frac{S}{T_{0}}\right|^{\text {i }}$ ent-
hälf. Der twrite dm vortrarj lorjeceilete Snto beragt, doen werm (e μ,) cime quadratinlw luatrix sht, deren Ele mente won $t_{1}, . ., t_{t}$ differennier. bar abliängen, man dam lioh, \# $\left(\dot{c}_{\mu \nu}\right)^{-1}=\left(\gamma_{\mu \nu}\right),\left[i \gamma_{\mu \nu} I^{p}\right]^{\frac{1}{p}}=L_{p}{ }^{\frac{1}{2}}$
gesetit, dir beriden Relationen

$$
\begin{aligned}
& {\left[\sum_{\psi, \mu}\left|\delta^{\prime} \gamma_{\mu \nu}\right|^{p}\right]^{\frac{1}{p}} \leqq \Delta_{p}^{2} \Delta_{q}^{*}} \\
& Q\left|\delta \frac{1}{\Delta_{p}}\right| \leqq \Delta_{q}^{*}
\end{aligned}
$$

Waitere Anrwend ungen der obiztier-
ten Ansätre conr den berprocken. A Ostrowsla
 frivior genifues.
 Rustary

 Zitencention.

ats anomening ming seipt, 说 $A=5^{\prime \prime \prime}$ wirs

 rinjejirems.
$-86-$
24/1/50 Surles appuximations diophantiennes Pmeaires zeellés Sovent $L_{i}(x, A)=x_{i}+\sum_{j=1}^{q} 0_{i} x_{p y} \quad 1 \leq i \leq p . \quad(p+y=n)$ un syptène defumes
 Lep êde des silutiuns de $L(X, A) \leq \varphi(H) Q / H(X) \leq t \quad \varphi(t)$ finct un >0 de'rinimante en enten x er le fuilleine unalaype fum $h\left(x+x_{2}\right)$ oonne ds us uetats classoes prom le sugnature $(h=1 n=2)$: I theneme be Dincheet Mmiansker II thenime Be Kimtchine. II thereime of Thely chat H mkanski TV thoureme of Kuntchme-Min unsto. Pour un sugnature $(\eta, r i) \neq(1,2)$. Pu generules tues de I est hen caumue. Respuelemis cones puidant à II III II nontetr etuses quepousoes supnatures panticulures $(1,3),(2,3)(1, n),(n-1, n)$ suvaut lescas (BPichfelor. Khintohane). Dows un traval en colluhratun are H^{k} Euts. nus uvous pue étuolei le cus gereíal. P'amilo yue de IV vaut from trute soynature. Au con tione pant toute suparice $\neq(1,2)$ is y a of syptemis "Smynlues" nontrwianso. Ne sat sfasani' has aus anuloguis de II et III. Vorcípunex P'enurcé vanpuolleme II.." Pourt out sugnatme $(r, n) \neq((1,2)$ lexiste un systane A "pun" tel que $L(x, A) \leq \varphi(t) . O C H(x) \leq t$ aut moe sreatcun entcere) fpunthit t. avec $\varphi(t)=1 / t \frac{a}{x}-\varepsilon \quad(\varepsilon>0$ cnvenable) Neus procisement $x \quad n \leqslant \frac{2}{3}(n-1)$ onfent mearde $\varphi(t)$ (>0 decrussonte) arthinere. Si $n>n \geqslant n / 2$. indent pende $\varphi(1)=\dot{\psi}(r) / t \varphi(n-1)$ $\Psi(t)$ raumante terioouturs emfen ionerhave.
Musemo usile Luts insepeud arment à etwdiéles problènes anuloyus panles afpoop nuat cous diofernitcennes eneaws p-adquis

- 87 -

 sis u. Doun in jint peose tiving do the tine kenterte.

 poling mit Cimean's Thini de, 2utrotinder mory bue 2 . Cr.
 Ondonving eine o. G. Lisis nool bubere fu.fin dive shinien,

 Ressictet, z B. Sime dal an Amm noit aime Unalites un

 Fiwhlion sind v_{1}, \ldots, is sin Find opsth ate, whit elle
 lebe, das di kayf. Alpmane side. Bt mad dii Ondio λ_{j}
 \dot{n} t $\leq \rho$ h. (p.j. bodey, äf ${ }^{(p)}+\theta,+(p-n)+\ldots+q_{p} w=0$
 ds orsis Ni.a. Fi ale, it for abal. Ste pardes unele, wie Valivar seiob. Eive Kivkin do dien= Ni=l, dic bivele dinthe

 $\mathrm{P}^{\prime}(2 j \neq 0$, sind geamigh deb hime afele. KC.

Whthrach.
$-88-15$
Ränne mit Nittelbiedengen.

En, vrellgemeikntor Mitce won is Itgeunen ken" is emiem Remm
R (kmz : n-Milice in R), $n>1$, is eine Jhat figion $M\left(t, \ldots, t_{n}\right)$
 dasm $(J) M\left(t, \ldots, t_{n}\right)$ symmetrich in t_{1}, \ldots, x_{4} int, nod dis.
(3) $M(x, \ldots, x)=x$ in fin ell $+\in \mathbb{P}$ (M.R.W. eine Ratilding des tymems.tivichen Produtise an n Exemplaven ton R anf dessen Diagonele, die af der Diagomele die Jolentitàt itt). (Vgl. inock.
6- Therim con Armaim, inbes. Mott. Amenalen 119 .). Es baden notumn =
*N. O Rige Bedingungers dofio grikelt, dem in R is n-Milice for cs. Einen hotimotion Whe n, ore fin elle $n>1$, estitiet.

Sati. Wom in P ein n-Midel existisit, dam Lebin ele Honnotopui =
 So kan $\alpha=n \%$. - T公 aberche fimpeen inil endelik-vilen ssen -

 kim n in n-Mike, sbems for writue Briyuile.

Sate 2. Wam in R in n-Mrilel esition, daum it die Tho da $=$ $\lambda \leq 1$. mentalguyfe π_{r} Hoclsch.

Disüte $1 \mathrm{mod} 2 l a s o n$ sich livill am inn Founcl for die Honos topiegrappen habika, wetche moublangig em (1) und (3) phi jide Fmbtion M gill und anch weitee throveuderoghe La (a.B.intrpologishes fimpper): The belisige $\alpha_{i j} \beta_{i} \in \pi_{2}$ gilr

$$
M\left(\alpha_{1}, \ldots, \alpha_{n}\right)+M\left(\beta_{1}, \ldots, \beta_{n}\right)=M\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)
$$

Hur den Satean 1. mod 2. mod ciren dat me Honearica fogel
leick: Sats 3 . fift es in einam endlicken Polgeda P fin fides $n>1$ in-Miltel, dam it R in tich zmammon= सikber. - It ungchahat P in sich zrommanzielbor, to hame man axf fromed de Esweithing-therice de Boliedingen fir jeden h im n-Mibel Lonstionion.

Thi die gamesaheign Cohomologiegmypic imit Dim. del: chan Preyeden R ham - bir anden Mettedin-grotigt whi den, dass sie die Eigerscheft E_{n}^{\prime} Lebm, wein to in R
ein n-Mithe gibl. Tho
Sat 4. Cilt to in andlichan Polgeder R eim n-Miriel, dawn Sind in dan Dimmitiones >0 die Rettichen Zeelen som R alle $=0$ und die Tusiomkreffiziention sle an ithibhemd. Diss sind sthe stache toprologitale Sedrigungm, dii une is sel. tenen Fällen sffillel sind und die Esistans som n-Mitele weit B. Skluname. ghend aunsilistch.
25. 11. 50
lifer den bentijon Stand der follebasendenen Vormanting.
 ste Verranting in Ar Form: Jede songerade matishike face iot abs shumone draie mugeraden Primzatem darstelter, angagrafion and sith die dationgilten Erposonise.
I. Expmimentele luoteode (themmoar, fiyping). Vormatary bestatigt for athe $x=2 k+1 \leqslant 360,749$.
II. Dictruefotien (V. Arim, Buedstab). \& piet $u=a+b$ fir $n>14_{0}$, wobi a sond b hiovesten 4 Primfotition entiotten.
III. Stete analytisten Anotteode (Herdy, trtlenood), lant L-Retur mel Farey penduastigg (oi-gule oaris) und enter Amehene Ler Vormentuong $(H):$ is pott ei- $\theta<\frac{3}{4}$, Noden $(6, x) \neq 0$ int f 2 $R(s)=\sigma>\theta$ bei belisigigen lharation x and hoshe k, int erraitit worden: (a) eine asymptatione. Fornend f.d. An zace d. Sar.
 (e) die Oantellementait joden $n=2 k+1>n_{0}$ i- hr form nap+p'tp'

 dantelleter aid.
IV. Sicitemathode (Jilumirchaname, Pomanoff). \& geter riec Wollsouatento ρ, orden $n * p_{1}+p_{2}+\cdots+p_{3}$ mit $k \leqslant \rho$ fo jeden $n>4_{0}$ gilt. Abocito-gon
 Than 1136) n d $y \leqq 67$ (Rian).
V. Emishouspid (Siegol, Woefish). Zur thimination dar typathena (H)
-908
Sind Aunagen siter die Zevestaten der $\ell(\geqslant, X)$ motwendij. AL Salz won Tigel kam sias Wrefiok temulzt worken, enn $\ell(D, x) \neq 0$ fiz

: sele feleng Vi-opradour der hadheraio wow III, (1) Ind demit (2), entertinin-

VIII. Keme - alle Anatytiabe Mothode (tivinite). Aime golens hark

 streleng vou Trendakoff ist der Bewci won II, (a) gowan mach den

 athälfy int nova wesenterk, ater ench drwe paem soasen mader stermamen end Chovila jelyt man wit L-Reiken bearcisen.
4. Robured

Reike
7. Deny Problimen de Co Thiozio du Poratiel
 Nifini dam $R^{m}(m \geqslant 1)$, s.e.i., tymitipus $(k(a)=k(-m)) \geqslant 0$. On asmen
 L'eingier us a uoutur $J_{\mu}=\iint k(\theta-t) d \mu(\theta) d \mu(t)$.
 + ruicasen

 $f(a)$ unsume ; on sen adon $J_{\mu}=f(0)=\$ \% * \mu * \mu_{0}$

 Cattan dam a con neveb nien).

Pam den "noyave uigulion", identit' den deur difinitions as e'sinegis. On
 (Tove unsact adiust-if une dintisuention d'ofrilition? (B) Problime due bolyyg (Toutt mesme $t \mathcal{E}$ tent. Ill ite "balayge" then un fermi quelanque? (C) Probline do Beanbing: A-t-on, youn tout lermí, $V_{E}=w_{F}$? (φ vatationg daws mm tiveral aur Act rathemativa, en 1950).

 Pow (A) is (s) (yimeraniment) it pant is is sultie que tout sotintid
 est stictracent pinitive, attefue cite berm sufivience the b folsent αt; eta... Sham
$26 \pi 7150$

Die CARTANsul The mi den alten ne cende Fornen hout teistien An mending anfocie Proge L tive Diffecert-ir gemetvic den Nackteir, okn the Connanm $\overline{2}=\rho z$ der Flàdu yu-tu nie AHCertunge in p, the herie geometinte 13 c duth i wher, in our Rechun, esin jehen. Wat eiven Vountby un d. Rect ham horn wiere filmisighefr lekokn obunt evir Abanicery whe Kalbaics; veafiict miÊm
 $\dot{\text { ir }} \boldsymbol{1}$ emi p fof othe Fru fiir din dater $\bar{\pi}=\pi-d\left(e_{y}\right)$, z she kim $\bar{d} w=d w+c \pi 1 \omega$ Fink hen neme n; f/ewntiae gal len deitiblibu
 so te amu monai Nomung so far beju r das $\pi=0$, drume reduriey ins dak kalhail anfole Alos rioiker. - Veall gemerinesaye - Henendmo any xir Feshbenthedir. 13 criciun un Touss lech mo.

$$
8 \cdot 13 \mu
$$

$-92-$
H. Cartan
$26-11-50$

Sur le thínie dis foesctenms.
Se d'agit d'expoer les ilkuento: d' une thirice avondenent divelofic pers S. Everatiry it H. Cartan. On rapple le mation de mopule

 misdule B, parsient d'ue horronorghisuse $B \rightarrow B ;$ an mudule Q ext injesis! si trut hominuayhisine daws Q, d^{\prime} un arencounduce A de C se pollonge in un tromanorflisme $C \rightarrow Q$. Tre modul ist quorient d'in modich projunt, is pure ite porye dane un nidule injerisif (Barr). Cis derre thíorimes d' mistence sout $=h$ baze d' unse thiovie des "sasellites" d', ive frectenr domis.

 N-matule $T(A)$, ue a dongee encomorflismes $f: A \rightarrow B$, un Samomonghione $T(f): T(A) \rightarrow T(B)[$ resp. $T(B) \rightarrow T(A)]$, is manitu pe: 1) is $f: A \rightarrow A$ set l'idewito, $T(f)$ int l 'iduntit: 2) $\operatorname{si} f$ st compas $g h, T(f)$ at axpor $T(g) T(h)[$ rus. $T(f) T(f)]$: 3$) \quad$ i $\quad f=f_{1}+l_{2}, T(f) \circ T\left(f_{1}\right)+T\left(f_{2}\right)$.

Everuph: $\operatorname{Ho}(A, B)$, añer foution ise $A-$ madube A is B,

 gouche; per samople, le aritice jeuche in thre (A, B) ore end, b drair sat Ext A, B) (saryi in " notumicen"). an punt amsidem des saralicie itens.

 produit de 2 mptem top olozeppes, ute...
26. M. 50
fillaurdknoten.
2it V ein (ina alf. verthentelor) Nollring in der 3-Fphire r^{\prime}, dessen fecte A des Kudes A ist, ind l sin Kuder, der ant dew Rande an V liegt, s heint l fillaindturter unit dem Frajger he. Es arird geseigt, dew l seinen Iraijer to eindenty bestiment. Bescidhed man even eitaden Wey ast den Rande ure V, der suclehomatyp in Verider ater asf dem Rand uni V int, als Reridfioven, so helden k, die flewthael mo dzelteiner Menidian , wid dis Versdilingeings sable uns It send l ein himariantengotew mon, l, wewn he toon so nimbiert criosl, den dis flimilthall m l ind lom Residion pervar tot. Fols de Friges ein kresiof, Mowt erlall unan dend Vertaindurny on Ghuwiksall and Versalinguyprete densetben Kuoben.
Find mindestenotheiend ambai-ff"
11. Whabert
2. April 1951. Entscheidungen beim Kartenlegen. Es houndelt sich um eine bestinute "Patience", bei der derjenige, "der die Patience "legt", nach deni Mischen des Rartenblocies Reinen weiteren Eैinfluly auf den Ablauf des Ppiels nehmen koum. icr Tpielverlauf vollzieht sich in einzelnen Fchritten. Fer einzelme Jchritt hamn geventet merden als ein nach einew bestimuten Gesetk ousxuführenier Herergang von der nach dew Mischen entrten denen Permutadion

P der Menge aller Karten des Spicls, himfichend zu einer neven Permutation 9^{\prime}, van D^{\prime} 'ebenso xu $\left(\rho^{\prime}\right)^{\prime}=\rho^{\prime \prime}$ usw: tes Kaun vorkanimen: a) daly in der so entstehenden, notwendig van eiver genissen ftelle $m \geqq m_{0}$ an periodischen Folge \mathcal{F}, won Permutationen $\mathcal{P}, \mathcal{P}^{\prime}, \mathcal{P}^{\prime \prime}, \mathcal{P}^{\prime \prime \prime}, \ldots$ erine solche $\mathcal{P}(n)$ onuftritt, in melcher $\operatorname{fin}^{\prime \prime} \mu$ jede dor $f=\#$ Farben" $(f=4$ bei der gewo" hne. Whist Naite) alle Koviten dieser Farbe, georonet in absteigenier Anorinung, anfeinandes forgen; doum ist die Patience "anf gegangen" (geglu"ckt). Oder b), dall dies micht eintritt, wie meit man auch in \mathcal{F} forlschreitet, wo daun $\rho(m)$ fins $m \geqq m_{0}$ trabil hei'ye u. die Patience "nilat ampgeht". Es entsteht dit Frage, wie der Foll b) durch ein Triterinm firn dew Spielor extceumbar sei.
bin besonderes Name fir die besprochene Patience i'st min micht bekcunt (vgl. l.c. unten ग. 148 "дouerPatience"). Wegen des Einirucks, den der Ypieler bei lang anhalfénder hastiger duspührung des Ypiels macht, murde sic man Kamerdden im Feld (1914/18) "Wahusinus-Patience" benannt. Aie einigermałen umfangreiche des untersuchung des
"Itabilita"ts ~ Kriteriums", -damals mie jetrat durchaus abvegi'g und DFG inaletuell-erschien bru.
erscheint im Jahr. Ger, N. Nh.V. Bd 53 , Heft a (1943), Bd 54 Heft 2 (1951). Vgl. auch 4 Waten in fits. ber. Bay. Ak. d. W, Yag. 1943. Je. Gietre.
3.41951.

Üh minuoriff Snforition persinch sifferantinghinfingor.

L. Tolly

441951

-96-

uch Drffesiagaikeng $\omega^{n}=6 \omega^{2}+2$. Shi tisigum tivel is $14<\infty$

 Un da lave de Khorex, Loshe surw it in akm piem $\operatorname{mos} \frac{5}{2}$.
H. Wibtol.

Betragpächen analyliseker Furthtionen: Thriuming a. Wertvorval. 5.4.1951. Ses Träges eiver anoly1. Finktion w(z) wird die "einfackste" Rienounsche flâche verslanden auf der w(z) eincleiligawgebvitet weeden Kaur. Eivige Eigeuvehafter de, West vorvats vor. $\omega(A)$ Sind sehere duah die Stnikler seives Träges vorbesticunt. Z.B. (fur hannonisehe fónen onolog:) Troige unt NoleBand, ohue Ireeusole Juctlicn, thue beshräulte Niell-kouslaute Findlion, olue licht-Korubante F'or wit endlielen Dividetiitgreel - Wir hebew iusbesmetre hervor: Lionivilu träger, arif dreven Jecle, rividenboge, buchrainker F'al selem in live Rorwotante ent autet Cnsats v. Livrivile" f.d. Ebene), und dogegen (Livriville-) Free Träges, anfduren es eindent. beschäntete, ober wiol-konstonte Finkticree gibl. Beispiele datr, Voll-bw. Eudl. Ehere, Flächen vom Le. selectst, avolog k-bēatr. Flächen ols Träger algebrvider F'ouren (inud deren 1-1-Bildu) - btw. \&inhertiki;, Kuverselle Wbulageringsfieiclen liver of foce finktiater Ebene. Hinwei ouf Aveiten var Nevanlinua, Phligu, Saario, Virtauen rice.
Triicumuinogverhaeten der Betroygfiächen $h=|\omega(z)|$ ergits sich an $K=\left|w^{4}\right|^{2}\left(1+1 w \|^{2}\right)^{-2} \cdot D\left\{\frac{w^{\prime 2}}{w w^{\prime \prime}}-1\right\}$. Forderu wir-global-eiusimi-
 iber dos Vortesiden. Fehör du Difuentialaisduide $c_{(z)} \equiv w^{2}$: ww" hi eiven Licrivilleträger, so aitet er in enve Teristante ow, ciud die ollg. Fothusen $(a z+b)^{\alpha+i \beta}$ sind die erenigen F'ouen unt $K \geqslant 0$ je wach-
 Theien Thägu so iot $\omega\left({ }^{2}\right)=\omega(0) \exp \int^{2} \frac{d t}{a+t \int b(t) d t} \quad$ unt $b=1-\frac{1}{c}$

जud $k \geqq 0$ ic wach $\left|\ln \left({ }^{2}\right)-\frac{1}{2}\right| \leqq \frac{1}{2}$. Ungellects er buils jede belielige beschūates f'on anf enem Freien Troger $\}_{e}$ wach der varigen Quadvator forcmel der Miffaí belietig vileter $w_{c}(z)$ af ∂_{w} iber z_{c} uit liusinnig getemimuten B'fuenk>0, brw. K<oim Sesanctovion\%.
Bertpiel, wowoch den Quadrakirproters vore civen Limsilatrager (welectene) to evem Freien Träge Villute, der eim Tereferiche vor der Vunwegriugshitelor eivee leviversellen Thoulageniugplicth (933) enthäls.
Veralegaineineningen bei hucalune andever Trílhen als $b=|b(z)|$, bei Andening der Aundamen viber de titee des gefordecte. Knimumingsverhetter, bzw. bei Veviehs arf globole Betroutting (Ehwo: Essatt des Livivile vehen fetter divice trisoogen ibee Welvorvat ic. Teilingehingen even wescut.
 Egen herich (fiessen).

Bemeris dor' Riennameshou Vomidiüng füs Kongnieuz= füntarionvulcönper biliebiser Sesdocars.,
Dünshlärips or die säurtiduen ganque Divisonner lines algehaishear 〒üupsioneucë̈mpents k / Ω, dessur
 so besass die "Riemamushe" Vernuidiengg, deß die

 bewris diese Vesmuisáng de accif sein arillamestischane Wege dedünth, dapo bor im mütiperketonturing wou K eine metrite definvionor (die ine perassisthes Falle, wo Ω ever, tromplesse zolereöomater ist, dümle line
 daft diese poristhe afinitriss. Dis Bemeismelhoden

 këmpens an (Grelles 子. 177, sit6A). Es engelien sich

Asniendüngen auif sehleutheoretische Probluce, insbe soudene,

Peler Rogíelle.
Tuheet, lep und Finteprel

Firen acensendiences.

3) Veu voruturice 1 -dins. Tubelte mad leape. (Brider dandeling

6) Bblanuing des Sof. des imeswen bephes uist Taife des ingrow lespos dure Noceplewcutsideneng.
 meuse.
Fimu sreden die Berreis fie die Oxthopocuchicmeviest vin
 und Weilande Shissiest.

Robut flumide
Der Helly'sche Satz.
Dierer lautet: "Wenn C_{1}, \ldots, C_{W} honverse Mengen in cirem $(n-1)$-dinersioselen Edklidissten Rawne sind und gedes n-tyade dieser Mergen esten gemeinsanen Purkt leat, so laben sic alle

 Rames. Co iniol gersip, dess des Suk von eiver visallleemeineren Netar ist. Jst riikad E ave Merg, in der ate Fambilie of von Unterinazite ansgerarlunel ist, die 2 Axionen genipt, so gith der Hely'stes Sele. Diex Axione lanitor: 1.) Aus $C_{1}, \cdots \in \alpha^{\alpha}$ folyt $\cap_{\nu} C_{b} \in \alpha^{2}$. 2.) गst $m>n$ und $Q_{1}, \ldots, Q_{m} \in\left|P_{1} \ldots P_{n}\right|$, so kamm man
 $\neq 0$ ist. Hiertri bedeutet $\left|P_{1} \cdots P_{n}\right|$ die "komneres Hille" won
 wher thium geovelvten Köper - den Axiomea gennigen, ist levert nech wn wheith. Dew Berees, duss dic Axione in jedem Reume gelhom, die dor Axioner der Thridere a Awranuny gennigen, bedarf etmes

 des touncils of the hodean Male. Sar. veriffertherth wenden.
F.w. Las:
14. Apiles 1 A Apporimetionen aurg tin her Funthiones anf Ricinammishen Floschem. Dem runger hor Sor rumaid ham min dio folgende Formulieinng gelen: Jede inainem gegetenen ohtiiton Iv lichati dat - Ebene regubire Frunttion ist dann und nus dain dost dunch it rijnem ta umfarmender selieco Lo'negnlifitumbtiomen in (R) g aithmiong zn appraxisimieren, memn ala R Pondpmet k
 bindbus sind. Van dienes Formuliaung wrid angogegangen, un dir Finge RH beantwarten, mie des michtuithilè suliet zo berchafon vein murz darmix alle is gegebenm, miotolliditan Iebicte to regulicen Punthinn $f(z)$ dentglidhing
regulëre Funthionen approtrimient maden Bönrem. Die hotwendigen und hinrecichenden Kitesrion dafïr wurden bespurchen (siche Mact. Amm. Bo/RO) Jon Ansihlurs daran wind gescigt:
 Riemanns he Flaithe whellizen werden tönnem.
2) dii Vermutting vm Cualtiádory bernieren werden 4ariz, dut etugider miftgenhlonem hiemanm hem Pearhe eineriat dant Punktion gibt, dii anf ih wiberel regulai int. E hann dauibure hinaus eive datregulaie Funttion angegelun wrelen, dii wicht fortietz bar itt., Alle tehieti of Piemennih Fezh iind Regulavilitigelikaund deheca regnlai hown!
 zoheree Vüandulichen formwiertound om sciten Konnequeus en gespocter. Herimid Oehinh

Ungleichungen für Eigenwerte und bou. 26. Mai1951 wae Funbtionen.
Die voin Choing, Weyl, Foin, Polya und
A. Konn hergelciteten Uugleinhuyen
twision den Eigentwerten ciner
Moetrise A und dewn wan $A A^{*}$ werden wot denre wan I Shus eimpfirlurtar Bugnft der bouba -
wer Funbtion unelrerer Veeria.
blenin tusanimenony gehradit.
Auf diese Wirse lossen tich wow whl die teverab uyen
fur tigenwate weiter vo all gemimern als conle die Sencershe Theosic wierfïh ren.
A. Oitrornsti
liber eine shenge fasurng der Mishtoof ithen Bengmess. theorre duch gori simuetere itogregleithongen.

Sie traditinulle Farrung d. Rengangs problerm dun th Kitch hoff itt mi id wideroprushoutle, da am der Amniknc $x=0$ and $\frac{\partial x}{\partial n}=0$ anf dem Shivm des iden x. Vushariden
 Folgon sinde. Nach sinom Vasiblag van H. Shatpos (awn. O. phyp. 1942) Rann nam nun dii lionny x to besiden Saten dos Bengrougsitivmes in forme ven Fraria. Rtencen dantillen. Aordul man mun Stetighey rom u un $\frac{\partial u}{\partial x} m$ due Offrinary ale Bedingung des axalgisishen tusamenon. Lenges des Lirangen in beiden Sisten des Shismes und sutit als Randbedingung $x=0$ ant den Surimm, 20 eugbu rich evre' rimaltare Bit Antegceglishengen, dic des Problem cindentig deturuinieren. Es saude an Lotrangyanat fin eine ant cinen Jpact scatesectes enifalleride hutarile di.s hanrut. - Ins trunckgreifen rapt das Hreyghens ithe Proizio
 greethorran usift.
26. Mai 1957.
$-102=$
van Kiarven definient, die sinen genvissen Zweig mit einer höheren Alulciphizität schneiden als man emma len mirde, wenn die Kunve mit dem Zureig nun die Nohboupuntele van niedere Ordnining ge. meinsarn haben. Ith habe das in den Indryationes (EPre. Amsterdam 1951) nither ans gepühct.
B.L.v.d.Woun
22. 3nini 1951. Ein ncries Eingoun in dic Finthtrineatheanic,

Wean t x xxyi, reidit Frimexion $f(t)=4(x y) x i b(x y)$ in Bencing g sterts

$$
x=\frac{\xi}{5} \times \rho \cos \varphi, y=\eta \times \rho \sin \varphi,
$$

So taikes dir Voracitisefing,

Enifack Reans tirns aes mis (1) gresizaduitend no
(i) $\quad(3)=\frac{1}{2} \oint_{1} \frac{\text { diendr }}{t-3}$,
 abo geais.

 bekmmin Wabe ti: tel dis imance kit Kowasmen Parke

-103

(f) $\gamma(a)=q^{\prime} \times a_{1}^{\prime}(x-a)+r_{2}^{\prime}(x-a)^{2}+\cdots$

P(B) tin (3) idactin A Bans.

P. Heftue.
thew Proluser Trifter Frwihurg beilt nuis dasoder inn ihu am 22. Timi 1951 ni Oher mulacis peinulene
 thiswhengen Ahasumie erschivinden Piztata vor Stom heridulest iñd montlith comeotert osid. 8. Sprie 1952 G.a. Tavitz.

40 yahre quas celletirch. Geornctuci

Naek einem gralidit fíhen Eiberticick ater Giviclloges, Nerow, weet Ruenuir-Ken-ngen der yua sielerxtinlue, Goometwi,
 E. fō̃oy, W: Blarduke, fivanamalo A, है

 daenkciondipervetuei (E. rex?les, E. Mraỳ-
 Rinke thktokĩ̄n de Doentellay on ebesuen perveringen rim pocauctesstaíás. Vies rim dinzuasiller)tínk fo onceli abs Jovalicuntar theons dey enttrekencle. aboikez, filield enyofutiat. Nh Noe the -
 decatenniomer (Vge. Ki.ßreldera, Zer saťlefir sows un Paricesete.
 Cliffonnhus quaticlintinke hlie. Evingen, suiz decesthele dis ebeur... Thearpinges derfentult $x^{\prime}=\alpha^{-7} \times \propto$ une9 dii binets - brs. Reeletialivacingondin
 büy dicliClan nben hkibbiäfen win
 неси Dink-ciò Reehtrueff Nown
 sualy tirn edegnkelt. Deiaī̀h gao wukurn rimfoch eckeĩh Keneua-

gritpen thervebisch the kevoukt werest, derith eutruesken foechen go goviset
 Ewapuigen des cuelates jeju das liza. Mivifeles, Ebcuen jederk Ducelegringons wothi zash dun Lacptras al Kercena
 nxो vies oil Newnjuigon den keetles in 2 pelt vörnirtien, has ferkion linkan niet
 bilat vidh dabei unf geus kurying
 bein ásuivatut in, dai den Riripato

 do ibue (geonvetio derforuen = n'心siectis Riniva lewentif ansi ithes شetülebuen Águivabuztbeyrifs, wach dun Fiencervon oricut: Vixicaclecuestin a] Civalut nu woue in diñy (konesei-

 seetletey golerepe, befanttenich du juvir

 viduen. bif purek de feras ing fiffen ab Rith distposer. Ax inselevuert
 Kongricut in mí as Jurbiue, dí des
 whertit. Arucirfiet abifice She fios binen. ficitss de Kekeygner oncle, hiwn nich onf ifpteel, ficasindery

 nutur as des kekupwinden, ${ }^{2 j}$ des Rebec-
 tixeratint af dis Cupporwetùes 11 mm Kii; 2) von Lagerece 3) vor Keítizis. Zieht swar diar hesfohun der zypleror opuntie 'erau, da or: Huiceceleneqt
 chrulen Neffise abbilikt, to purinuet
 delkiweswetiahondahtoring as frasele, auf Türbiwen des Kovencuttriv enfackles Kecheviducís fièr di eckl:unlw foseinn- blijel-Irourfonciar 2im. Sim Ruzerm preingickes rewhirnendan pucigeteitten vortraz vondeven hiè néer die einfork Fiví, lejïng eriw allewerzen tiepthen Kustienwnotpatup wetuy vier weiz sän kerntuench ${ }_{2}$ ghkel wis drikon-
 ment, deicisem 就k \& erwent pignoj wet wisien, Könceg, Cuailest. - fec, (Vyl. Ruvibuas, h J. Ber Wié, 1430).
Kifucikith (Kachimizr)

Eine Aufgabe due progethiren Geometsie.
Schreitt men vou einer Rounntewrve viester Orelnug vistor Ast 4 Immbte in eino Chene und in vhmer die Tongenter wots, to miner 2 Bolingnuges es fistet tin twrsthen drosen Buthommenotidek. Drese lassen tich redmesidel 3 pcometrivel ocuf urvericolene Anteu Casssu. 6.85%

Lrigulantis des conttes klaues en gernetrue projectöre diferentielle
Int, sur uve conste plame C, ue brouku anoly tr pue dische mest de clase $m-m(n>m)$. Avec la reube ereep ctira da cas rì C est une ampue, itest tripries poritle se fiser un triangl de reiference uetunuèpes prar rappent à In hraudle. Li e n'est pras de le frome $y^{\prime \prime}=x^{n}$, on trure pour be developpements caunompues des crordouneis usan honnyèies

$$
x=t^{2 m}+K_{r} t^{\text {minern }}+K_{r+1} t^{\text {mourrnr}}+\cdots, K_{r} \neq 0, r \geqslant 1
$$

avec le conchitines
(a) pour $n \neq 2 \mathrm{~mm}, \quad A_{m \times m}=X_{n}=X_{n}=0$
b) prom $m=L_{\text {es }}, \quad h_{m}=A_{n}=A_{r+m}=0$

Les 1_{i} aver icim mint dis muramaucts relatofs et ix est de sume eu trut con, prour h_{n}. In indition $h_{n}=1$ perment de frain le proit wibib' dive form nutinneique.
 dawes leseas as égal a max. $(x+3 m, 2 n)$ dans be con b). Le print went deperid de l'vidu uffixuts ivast $x+m$.
 centripue

$$
y=x^{2}+x^{5}+\mu_{s+2} x^{s+2}+\ldots
$$

in $5-1$ est l'rche de contact de k hauche avee. on emique orecelatince.

$$
6-8-1951
$$

I.Amarchen (Machurd)

V108
Textilgermetie und pupèktive Ükertragungon.
Die Vurven eniss 3-Gpwobe in do Sbene lasser sidh stets auffasson als feodatis due evies pujektrien Zusommehange (Syptem of paths). Sie gesountheit der pujehtiver zusommer = liänge uberevievn 3-gevote liangh ab von evire Funthion in zwei Jairabebu. Unter iburen giti es eviren anogereidueter, welder geour. Sedentuly besilat, Mainhich dor zu soum mankang, dessen Geodätisdue und don Vurvar des gevebes lunstarte Doppal feialtuisse ahder. (D.V.-Syptem). Eui Kurver-4Gowele bestrinut don pig:. Tnsounmenhang evidentig, Dise Firgen lassen sich durtr gahend auf a Dumorriarer verallgeneviern, viden de Feădon ens foweles als geodähsche Feider anfgefasst werder. Sie purj. zusavrmerrônge (üfertugungen) iter eviev (u+1) -geoke

Automorphisms of Bilinear Forms.
To parametrize the antomsthisns Y, of a bilisiow form with matrix A, ie. Te matrices Y mun the

$$
Y^{\prime} A Y=\mu^{2} Y \quad(\mu \text { ascilar }),
$$

Consider the transformation T, given by

$$
\begin{align*}
& \mu=|\lambda E+x| \\
& y=(\lambda E-x) \operatorname{adj}(\lambda E+x) \tag{1}
\end{align*}
$$

where $A X+X^{\prime} A=0$,
and consider T as a bisitional-traneformation of the lunear-atarendifined by (1) outs the group manifed, $V\left(\right.$ lome of all $\left.\operatorname{fon}_{5}(\mu, y)\right)$. V_{5} a Veroneseew variety (rational), namely the transform of \sum by a system of pronis η order n, passing trough a base-lows, D. This locks D, is deternimantal (feer giver if adj $(\lambda E+x)=0$), and its components and stature (the linear spaces bout it caries) have been determined. See my paper in Proc. Camb. Phil. Soc. (1951), part 2. The transformation of the points of D, gives the exceptional mathis y, not obtariable by the explicit parametrisation, considered above. In the lecture an ont cine was given of the results for (i) the orthogonal group, $G,(A=E)$
(ii) He symplectic group, $H, \quad\left(A=I=\left(-E_{0} E_{0}\right)\right)$.
(iii) the intersection G nH,

- (iv) the general case of a matrix A, wuhl|hal|A| 1 |
L.S. Goddard (Aberdeen; Scat hand)

Womplesifhilum els Shicbfaidun.

Fine cimporametrige sheos une prgeN位iliden wenum wir im "SilicGing", dii Bildes cives prixves Geulorilun dabes ciue "Borken Kiorer. Fo uncoderi dic quyillen Shichrigen ishonioll, kei deuns dic Louganlen on dir baknkunten an jider slille cium fed unt de shichry uobindemen livoren Krmplese onghïres. Dise ${ }_{4} K$ -
 inslexandere lectelt cium ciusenderity Jriondmis zrinten den K-Shidrign and des eingenameloig Shoren Rivenrer Vomghace.

Destide buiden dii K - shichijen eine grajuck Bussis jni' Behandesy do vwomghefluilme. Pisme komglexpeithe wird ugusige drinh Anneushiy cives k-shichy oinf live dum misyegideutem
 de K-thilenj ülulngm rit uif di Krmglenflare.
sgejill K-Shichigen fïlore onit yes ialle Vomglexfleile,
 Khane sind. Jhon sejligile Rorklejg yentiunt mon ons diosum
 ind stme audere thicpustare.
7.8 .51 .

Warlin Borrnes.

Grundlagen rimer koordinatenfrieien Konnone gomotrie
$\left.E_{0}^{E}\right)$).
$|=1| A \mid \nmid$
Sarthand)
Bersibt "bhes den Intiact ines in Bearbitiong befindelichen "Eingübmay

 buld in das Gestrylye mengenthervetisoluer kompiefationen ader unan buscheriout side vou romhereem oup sinan Bereide von Objebton, zanem
 schliesst, des aber doal allen ang stsolient. Zow Beispoil ist pis mive an-
schoulide Kurven geometrie micht imbuschen, warmon mean sich anf Objeht beskeranken sollte, dis in ifterer Ganzheit bereits duarsh in
 garabletes Eshlarmagen, Goundeogen, des A whoun und eirige Einzulhesten des crwöbution
skirrisis.
7. Angest 1951

Lomis Lraher. Enint
7.8. 51 Jue joungings the orie sitee idisenue tolyeda

Is sei G vine Bengingogruppe im Ne dim evitelid. Ramm Tre, ai dii thameation squippe Ti enthäle. puit Tayidu $A, B \in B_{R}$ himen G - quugimgogerich -ymbidiseh $A \sim B$, bem jueq imigen exisfiom duFomm $A=\sum_{1}^{n} A_{V}, B-\sum_{1}^{n} B_{V}$ mit $A_{V} \approx \mathcal{S}_{V}$ (G-Rongrient) $(v=1, \ldots, n)$. Mit n. A lugeicmmen his im Foyidu, din neh els $\sum_{1}^{n} A_{V}$ mit $A_{v} \simeq A$ schuilm lisst? ts quetm ai hridm fï dm fomacen suy bai enin surignngs the ovie gmmaugenden Hiyssäble:
(a) Ans $A+C \sim B+D, C \sim D$ foegt $A \sim B$
(ll) Ansm.A~n.B fougt A~B?

 Beneqnings qiuppe fon J. P Sy dur (Comm Matt.
Znkr emem i-shifigen jyein au vastetm nis in Polyeaw ar vich as i-shifige thisfertorti sele Inmme $A=A_{1} \times A_{2} \times \cdots \times A_{i}$ mit $A_{\nu} \subset R_{R_{V}}$ $k_{1}+\cdots+k_{i}=k$ darstuen lipst.
in lubilbiges Polyeau ist demseh ein 1-shafiga Jyem dur, in Parsuecotop in te-shifigu syem du
Hs giet du forgenau Hiefssab: In $A \in R_{i}$, so yiot He giet du fougenae Hiefssab: In $A \in R_{i}^{\prime}$, lo giot
u ine jungung $A \sim A^{\prime}+x^{\prime}$. IA mit $A^{\prime} \in$ Rit1 u ine juneyung $A \sim A^{\prime}+x^{2} \cdot \frac{1}{m} A$ mit $A^{\prime} \in A_{i+1}$
 endichvillm i-shefigen Hylindem G-juugmogguich कind. Apmbar gilt $K_{1} \supset \pi_{2} \supset \ldots$ s π_{l}.
1A luguichmot das nich aus A diñch silataition mit
 juegmos gerietming mox = A lin qeqebinem A sk ts inc mix (kis ain G-julugings guriche) mie ine hisming hat h rind $x=\frac{1}{n}$. A jeregt. Mit $p=\frac{m}{n}$ xid $p, A=m \cdot \frac{1}{n} \cdot A$ dimint. \sin quetin ai "ubechen dishitietiven girege rie ($p+q$). A $p \cdot A+q \cdot A, p \cdot q \cdot A=p q \cdot A$ um. - ל Ram min ime puregimps algebr a entricteut nesdm. Sine Forsme dince $\frac{M}{3} \mathbb{K}_{4}$ yber laitet $? B$.

wuetu ain unictet, am wischn an vation al dilationem Pouyedem A, pA, l., pteA ine Jueymgrverion

$$
q_{0} \cdot A+q_{1} \cdot p A+\cdots+q_{e} \cdot p^{K_{A v}} \text { lusthht. }
$$

Nach incer Hamulsefm Krustintetion lint rich einc Preyeduhasis H_{τ} aïpteleen (Wrhersatimen!) os, din sich jeas Payiau A any ome ma mine ence Nive in du Farm A~ $\Sigma^{\prime} h_{\tau} \cdot H_{\tau}$ darsteuen" eint. गK Natin aum Kreffijionow
$h_{\tau}=I_{\tau}(A)$ कina Fintetinn au $\min A$, ruche ais sigunchapm (T) $\phi(A)=\Phi\left(A^{\prime}\right) \quad A \simeq A^{\prime} \quad(G$ imwasiand (II) $\phi(A+B)=\Phi(A)+\Phi(B)$ (adaihi) wuy virien. heant rich mì ènc Vevaugemeinoring eines Sabes om B. Je sen (1941) gerrimen: frui
Bolye au A ma B sina dam ind mis daim
Si=1 G-sorugings quich, wem fie due G-invairianher DFG mide exuitiven Fmttimau ϕ gilt: $\bar{\phi}(A)=\phi(B)$.

Itm ine effeterive (micht mix fomack) Lismy as jueigmins poabums jui gerimen, minte man min sii Fim Ktionau $\Phi^{\text {Kermon. Man Karm quigen, }}$ $\operatorname{can} \phi(p A)=x_{1}(A) p+x_{l}(A) p^{2}+\cdots+\lambda_{R}(A) p e^{2}$ (Gui pratinual) ist, neri mì ai kreffigientm Ymetina au $X_{i}(A)$ natimuehomagen rom
givari i sina, mam $X_{i}(P A)=0^{i} X_{i}(A)$

$$
x_{i}(A)=\Sigma^{T} \varphi_{i}\left[V\left(A_{i}\right)\right] \psi_{k-i-1}\left(T_{k-i-1}\right) \quad(1 \leq i<k)
$$

premi rich ai Dummation vilen ale i-dim. Rand. polyeau A_{i} urn A jï ushe cken hat, ind φ eime Caviehy Ht am usetu tirsmy au Fintetinal quictinng $\varphi(\alpha)+\varphi(\beta)=\varphi(\alpha+\beta)$ mad $V\left(A_{i}\right)$ dos i-dim. Volimien IM Ai lue autut, Ym lugrichnut Yemer in Eintetion ae du m-dim. xphänchm Triep acye au wì du (K-1) - dim. Enhinitspokäre Sfe, mit am ligumch apm F) $\psi_{m}(T)=\psi\left(T^{\prime}\right) \quad T^{\prime} \approx T^{\prime}$

 $S_{m} \subset S_{t-1)}$ III. $\psi_{m}(z)=0$ fir in quicele.
T_{k-1-1} enguicmuet min ars. $(k-i-1)$ - dim sptivirinth. Poyeda, dos avich air ly A nach amine qurichlemm Nomaunvektorm in incum Finitel des luhachhter i- dim. Randpolyedus an'f ar $(\mathrm{c}-1) \mathrm{dim}$ Tphän S_{t-1} lusctoriebm vird.

Komittich emon rich wu Fimletioneu Di in dew shm ư̈urth Fami derstuem. Im Facio, G: nit am veen Bere inigs quippe poir ammen faus, nid $Y_{2 m}(T)=0$ ma denmereh ist $R_{R}-2 m-1(A)=0$ Fals di exrëtmale Nomuetinig putrift, lonen rič
 ai G-juceynngs qerichluit A B B mit dm this angefibmen FM Ktion aem daainch ain dríc Kem, $a m x_{k}(A)=x_{k}(B), x_{k-2}(A)-x_{k-2}(B), \cdots$ à̀f aluon minn. Fir $\mathbb{R}=3$ hat man $X_{3}(A)=, X_{3}(B)$
$[\operatorname{ain}, V(A)-V(B)]$ mad $X_{1}(A)=Y_{1}(B)[$ Detmichs
Bedingmegen; dine x örex dimn ach not omdig mad himuichmen!]
Faus alm G mit it jün ammeny älet, hittt dir Vomniting dbm richujue, mid dempüfolge team ds Tis alem du hamlativen gune tming quichtinit rastöndig geñst nedm. 7. 8.57

Nathirliche flichningen cimer Fride.
 in Creidinumsionalian Revimen in des thagelining dos Psinkles $p=q=0$ sime innd mir sime malytiode Feriche $\mathrm{g}(\mathrm{p}, q)$, wetche fir $q=0, p=3 \quad(s=$ Bogenloinge! $)$ dind nom lerielig wrogegbencen analytixdion Streifer ${ }^{\prime}$ geth, derem Paramuter p, η isotheme parameter

 $f(p, Y)$ ixl. (Hiserbes deff pis ϕ mir sime solk marriank gecommmen werden, bis welour dix giedining $\phi(E, F, G, L, T, N)=f$
 logie sirir eienon Hanemtheorvic $\phi-\phi(p, \eta)$ ato matrive de Senchning" oson y $(p, 9)$ bersid we. Firt ϕ ramn int die gaipssele Thimming K, dic mitthere Kinuming H, die hermomisda Krümining $\frac{2 H}{K}$ inad eime iv Nrimpthennminingm seins. Fin ent.
 des ophinizishen gieds arm $g(p, \eta)$ sind. Solligh ore termin sich

- 115 -

Ginindfornv" $\frac{1}{\sqrt{E G-F^{2}}}\left(E d n^{2}+2 F d x d v+6 d v^{2}\right)$ lonw, die anculvy definiorse relative dritte finmelform der Flaiche ig (x, v) virgible, Mangelangt zo is Varullgenveinainingen der Resultale ver Scherrer. (cormmast. math. hoh. 25), 8.8 .51 .
K. Yeichtors

Über les Eis pannug pwblen i le
projeklive Differeutial geomehie.
Q. betraille lee p-limesioncle Flaile F_{p} in $n=$ dimesiade Ramm projihtive P_{L} İR los Sindiun de Fp is de Unsebung eives Prinkle P mus man zuneibl des Eispanmmpproblen lösen, d.l. ein i Pangehpleles ôrliches Basisposter augebe. Aeber mil es davarf ouk omme, lieses Basisssblen as ze wéhle, das es sil le le projehlive Transformatione des P_{L} wie ei fontheverialei lineaver Ramen verliell unl k ll va de paranelar hassformat one auf le. F ul va de Normienning de hormogere Koordi: acle abhängl. - bay eshlíse un zumähl mul Hiefe des ilble Begriffs va $(i+1)$-ta Somiegran S_{i+1}. $(i=1, \ldots, m)$ de i-te Nomale vam N_{i} als eine sele lineare Ram, de wil S_{i} line leere Durol sulmill hal nal mil S_{i} yusamme de S_{i+1} apppame. Sb O.le Nomale ram N_{0} is besontere begelne uir live belielige in Tongehialnan gelegene lineain ($\rho-1$)-linere sionale Ram, de nile de Pumhe P etkilt. Weikel de S_{i+1} eidert's mil der Fo verknipll sile, it hes Lir hir N_{0}, N_{i} offebon wile la Fall. Es hommel alor daral an, bese N_{0}, N_{i} ab garse i varial besle gulege. Qies mivel nu lund live Rele va vhalle gemervate Apolarilibsbeli gunge dergestalt goleirlet, lass de N_{i} sowed ferlgelege suld, lass se nur wa linen beliebige Mo ablänge. Qe Afbar der

Elishethervie nil Hille lises polare Basisssostems èsprill \hat{i} b be Gerzfille eive kame $(P=1)$ ure ever Hypeflele $(P=n-1)$ dengenige, wise ihe Pul. Boe chardshiel kal. Ul zive beslete le pulare Basis eive kinie ans da Ablestunge nach de ber eiver belietige fergetaltere Nomierming defiviate sff bagelèng. Se Mannisfollighel ber pulave Basissogleve eibprill also hie de verschedere Nomiennge. Be Mspetli la besbll las polare Ba= ssssale ans eiven beliebige N_{0} und Rivem Puhi
 No polar is bezidil de - P allisa Dasbow:-

 Niri, eiven we tere Able hug ir ar f i. seh manniglarle is liver N_{0} festlege und gelangt o lé Nomcle reiun
....ura Fuhane, Wilozym hin u a ...t. He He mivi nill
 emiele Bechirgns \mathbb{N}_{0} iterdlege Das Rolachle... N... Beispial Refel le $\sqrt[F]{7}_{2} \ldots P_{4}>$, wer uni ie vai Bblai . indi. Hege ho ge. 3.. O, h, ablaingedes. Basissyslentar
 Hiefe de 3-lin. YSkmieg prohiho ai be Farsi:
....it de dicur Five 3 Vihes benther, hemese his

 Tageliol vams wil E wabe No. Use ; polares Basssosle isl kiend thisdel'g affinevarial fest gelegl vind berbebl
fi. kume aus de sfle hage nal de Sff boge. lenge; fir Hzpeflele fill es z de behanke sff. imale i va Blasthe al Berwald and i den allgenere Fall, das der S_{2} de A_{2} ahpand, exlelle ui ab N, de va Weise an gegebere Iff iomale ram. Qise liberleguge lase sil muillel ba zui tions des Espanssproblen fi Riume al thinen Iusamme has verne de. 8. An gud 1951

QReha then gebeng.
Ritutingsibentregingeron in Flaikow. $(8.8 .51$.

 sind inugdeatert. Y haife dii Kermfindetion der Dibortagingo
 nulo geltim $\psi(P, A)=-\psi(P,-i)$.

 Kenufinidstion, dis gerdithinke Versutiofing.

 ithon Linienclemente:: $g=\psi$.

Eine lincare Tikatonesinge it eine nolok, desm Hesove firnttion sine lincare Skalertiontroin th Reithoing A Ais
 Sealesproditet wor At unt ememe Valtor so, der eine Tindtion del bles attisoo io, dervellesos:

$$
\psi=\infty t ;
$$

 mäy eives Satos mo Cesàro iffor Nit Kisinucumursteraine
 Kínounaher.

Sine integrater Richtiungsiblertraging keren diūat ein Feld von Nitleveletorom to gegeton mataw, dicalle dio's
 Weive herrorgethow, premo nis mon Weg sinathingy ino.
 Syption mon Nälluethome dernetheo Nibor tag-j sitw. No ligw nit in cinemo orthogomelew Nate mo besajpaliuien dink sumben Atzimitt, den Nitllivided \%o forllegen.

 Fornel rom Bornet-tineivitle int $V=g_{1} \cos \varphi+g_{2} \sin \varphi+\frac{d y}{d_{0}}$,

 des Beringthinios getioinonden harte avo Y sind hidened

$$
\psi_{1}=g_{1}+\frac{\partial g_{6}}{\partial \partial_{1}} \quad \psi_{2}=g_{2}+\frac{\partial g_{0}}{\partial \partial_{2}}
$$

$$
\frac{\partial V_{1}}{\partial s_{2}}-\frac{\partial Y_{2}}{\partial s_{1}}=K \text {, }
$$

DFG
Trank tobsll.
9.8 .51.
:... Evie Verellgemericarny der Plüakersehen Forncel fiur das jeschlecht evier algebraivehen Kurve
O. $P^{(2)}$ sei die komplese sprogektive Ebene, K rive imredusible aljeibr. Kuve n. Ondreeng olve Singulantaton ui $R^{(2)}$. Dainn -igilt bekenteich: Das Gesellesht p von K istggleah $\frac{(n-1)(n-3}{2}$ und die Eulersohe Charabteristik ist $E(k)=2-2 p=-h^{2}+3$
\therefore Fir cine inredurible Kürve K mit Singulasitït ins ist
$\therefore P(K)=\frac{(n-n(n-2)}{2}-\sum s_{j}$ und $\cdot . E(K)-n^{2}+3 n+2 \sum s$
wo-bei des Indese j die (endliah oiclar) singulären puishle ... Kon durchläptunds; vonderArt der Singalaritit *abhängt
Diese Sätze der algebr. Geometrie userder anf evie beliebige gerellossere konplesce. Man rigpetigheit M $M^{(2)}$ \therefore von zwei komplexeer Dimeisionen und auf analytircle Tlächen $F^{(1)}$ in $M^{(2)}$ ífertrogin.

1. I Aei die 2 -dimen sionele Chesxnche Cohomolojie klanevon M^{\prime} - Die: analyticle Flàche F(1) seicireduzibel und úngularititufreir $F^{(1)}$ ist darn ure orientivisere geschlossene flälle. E. $F^{(1)}$ ser die Eilershe Charefeteristik wor $F^{(1)}$ f die durch $E^{(1)}$ repräsentiente ganzzahlige (2-diu.)' Hosniapogie

 Bewrisiandentugy:
ORue Einnhriskay der Allgemeinleit kems angenomme werden, dap $M(2)$ mit sevier. Herzs stesohem Metrik peossehon ist a) Der Raum $N\left(F^{(1)}\right)$ - der Notmal vekt orem vom. Betregel an $F^{(1)}$ ist air dreidini, orient ierteVManigfeltigkeit, die gefesest ist in Sphìren S1 und ils Baxisneume ie fliche F" hat. F ${ }^{(1)}$ und die Tasersu siid ducreh die formplener itophbu wi bestinniter Wrise orientiurt. Dre Seifertsche Inoviente dieires gefoserten Raumes (d as ist die Indere suanque incel Selnittplicke, die esdliah vicle fingalaritaiten hat) ist.
glcich f.f (Bew.: Auseiver solchen Sehnittperiche gervint man evien zu $F^{(1)}$ honologen Zyplus, dessen Sohnitte nit $F^{(1)}$ die sciguliren Punkte sind)
b) Der Raum $T\left(F^{(1)}\right)$ der Jangentiel vektoven comBehages an $F^{\text {(n) }}$ ist evie dreidim. gefaserte Marnigfaltigkeit (die Jaser S^{1} und die Basis $F^{(1)}$ sid in bestuninter Weise oriatiert) mit der Seifertrelen Invarianten $E\left(F^{(1)}\right)$.
C) s ${ }^{1}$ s seien Sohittfla"chen (mit endlich vielen Singulerititen) von $N\left(F^{(1)}\right)$ und $T\left(F^{(1)}\right)$. Durch $\left[S_{N}, s_{T}\right]$ wird auf $F^{(1)} \subset M^{(2)}$ evi feld (mit endl. Tiden Scig.) won hermiterch-orthog normienten 2-Béćnem gegeben. Hierans folgt: $\quad \& f=E\left(F^{(1)}\right)+f \cdot f$ Q.E.D.
2. Aus Dualitätsàtzen folgt: Es gibt eine 2-dim. ganzz. Homologieklesse c so daß fur jéde 2 din. ganzz. Hon dlyà kelase h gilt $\gamma_{h}=c \cdot h$. (c ist bis auf Disisioshomulgie durch γ und diese Eigersch aftom bestinnt).
Wern es in. $M^{(e)}$ zwei unabhangige meromopphe furationem gibt, kawn a folgendermapen bestimut werdex:
Durch die Funktionaldeterminentim $\frac{\partial\left(f_{1}, f_{2}\right)}{\left(t_{1}, t_{2}\right.}$ beliebige lolkale Koordinaten in $\left.M^{(2)}\right)\left(t_{1}, t_{2}\right)$ wird eive Verteilung von Null-und Polstellen flärhen mit ganz zahligen Vielfachherten gegeben. (is ïblicher Wrise: Nullst cllenfliche positive, polstelenfläche regetive Vielfachleiten!). Hierdureh wird ein Zyklas C von $M^{(2)}$ gegeben. Durch -C wird die Homologieklase c reprasentiert. (Entsprechendes gilt fis belicligg dinessioncle kompless Masnigh $M^{(x)}$. Beispiel: Fir dee komplex-projéktive Ebere $p(2)$ folgt : $c=3 p$, wo p die Homologeid der komplese-progeiksion gerades $P^{(1)}$ in $P^{(2)}$ ist (ogl. O.)
3. In $M^{(2)}$ seidie inredusible auculytische (Tlà che $F^{(1)}$ (eote.) nit Singularititen gegeben; f sei die Je mologee blene von $F^{(i)}$. Jede Suigularitit hatrive berturiute "Art"
(ogl O.) und aus diever Art kann wiè in der algebr. Germetice die positive natirliche Zahl s; berechnet werden. (jdurellinft die endl-viclen Singularititen). Die "Art" ist vire lokele Eigurosh ftt $F^{(1)}$ urid $2 u$ einer topologichen orientierten geschlossere Jläche $F_{*}{ }^{(1)}$, weenn man in "natürlicher Weise" evien singulären quabt von $F^{(1)}$, dwrch den $k Z$ weige gehen als Menge von k versehiederen Punkten vor $F_{*}^{(1)}$ aupfant. Uuter $E\left(F^{(1)}\right)$ wind dis Eulersch Charakteristik vo $F_{*}^{(1)}$ verstanden. Satz: Es ist $E\left(F^{(1)}\right)=-f \cdot f+\gamma \cdot f+2 \sum$ sj Beweis an dentung: Dugh wiederh oltes Eirsetzen vor Hoppochen Trägersphíren in iei fingularitàtin gerrint mar evie Mancigfoltigkeit $\tilde{M}^{(2)}$, in der $F^{(1)}$ als sigulenilitewfreie Haicke $\tilde{F}^{(1)}$ aufgefant werden kam. Ahwendung von 1. auf $\widetilde{F}^{(1)}$ und $\tilde{M}^{(2)}$ fieht zim Ziel.
Das Eirsetzen von Trägerphären enteprialt des bekanden Auflosung der firgularititen in der algebr. Geometrie. Die "unudlich-benachberten" Puakte, die in der algebr. Geometrie bei der Beresknug der s, auftreten, lassen sich als pukte auf eingese taten Tregersphíren denter-
*) Defisitions andentry der Trägerphaire: Di an alyt. Thïhem $=$
 bilder ein komplese-projebline Gerade (= Jrägerpliare S_{p}^{2}) Herausstechen vox P und analytireles Eirsetzen vor S_{P}^{2} (= Wiederabsohliepen mit $S^{2} p$) ist das "Evisetzen riser 'Jrëgerphä̈re' Man erkïlt da dureh ecie Masnigf. $M_{P}^{(2)}=\left(M_{P}^{(2)}-\{P\}\right) \cup S_{P}^{2}$.
 unter $E\left(F^{(1)}\right)$ die Summe der $E\left(F_{k}^{(1)}\right)$ vest ciden usind. k dirch lanfe die inedusibler Best andtrile won $F^{(1)}$
F. Hirzebras
ie die

 Sffinumbintion mit sieff mivor hlinaipue, ular fuptom pupponosing;

 Am iwouficum Jüfummin fricyo sur Hry).
y. Mitting

Zuir Gramatrii hr. Aniletersalatioum.
Migt aiffere tort An Allkarnaletionon ipiptiuran
bikountling mir in grojittiosu Doirimu Oplk+1 vingaravin dimanfion: \& Lime polge Xieleerraz eetion blopfifizint sir Razun inur Baftimm. tu dimmpion, f. A. gi Geraihu in elegrnii ux inin orange igfirabre, vii cbuncu nin D_{5} in polf, vix ifro jugportueta in sinmon puict

Trivitu (ollg. foll) ning folf, vir mit iff guo pumnifoletn. Hen nount isinjinigen Pk bis
 aloförft Tryialifiirt jim, anotapotar. Ii Gopounthit sur projuctisitaten se $P_{\text {Plot }}$ vin va millkarrilatism ivzingingen nigt zerfta":
 $(k+1)(2 k+0)$ ferauntarw. Ef inturlfiuren min fogemat fregon: 1) Nrindotior ser Vilimannige

2) Jringiug sir k_{0} inut sur ${ }^{2 k+1} g_{2 k+1}|p|$ ser viry ir: γ^{k} ghinffeel in fing 1 rentifforz mint coirg, in irraivible thílrenima tryige linf $\gamma^{\prime k}$. Juir Arnterpigfing vinpar fregin ruanift ar fing alf jonsemaptig, sin S $k+1 ;$
 feltiglevit $M(2 k+2)$ anifinife/pm. M ift debii der im ${ }_{2}^{(2 k+1)} P_{2} 2 k+1$ galngerm
Winimelmadrele eller aif riuer Qriagrice $Q_{4 k+2}$ si $6 \Phi_{4 k+3}$ gihgemen Rosims $\mathscr{S}_{2 k+1}^{I}$. Nimunt Q_{4} onf $A_{2 k+1}, B_{2 k+1}$ nind $G_{2 k+1}$ aimptiffinf jirinanter an

 alk bijunigan $\mathscr{L}_{2 k+1}^{\mp}$, in andp andrm no-g $G_{2 k+1}$ k-himenfional funiikn, anif bis prinkto der $N_{(k+2)}$ Giuranif argibt finf mist filef olumenta (kir duntuiffic, hi mon oon hr $M(2 k+2)$ fotí linft, bep $N(k+2)$ in ainim limetren $N j^{2} u i t h ~ d k s$ $\xi_{2 k+1 ; k}$ light ${ }^{2}$ aigg air Jerenging Mr frep 0

Juㅇ manuraimef $(1$ (2)) qqeinut mou Gingt. Gim
tir bifgial sing brik $=2$ sir P_{19} her $\mathcal{G}_{5} ; 2$ in pium
P_{13} hr N_{6} ninv inmu P_{5} gerengh, itu P_{69} her $F_{7 ; 3}$

geptatith abur norf aime ribtera jernging in mine pinct rind aimun P_{26}. Arifar P_{26} Cositt fing ouif alf fryperabuer 26 Ryfuitt vimer in 19 giegamen $\zeta_{z ; 1}$ aisfopfor.
8.8.51. Guran.
nict-anoziative Potenquiken I: Aegebra.
Es sei P ein freies mangenes Gnppoid [d.h. eim algebraivches Syitem unit eimer biveive mibet-assog-ation Operation. mit eimea eiz-ise Engengenda x, and otme mide.trivich Relation]. Die Elemate orn P seien mit p, q, \ldots begeinet, dis Operation mit π, and zwar begesume $\pi p q$ das Produlte vor p and q [sinetovese von KUKASIEwicz]. Ma beldet formale Potenquilue $f=\sum_{p} \alpha_{p} p, g=\sum_{p} \beta_{p} p$, uno., mit Kooffizienter $\alpha_{r}, \beta_{p}, \ldots$ ans sinem (arroziation) Ring Ф. Man defineret die algebraishe Openationen den shalave-hultipl:hation mit einem Shalan: $\alpha f=\sum_{p} \alpha_{0} \alpha_{p} p$, des Addition : $f+g=\sum_{p}\left(\alpha_{p}+\beta_{p}\right) \cdot p$, and der lunttiplibation

$$
\pi f g=\sum_{p}\left(\sum_{\pi n s=p} \alpha_{n} \beta_{s}\right) \cdot p \text {. }
$$

Werm dame $g\left(x_{1}, x_{2}, \ldots, x_{2}\right)$ ein "einfacher" Wort, dic ein Wort den Laige λ, das ans $x_{1}, \ldots, x_{\lambda}$ mit lilfe oon π gebiled int, int, \Rightarrow gilt

$$
\left.\dot{q(g, g, \ldots, g)=\sum_{R}\left(\sum_{q\left(p_{1}, p_{2}+,\right.} \beta_{r}, p_{A}\right)=2} \beta_{r_{1}} \cdots \beta_{r_{A}}\right) \cdot r
$$

und man leamen in den fommab Potenpreike $t=\sum_{p} \alpha_{r} \cdot p$ die "Variable" x dures die. fommale Pofongraike $g=\sum_{p} \beta_{p} \cdot p$ ersetpen, and erralt fomal:

$$
h=\sum_{r}\left(\alpha_{n}\left(\sum_{q\left(r_{1}, r_{1} \ldots, \cdots p_{A}\right)=R} \beta_{r_{1}} \beta_{p_{c} \cdots \beta_{p_{A}}}\right)\right) \cdot \Omega
$$

Dies ist sieden line fomale Potengreice. L0in sagen. vie it dursh Subutitution son g in f Leroongegengen, und scheiben

$$
h=f g
$$

Dom heben win in Benviche umenae Potengreiker die algebainter. Operatione den Addition, den turittiplikation, und der subtitution, aleso etwen wie rine "trioperational algeha" vou MENGER [Algaha if Amag wir, hotre Dame luath. Puble.].

Die algebraisten Gesetfe, die die Operationen werhmirpfer, sind die folgenden: Dre Poten freiten bilden additiv che abelive Amppe, umalfiplitato an Gurpoid, and es golter die beden additioultiplihative Diotribtiogerepe. Sobititution ist assopiatio wem den Koeffijientern's if houltry it ; es gilt das additio-substitutive Distebitivgeret, und auch des un ltiph. hatis. substifutue Distributigesets wem der Kopfirientenning Ф bommetatio ist. Dut der Koelfrietenis I I eir (hommtativer) Kiapen, und ment man firegulic whem $\alpha_{x} \neq 0$ ist, so Laben dis reguleren Potergreike, und ans diese, subtitutive 2vene, dh. or of gibt es, semen of regelore ist and min dann, eir g.so das $f g=g f=j$ int, wore $j=\sum_{p} L_{p} \cdot p$ int $c_{x}=1, c_{p}=0 \quad$ fin $p \neq x$, das ombxtitatio matrale slemat ist: $j f=f j=f$ fin alle f.

Hat dea rioffirienta lsyper I Cheralitoinath

0 , so Lame wan im Bereiche dieen Pofayre:hen algebveinhe Claidumga lise. Ha ham quch den Bereic dea Potangreike daduret eswetem, dass un mode in "kantantes Geied" plönt, alvo etana Reike $F=1+f$ betrantet. Fin diere bint wid dam dis Aodeltion und kneltiplikation othe weiteres definieren, and die Reiken den Gertalt Itf bilden kinen loop, i- dem jede abeiduing dea form $q(G, G, \ldots, G)=F$ fin gegebenes $F=1+1$ durich ein $G=1+9$ lisba it. Substitition wor g in F it gesteller, alvo Fg lat einen Sime; mist aber nugelehat.
9.Ang. 51
131. Them an (Moncherta)

Livi- omppiative Potengreive II: Anehur.
Es wind un dan Syptem da Potengreide $F=\alpha_{1}+\sum_{p} \alpha_{r} p$ betrachset. f, g, \ldots ind weitenh- Poterguide ohne horkantes Geied. Substitution $F_{g} \therefore t$ geatattet. Die Reiken $C=\alpha_{1}+\sum_{p} O \cdot P$ sind "Absolet houtanten: $f=$ sue silt $C_{f}=C$ fir alle f.

In Differetialopenator \triangle sei dursh Additivitait : $\Delta(F+G)=\Delta F+\Delta G$, and gwan unendlene Aletitioitat:
$\Delta \sum \alpha_{r} \cdot p=\sum \alpha_{p} \cdot \Delta p$ [dien sei formel vertande] und die limexplihationsfond $\Delta \pi F G=\pi(\Delta F) G+\pi F(\Delta G)$ eingfint. Gilt $\Delta C=0$, so wint C ere Relatio. koustante". Diese vertalten in gegemiken dea Differentiation genan so sie geritule he Rountater bei grothliden Differmatiation.

2nberndue gilt $\triangle T F C=\pi(\Delta F) C$, use.
Sime Differenfial openato Δ it oollstendis fentgelegt, wen Δj fastgelest int. Win betradien die folgende pesielle Oparatore: ∂ : definent dhus $\partial_{j}=1$
$\partial^{*} \ldots \ldots \partial_{j}=j$.
Dam olt fin $F=\alpha_{1}+\sum_{\alpha_{p}} \cdot p$ $\partial^{*} F=\sum \lambda(p) \alpha_{p} \cdot p$ wobe. $\lambda(p)$ die Linge vor $p, \lambda(1)-0$ ist. Die Rolatio bountinter oo ∂^{*} and gear des Abrolet houtare. Bai 2 anderenseit gebt es mit-absolete Relativ houtante, $7 \cdot B c_{1}=\pi \pi j j j j=\pi j \sigma j j$.
E.e Litms dee Differential gle.chns, $\partial E=E$ vermen win "Exponetialfütia". Dere gibt es medis viele, und pwan cogan wem man das bontarte Glied momient, etva $=1$ eaft. Es gilt ndideh dan unt E anch TCE and GEC Exponentalfunktions sid, wem C Relater lowita te it; and engelielert, wern E und $\pi E F$ oden $\pi F E$ Exponentrialpuletion sind, so it F Relatio koustante.

Septe nan $E=1+e$ (wobe E momient ist) so heise e "Quasiexpanentol. fimbtion": Sie enfollt die Bifferientialgleths $\partial e=1+e$, oden $\partial(e-j)=e$. Sie int regulan, hat dahen line Rverre l, die hinch $l_{e}=e l=j$ defi.ient ist, and "Rasilogani thums" gencint werde. Dan gilt fin l die Gledimns $\partial l+\partial^{*} l=1$. tede L ans d Liever GEoithms int eim Quaniloganithmuns, also pu einer Qarir emponentialfunltion invess. Zwer Qarilogarithmen l_{1}, l_{2} steher in der

Beziohing $l_{2}=(j+c) \rho_{1}$, wo c eine Relatiokourkoute - Lue Absolut boustantes Glied i, t; monseleahst ist mit l auch jides $y+c$ le Quesilogarithemins.
10. A.s. 51

Bethemann (luanchater)
Bericet ither Engchnisse von chefred Tarski
betreffend Entsheidbarkeit und deduktive Voleständigkeit in Berecich der elementaren ckegebra und Cheometrie.

Es haudelt sich fir die ctegebra um difginigun chesragen, die sirk ausdrictem lessen mittels
der arithmetisrben Vertmifffungen: Yuumme, Differene, Pradukt, der arithmetischen Bescihungen, $=,<$,
der ausragenlugisoten Vertuiffungen,
der Begriffe "all", "es giet", bexogen auf Individuen.
Iie Aufgebe der Ëntshbidung ïban die Cgniltigkeit eines sobchen chussage teommt hineus auf die Elimination der Amwendungen der Begriffe, "alle", "esgibt" (wodei sirk der sine von diesen auf don anderen zurvirkfithen li"st). Im Pinue eines rekunsiven Verfahrens Landelt es sish letston Ëndes darum, Fragen der folgenden Form su beautworten: Wie gross ist die Ansall der Worte x, fier die in gegebenes Polgnom $P(x)$ den West 0 Lat, weihrend zugliich dic Polgnome $Q_{1}(x), \cdots, Q_{n}(x)$ prositive Werte erkaltin? Oder genauer: Welohe Bedingungen meissen die Toefficienten wor $P_{1} Q_{1}, \cdots, Q_{n}$ exfillen, damit die Ansade der verseticdenen Whente x, fien dic $P(t)=\sigma$ und suglaira $\left(Q_{1}(t)>a, \cdots, C_{\mu}(t)>\sigma\right.$, gleich A ist? Die Ermittlung der Bedingungen erfogt durth ctrowendung siner Verallgemainarung des Sturnustlen Latres wiber die Ansale der recllen Nuelstellen eines Tolynomes in innou Intrvale, und die Bedingungen stelen sich der dureh inne aussagenlagische Vertminfung von Sblichungen und Ungbishungen fire die Kopffixientern des Polyuome $P_{1}, Q_{1}, \cdots, Q_{n}$. Die bei diesem verpehren ansuweudenden vilerlgungen
lassen sish dedetetir formalisieren in Rahmen des logischen Kalkuls der ersten Stuffe (d.L.des guvählicten Pradikatenkalkuls), unter 2ugrunde legung endlich viebr cheiome, welche die cherattevististhen bigenseaafton einer geordneten Korpers zux Darstellung bringen, und eines Axiomen-Yidemes der Stetigkeit, welcher in der Sutalt

$$
f(a)<a \& f(b)>a \& a<b \rightarrow(E x)(a<x+x<b \& f(x)=a)
$$

(Winn $f(a)<\sigma$ und $f(b)>0$ und $a<b$, so gibt er ein x derart dass $a<x$ und $x<b$ und $f(x)=a$ ")
gewa'let werden kemu. Sabei bedeutet $f(c)$ einen beliebigen arithmatisiten Ausdruet mit dam atrgament c, des mit den Ahesdruskesmitteln des cheio. mensystems und der logisihen Talkel gebildat werden teaun. (Heiersu ist zu bemerkin, dew in den logischen Kalkul aurh die Kennseichungen (descriptions), d.R. die Formalisierungen des Begrif. fes "derjinige, webter", einbesagen sein soedn.) Fir den so abgegrensten formal-dedutiven Bereith ergibt sich mittels der formelen ziferretaung der im origen angedenteten intsheidungs-chethode die deduttive ctbgeshlossenheit: d.h. jede Lateformel (Formal ohne freion Perameter) ist entweder beweisber, oder inve Negetion ist beweisker.

Hiurdurch untrossheidet sich ders betrachtete Bereirh von den formabu Systemen der zahlutheorie, dor utuar lysis und der Alengenlehre, fins vachele geme'ss dem Lsódilsten Unvolestàndigleeits-RRorem dic dedukterve chgeschlossendeit mit der Widerspruelsfreciluit nisht vereinkar ist ($d . l$. sowahx sic widersforearksfrei tind, sind sic niclet dedutetio abgesellossen).

Es foommt hier zur Cgeltung, dass in dem betrachteton Bercirh teine ctussage formiulierber ist, welthe eine thelgemeinheit inbisug auf metiorlich zallm
2. B. Cgradzalln von Pobyomen, enthilt.

Gleirhwoll lisst sich auth firr solke ctussagen ans dern Entsikidungsverfahren eine Konsequens entnchmen. Waimlict es engilet sith: Wemn $G(m, n, \cdots, t)$ oine tussage mit zareferametern m, n, \cdots, k ist, dic fir jedes feste Wertrystem der Parameter eine chussage des betrerateten Bereirhes irgibt, und wenn K_{1}, K_{2} geordnete, reell-agebraisth abgesthessene Körper sind, so gilt die sussage, dess firx alle $m, n, \ldots, b, \ln (m, n, \cdots, k)$ sestelt, pales sie firn H_{7} zutrifft, auch fir K_{2}.
chwwendungsbeisficl, von Harmu Foyff: Hus don Tatseche, dass auf dor Kugel tein stetiges Riratungenfeld exietiort, fogt unmittelter dor Sats: Wenn $f(x, y, z), g(x, y, z), h(x, y, z)$ hamagene Polynome mit reellen Tocffisienten sind, welale des Bedingung $x \cdot f(x, y, z)+y \cdot g(t, y, z)+z \cdot h(x, y, z)=\varnothing$ gencigen, to giot es eire genvinsame reelle Nullstelle t_{0}, y_{0}, z_{0} von f, g, h, Gieser Sats, dor sith auy den Könger dor reeldn Zahlen besicht, lisst sich aufgrund der gemarkten allgemeinen Feststellung siber ctussagen $A(m, n, \cdots, \in)$ - die sarferarameters sind hier im Beisficl die cyradsadhu der Pohyome f,g, LPardictidehien aut Polyname mit Koeffisienten aus ingend sinemrocell abge sehbssenen Körpor, wobei dic Exsistens der ovelatelle sich aurh auf diesen Körper besicht. -

Die genannten Festotellungin sibertragen sica mittels der Alethode des analytischen Cgeometric auf den Bereich. der elementargeometrischen Sitze. Han gewinut so ein Entwheidungs - Verfahren betreffend die CGie"ligkeit elementorgeometrischer Atussegin, - soweit sobke beine Alelgemsinkit iben stroellen oder chengen in tish sebliessen. Firnes exgidt sith die deduktive ctageshlossenheit, in Rahmen des byerthen Kelkuls dar axstor Stecfe, fïr des System der Ateiome der iutclidisthen Cgeometrie, wemn derin dic Stetigkeitraciome dunch sin beschreinktes Sthnittprinsif (in Form eines shaiomen-
zallan, Yehemas) ersetst werden, dureh webetes dic Sitctenblosigkeit der

- 131-

Oxdwung der Punkte auf der Cyeraden nur inbecing auf solche Einteilungen (Yehnitte) gefordert wird, dic sich durth die geometritshen Cyrundbegriffe mittels der eussgenlogitchen Eusammuretzungu und der Begriffe "ell", "Is gibt" besogen auf dic Crrundelemente, ausdviriten lassen, bex übergang von der axiomatischen sur anelytischen Geometrie exfolgt durch die Streckenrethmung, dic hier, da das trithimedische ctaiom nirlt zur Terpïgung steht, nerk der Feilbertshen cllethode auszufinhren ist. Jo Besug anf die Begrindung dor Strecken-Revkuung ohne Stetigheitsasciom (jidoch mit Anvendung der Kongruensaxiome) wird deraup hingurviesu, dass es vorteilhaft ist, unaichst die Strenken-Praportionalitit, und zwer als Praportionalitait der Kathetu zweier resat-winkligur Oreciecke, mittels Finkelybickheit 24 definieven, aufgrund dieser Aefinition dic Gesetze der sithetten - Profontion zu beweisen und hernath erst dic Strecteu-dultiplitation durta dic SyAnition $a \cdot b-c \leftrightarrow a \cdot b=c: b$ (e Binhitastrerke) einsufühnm. -
11. Auguet 1951.
P. Bennays.
16.8 .51
ith dis Bungung Shethounagnetische Seluvingrugin. (ask. d. Bbeh. Ohadum. Brelin 1945/46, N. 3) Dis lioung der Seichungun.
(1) $\quad \nabla x y+i \omega \varepsilon \neq j ; \quad \nabla x \mathscr{t}-i \omega \psi y=-j^{\prime}$ wind mitr Bunufung de Ausph-lengobedingumguw
(2)

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} R(\omega \varepsilon(1 \pi x)+k y)=0 \\
& \lim _{R \rightarrow \infty} R\left(\omega_{\mu}\left(\sin _{x} y\right)-k y\right)=0
\end{aligned}
$$

und de Buscönulthibtheingung $R \mathcal{E}, R y$ udeich, fir ramulich viranderlich \& und μ subsensht. 21 amporbele sines regueoisus gobites I mis in Rourdfiach $F \quad \varepsilon \approx \varepsilon_{a}=$ cous ; $\mu=\mu_{a}=$ const, waleund
$-132-71$
$\varepsilon=\varepsilon_{i}$ ~ue $\mu=\mu i$ in Lumber ton g sklig diffengivbes sind, x laun die fosming von (1) mit Hep des dinfalluken Fiedes $\mathcal{E}_{e}, \zeta_{e}$, das wack belaunten For. mulu ans dus rorgigheum j mad j^{\prime} bvedhust ind, ouf eit Intugralghichungun zuritu os
 Dic Ixitbing der losing foegt doun ans den Froholuschen Sigen, wachem dir Eindentigkis des losming unt Hief das Amotratlumpobelingungen bentiesen winved.

Duveh Beinhrung sive mencio, deurch din Wahos des Poblems augiegtan Definition an Opemationens "dic" and "rot" bishuen din. Differen. ziuberheibskdi uggungein shaväch ghalten warden abs sount bis Pwbemen dies ad wolwundig. ist. (Envitiong ar guauntun Qhit is Votragendur). Clams neiveer

Vien sin Handy-Landañske Denntitict und 17. 8.51 vomounde fregun.

Sisc man

$$
\sum_{x^{2}+\operatorname{m}^{2} S R^{2}} 1=\pi R^{2}+L(R)
$$

gus.
mgin
wo $J_{1}(x)$ dis Barseffuntion de Oremung sins dankers.

Sime whatraging an Siversckins Smamunformue anf unere Vioundreiche smighidet veinfack Bureix fies din Leuntilit
is
DFG

$$
\sum_{(x-\omega)^{2}+(y-m)^{2}+R^{2}} 1-\pi R^{2}=R \sum_{u^{2}+m^{2}>0} e^{2 \pi i(n x+m a y)} \frac{J_{1}\left(2 \pi R \sqrt{n^{2}+m^{2}}\right)}{\sqrt{u^{2}+m^{2}}}
$$

neit

$$
L(R ; x, y)=\sum_{(x+m)^{2}+(y-m)^{2} \leq R^{2}} 1-\pi R^{2}
$$

bame

$$
\int(L(R ; x, y) f(x, y) d x d y=O(\sqrt{R})
$$

fis bieinbige shlige $f(x, y)$ benoisen werden.
Duna Pishussion on Raile

$$
\sum_{0 \leqslant n^{2}+w^{2} \leq R^{2}} \frac{\sin \left(2 \pi d \sqrt{n^{2}+x^{2}}\right)}{\sqrt{x^{2}+m^{2}}}
$$

lassun sich amsagen iik din vaseilenng de fitterpunck in de Kbeme gensimuen.

Clans neiveer
17.8.51. Eive Vesalegencainang des preien Produits precien

Problem: fegeben in ein fyoken ver fermpen yi, die paan weire io morphe hatergrappen $\vartheta_{i s} \leq f_{s}$ -d $\vartheta_{u_{i}} \leqslant y_{k}$ \& thalten, mit vorgerizie benem

 at kntrugenver ethath derart dan is of
 un disie $=$ yas aumenpallex, ato $y_{i} \cap f_{4}=\theta_{\text {is }}$ ist $f=$ alle Paare i, k ?
faclen acle $v_{\text {in }} \leq y_{i}$ unit eieden ros anmen, an rid or alle cia forken frupto v ismenth
 Pro due 7 der y_{i} unit der evion ver rinigtien 2 ter grupfe θ i.e fruvge de gevi= rike keth. Im acegenerive Face wirsen di 2 tagemppen
-134 E
Aäglis Vibs bederigungen' enfielen, die aes draĩk olan, fare kie pornue prupfe of ere their, der Drusunitk von is drci Anppea bi, buitye is of as poder A-pelreen deiver fruppen folildeh zres deen

 Srisd dieve Bedisigumpen enfieet, so ceoheres cran
 frappen bi die sdentipiteieru atppresienden slcerek von $\vartheta_{i n}$ ad $\vartheta_{k i}$ vor. Ran es kiect evin
 A dea fruppien Hy_{y} : A bohkhk arn pronoer abloer
 Sim; das Prodent prieien bente de thmageoncers it

 Proberes ith weus can theralpaese A is evis frrppe of evin qubletters.

Niirt pide truelpane it ens battban : c fier artore e. Husalgan wos uner drec fumplen das ri.zes niith evisbetban il.

5 gieh aber du forpernd. Reohrtitrois? atz: Be feitzuch wave unit ϑ_{i} die von dean vis (usit forkeres i) aquughe 2 ter frupple von byi, ind unit

 denu ericbeffbai, verun das Arualparen D der fenpyper It. cir bettber $_{\text {d }}$. (Berei dumeth sriden holke the vesedang der Sipreien mien Kowathenktais).

Dervibles wis aues in une bekauret, dess jede. Arwalganer ty klinzer, ooles lokel7y keinter, foin Hyere eaiseff-bar in. Shor
$f=$ turagene abetrizu fruppere it dis wich unene eles frace: R. Daer piot exi Beispial enis Anagoun vor vies abel siten fonpran das wilk is eive fruppe e-pcluthet werden katr. Houms Nemuare.

19\$5.51. Eine Bemehing Das Hesififhation der Vollben.
 Aforminustion dinst shaptraile Julle, 3. neathearatide-.

 T- $\left.u-: \quad w \rightarrow \infty, \mu_{\mu=\infty}\right\}_{\mu=\infty}=d_{\mu=\infty}$, felts $w_{n}(\eta)<\infty$ fin de x.

 in muttibuilu or viale Henkn! aigitiby von

$$
\begin{aligned}
& \omega_{\infty}^{(\varphi)}(\rho)=\frac{\sum_{\| \rightarrow \infty}}{\frac{\log \frac{7}{\left.\omega_{x}\left(H_{1},\right)^{\prime}\right)}}{(\log (H) S}} \text { mit } \rho \geq 1 \text {, ind } \\
& { }_{a}(\rho, \eta)(\xi)=\bar{l}_{m \rightarrow \infty} \frac{a_{m}^{(\rho)}(\xi)}{\eta \eta} \quad \phi=\eta>0 \text {. }
\end{aligned}
$$

 © (8)

136

 seider Vespeinenen eshaltes.

raff.im mind m dowr bie \#

Thi, hheseider.

Liber si Anjproceitpon Tjargiemem.

 siny $A \hat{x} B \sim B \times A$ A $A \times B \sim A^{\prime} \times B$ (A^{\prime} :Homqumut) vfiwiont.

 firtuning. Chea $\hat{a} \rightarrow i$, Gunites.
19.8.51 Die Erweiternugen höherer Ordnung einer differengieshasen Mannigfaltigheit.

Eine differanierbare Stuktir anf eines Mamigfoltighed V_{n} is definint durch eive differnyierpare Famili'e (HPlas) van lothalin Kasten rou V_{n}^{\prime} anf den Zablenranm R^{4}. Diese Karten kionuen erweitext werden yu Karten von Vefitaren, shuch Esweiterung der lvkalen Mrardina ten tramponuathowen anf Vekionem $\operatorname{van} R^{4}$. So defimiert man den Raum $T\left(V_{H}\right)$ der Veftrun der differengia haren Mannigpaitigkeat V_{n}. Dieser Raum. $T\left(V_{n}\right)$ is ain Faserraum $T\left(V_{n}, R^{4}, L_{n}, H\right)$ mil der Basis V_{k}; die Fasem T_{x} (Tangenter Vehtorraum in x) sind iroworph zum Vektovamm K^{4}, die Strwkturgruppe it die ho mirgen liveare Girppee L_{n} von R^{4}; H bezeichnet die Menge der Irrmorphimien ron R^{n} auf die Fasern T_{x}; ein wecher Fooworphismus, der anch durch ein "n. Bein" in x bestinunt ist, wll in Hamptelement enter Ordmung heisen.

Der Ranm $T\left(V_{n}\right)$ mnd alle asorgiierten Faserräume sind die Erweiterungen esster Orduning ron V_{n}. Der assyuieste Haupffaserraum H ist die Hanpterwsiternug esster Oidunng. (C. Elresmanm: Sur es esprace fibrés asrriés a' une varie'té differentrable, compts, Rendus, Paris, 216, 1943, p. 628; Sur la Thrórie des espaces fibiés, Colerque de Topologie alye'fu'pue, Paris, (.N.R.S., 1947).

Falls V_{n} zweimal differengierbar it, ist ide e Erwitermey eister chdunny von V_{n} einmal differenVierbar. Eme Erweiterung enster ordming eiver Erimiterning ester Ondunng van V_{n} ist eine Erwitesung ziweiter Ordunng Bn V_{n}. Durch Refension. definiert man desgleichen eine Erweiterung b-ter Orduncig ron V_{n}.

Die Erweiternug $E^{\prime}\left(E, F^{\prime}\right)$ mit der Faser F^{\prime} der Er weiterung $E\left(V_{4} ; F\right)$ mil der Fuser F ist auch ein Faserranm $E^{\prime}\left(V_{4}, F_{1}^{\prime \prime} S_{4}, H_{2}\right.$. iber dem Basisraum V_{u}. Die Stenthergrupee $L_{4}{ }^{2}$ dieses Faserrammes it polgonde Erweitermgogrugpe von L_{n} : Ein Hauptelement zweits ardmung in PmAl $O m R^{n}$ it cine Keanse ren jureimal diff. Abbildungen eiver Hngohning vo O in eine Hnogebring von 0 , die Ofestlassen, mu Range x in 0 rind und his zu den zweiten Ableitnugen in therkte O ifereinstunumen. Ans der Zuranmeensetjung von AbAilohnugon lestef man sine Enranmansetying dar Hanptelemente jwieiter Ordming of. Die Monge L_{n}^{2} alla Hamptelemente zureiter Ondmung in 8 it rorvit eive Gruppe. Der wativliche Homomarphismus mu L_{n}^{2} auf L_{n} hat ats Kern eine Gruppe K_{n} die der additiven Gruppe sines Raunues R^{P} isomorph ist. Ein Hauptelement zivititer arduning in $x \in V_{n}$ is esine Klane ron zurival diffe. Abfildingen sines Hugehing ron O AR ${ }^{4}$ in eine Huggehneg in $x \in V_{n}$, die 0 in x ifferfillien, rm Range u riud and Pis jur juciter Cadmung ribencinsténmen. Der Hamptfasernamm zweiter ardunng H_{2}, ader Hanpterweiterung zweiter CAdmury, ist die Menge der Hauphelemente gwisiter ordmung mu R^{3}. Die Fasentinhter rou H_{2} auf V_{n} is definiat dnuch Enweiterung anf Hamptelemente giveiter Undrung der Karten esines zurimal differenyiertaren Atlasses von V_{n}.

Focersaspassit H_{2} ist ein Faservaum iber V_{n} mil des Faser L_{n}^{2}. Er ist auch sin trivialer Fascroume niber H mil der Faser K_{n}, dos heint er ist is mouph ju $\mathrm{H}_{\times} \mathrm{K}_{4}$. Fulls L_{n} thannitir in F operiert, läm der Fasers aum $E^{\prime}\left(E, F^{\prime}\right)$ mil der Basis E eine STruktingrupre $3 m$, die eive Untergrupge von $L_{n}{ }^{2}$ it welche K_{n} enthátl. speriall $T(H)$ loint K_{n} als Stohtingrmper zu. Dasaes folgl das dís Hampiorweitinns enter on denning (romil amb dice Haupt proweritionng koter Ondmung) purallelisicubar ins.

Yeder $3 \mu H_{2}\left(V_{4}, L_{4}{ }^{q}\right)$ anozisentex Fasenaum
mit einer Fuser in der $L_{n}{ }^{2}$ thunsitio operiert, ist anch eine Erweiternng jweites arduning.

Bemerkungen ither die Erwiterungen die ion den Berihirnugselementen zweiter Ordunng von V_{n} gehildel sind.

Fin differengialgeavetionhes objéth auf V_{n} it in^{\prime} Shmilt einer Erverternug k-ter adunng ron V_{4}.

Chauls Ofveruamm
20.8 .51

Di Spanngreationem en Pokuntiale airfacher and mehfach Flïchuklegungen.

Eo mi

$$
r_{x \frac{1}{2}}^{2}=\left(x^{4}-y^{4}\right)^{2}+\left(x^{2}-\xi^{2}\right)^{2}+\left(x^{3}-\xi^{3}\right)^{2}
$$

ov Costand on Pmele (x) and (ξ). F beycichue sind andeytiskess sientishores Fleichenstich. Damn steem

$$
u_{(k+1)}(x)=\int_{F} \sigma(\xi)\left(\frac{\partial}{\partial u_{3}}\right)^{k} \frac{1}{r_{x 3}} d F_{3}
$$

nit analytixchum σ karmmenixh Funktioum dar, in in av Xunglang son F ingueis werden.

Segenstand es vothages is dir Burechnney av framigraeationen av areitungen dieser Potenfiale. Zu diesum juect wive in Koorlinasemsystem x^{1}, x^{3}, x^{3} enves

$$
r=f\left(x^{1}, u^{2}\right)+u^{3} u\left(x^{1}, u^{2}\right)
$$

aingfiet, phir $f\left(x^{2}, u^{2}\right)$ din Dasskelnng an Flecher in Veatoform and $u\left(u^{i}, u^{2}\right)$ den Feëchemuormalemmetar byeichuet.
werken din Rbbitingum in Riesum Koordinatansystun ansgetrices, 20 lassen sih die famugrectionen dunch infache Relursiousbezichuo. gur onsinemer formbliners

Betramir Opvatoven lassin sich ainige Bysilenngen und 2entitäten breitun, die diffentidegeometioke Begriffe mit posutialteorctisikun Fragestelemigen ver sinden.
(Baicht ink sine Rhit des Votrogenden in Keath. am. 1951)

Clams Keivelar
Znew Binsteinsehen Froblem, die Bangangegleidung eives Destices- 20.8 .51 in cincm Siwverefeld aur den Felolglesithamgan der alfemensien Relatinitaitrtrerric que bestimmere.

Vagelugh dive 10 Felglel. Ritiz $=0$ aer partulle Diffet.
2. Orduy gur bertimunury dar $10 \mathrm{lg}_{\mathrm{id}}(x)$, die der-Limiendencet der Velt" definiercme or sale gexerge verdan, dess gerise Singucerititan vor tiotregen de Feldye. tide an f genttiven Limien suregen. - Vibiend die redk ternptiziste
 Punkt - Vingulavititn Anselet, wivd hos vom Ferikeasingenlesititum angegangon, trie sie des Sumere bukildske
 in unser of $\mathcal{F}=0$ chavalearirtiscte, vean ang $F=0$ dre pade

 Charaklesistivm ist und ron srakedefiniesten geadainschen
 Devi $H \equiv g^{r i} F_{i} F_{4}$ genest und $F \equiv t(r-\alpha)$. Dunde Vealgemeine runy oo Surnarzshivildocken tusates laist side dater desSiusteins scke Problem folgendermonse bexain deta. Man gede cine
 Friferflicice var tingelaitaten de lichite tein (von ea Ml da
 frherdender Aemufong des Variatobeurkes sakes of $\int R d v=0$
ani dum die Gg. $R_{i r}=0$ pogen, dess die Fraguffë̀ke in oben augeg. Sinne ekarabkiolinhe thin mems $d .4$.
 aw Seklande irl, und anf $F=0 \quad H=0$ effile, 1 th. Fufogedessen líst tick der fikferd anflensen es erzenge van geodaitisuken Arullinen, die die Hamilhm, sken ge efficten - Larr wion ruen de Dundemens des- Sklenoter gegen Nree geken, to sheitm for die Éssengenden" Nallimenen des- Bklaveder die Nomsildor"rien ge. rivily untar carmuder fitleygy do Aok da timplearitat der Metile anf dan Sclearde. - Devear payt, dass maik der Gusemenengieleny der-Sklemuer-aif iine Live die beslare wohvendiy geadaisoly foin
 dissun' Giembitar g oung cassend in ein Feld genditisble Inven lósetremalemfuld/ sindetter cesstar.

Kark Iudnasy Shelemacker,
21.8.51. In ainam hedium, das - ewas bei schnoken HostendsAndermingen - das Hoorcescke Gescts bofolgh $(\Delta p=E \cdot s ; \Delta p=$ hifernock ; s Nordiestmeng; $E=$ eive clasf. Toonstanke) gict Fïr cine elest. Welle $\left(\Delta p=\Delta p_{i} \cdot e^{i(t x-\omega t)}\right): \frac{\omega^{2}}{k^{2}}=\frac{E}{s_{0}} \quad\left(s_{i}=d i c k\right)$;
 Eumbe ergibt Lide fir ein viskoses deedicu $(\Delta p=E \cdot s+\eta \cdot \dot{s}) \quad \frac{\omega^{2}}{k^{2}}=c_{0}^{2}(1-i \omega \tau)$, $40 \tau=\frac{\eta}{E}$. Danaer sollt die Pkesuggesbarindigkait fir we51 proporfionac we wuden, der AEs orptions ko-ff: finat je Wollenlinge ${ }^{(\mu)}$ cinime Konstanten Svenzwart $(=2 \pi$) Enstreben (R. Incas, C.R. (938) Exprimestall cómsen Shate vollen his $w \approx 2 \cdot 10^{-8} 5^{-1}$ bequan ertangl wrorkm; τ it fir Fuissignsitum
$-142=$
Gase ist mnter Nomialbadingmangen $\tau \approx 10^{-14}$ as 10^{-11} bar. $10^{-10} \mathrm{fis} 10^{-9}$ s und Kanne durd Tenjerantui Criniedin:
 bow. deard Varnizgerny. "lor Dishe (bil Gosen) beliebis haraut gesebl wardum. So hakean Areenspan (Jour. Ale.Soc. Hru. 1950) Fond in verdivinatun the-Gos mad Fox u. Litovit' (Jomen. Ac.Soc. Atur. 1901) in Slycerin beitiafen Timperataren we $\geqslant 1$ erreicet. In bridan Fällon begiant μ be 0° wz ≈ 1 abtersinkan.
Diver Befund kaun gedendat resten deerd den Ansats: $\Delta_{p}+\vartheta \Delta_{p} \rightarrow E \cdot s+\tau \dot{s}$. kil didenc. sive $\frac{\omega^{2}}{b_{2}^{2}}=\frac{1-i \omega \tau}{1-i \omega t}$, ase die Plosengescrindijkeil fir $\omega \rightarrow \infty$ $c_{\infty}^{2}=c_{0}^{2} \cdot \frac{\pi}{v}=c_{0}^{2} / q$ and $\mu=\frac{1 x \alpha^{2} r^{2}}{1+q w^{2} \sigma^{2}+\sqrt{1+(9-1)} w^{2} x^{2}+q^{2} \omega^{4} E^{4}}$
 mod sinet mil racsse..dem we anf $O \mathrm{de}$.

Hans Thisesar.

Symmetriche and hemitirle Matrizempare
huter eineue symuchishen Mahnizuypar der endlib-elgetrei ishen tareköpers $\sqrt{2}$ wstrelt man eir Pan ven quadratinh-x-reilijen Matrixu, dereu Elemente \bar{z} angeliören and die foscude Eisuminaftue habur :

1) Der Rayy der n-zilljü, 2m-ypoltigun Matis ($A B$) sei m.
2) Beduteun A^{\prime}, B^{\prime} die transpomieur Matisien $\overline{\text { ai } ~} A, B$, dame sei $A B^{\prime}=B A^{\prime}$. Im Fall dep $\overline{\text { I in inaguiar-quadratinle it hat es evicu Simu }}$ Stet $A B^{\prime}=B A^{\prime}$ zu fordess dap $A \vec{B}^{\prime}=B \vec{A}^{\prime}$ it, wobli die Eleumble von \bar{A} die konyugieren Eloweute von A suid. Paere, für die $A \cdot \bar{B}^{\prime}=B \bar{A}$ shat $A^{\prime} B^{\prime}=B A^{\prime}$ girt, nemst man hermitinle.

In dem Referat wirdeu anith wethirle Figeuichaftewibder syme. und hane. Pare abgelitet, die man zuir hutsouch ay der Sijel -Eirestein-Rihew hrauht, Vegleithe: 1) C.L. Siegel, Analy hishe Theonie der quadrati hes Fomuen I und III, Annals 36 1935; viskesondere Hiess sats 41 und Amials 38 1937, Seite 287. 2) H. Braun, Hiernitian modular functions,

 Es ani K eim Eulichiger (fomontation) Untm hi que einue

 intris enthiet.
Sim Bewtin wirt cive Rebiliking von S an eten Syok Cingepalut, des an den tyrioutin - bl dinit 45 iod

 sice mum or enfiefsi, dems θ in des tantuison om Sl l

 de mapputingies powturing firgunder tum fager
29.8.51. Thlonr Naggen in grïgge.
ff fi $F \cong f^{2} / \ln$ in salungmiger or frim gnipe f aise is froigguen may niur sulelimsariontour Vutavgaigen il sou it: Yur luntangingen il sum f houn agrige sineme, siny seen "Liuhbeioubsmen" ninis dypuins trarthor $\mu^{(i)}\left(x_{n}, \ldots, u_{n}\right), i=1,2, \ldots$
 ven fermoners ais $\$ 1$ 立gopses marn. (King houlray nam 24.11.50.)
fo mavenu tow fixninguen holingünger vagür angue yenw, sap in 应wen on kutigniggu Fien owr selfirgmen jmenalrife $\operatorname{son} F\left(F_{1}=F, F_{2}=\left[F_{1} F\right]\right.$,.. $F_{m}=\left[F_{\text {u-an, }} F\right], \ldots$ alwige. Je $F_{C}=F_{c+1}=\cdots$
$\sin c \neq 1$, pr fuipe $F_{C}=P(F)$ infonlang F. if gite Kaumuidatonngele, añ Rumon gin fítery Niur puhng $P(F)$ fuege.
aes dxpenn san Rageen gis Aficision noun F socarm
 mit $\left\{i_{n}, \ldots, i_{m}\right\}=\{1, \ldots, n\}$ ins gran fice $m<m$ pin. $d=m-n>0$ fripe Mfire.
un $m \geqslant k+d$, sam ive $F_{m}=P(F)=1$. ripi birsiaten Jace pis aüsgalsulpu, ago m $<k+d$. Vaum aric:

 $F_{m+1}=P(F)$ ise dis potyng F.
$d \geqslant 2: \quad F_{k+d}=P(F)$ it sin puthis som F.

 gugu fin $d \geqslant 2$.
 j${ }^{2}$ p pim gnigen F, hyon. L 子í F. thir $~ d=1$ frege in $L_{m} \cong F_{m} / F_{n+1}$, wap $[\cdots u \ldots u \ldots]=0$ inm samic Juscoriony son $\left[n_{n}, \ldots, u_{m}\right]$ geppuniter furumilocionion orr barialem hir ainf dar vorgingur hi sungenerem pamilaciontm. seum is aing $m\left[u_{1}, \ldots, u_{m}\right]=\sum_{i=1} \varepsilon_{i}\left[u_{1}, \ldots, b_{n}\right]=0$ uie $\varepsilon_{v}=0, \pm 1, \sigma_{v}$ in parmíacionme san un gigune
 eringe vinnfgífüform.
divany stmunnt?
Veroegenveien de frece Produdot-s àt asen vereif tem x tergenvere II.
feg. At - Libetfbare 1 _alyam vo firppen
gi. Es exixteib aie id de hig bath = he
DFG mariziale forme die das Malgauren et -
waith an tor inm engengh in, dh. jede endere foype nit dive Eigeniafte if is homomanthe isiced desa furpe, dbr vom halgence A "priei-azengte "forno.
 - fune siverier; dobei heim die frai eigengbe fenpe frei $i s$ sie sorveies, sicum ficke Rlation $R=1$ on der for $R \equiv$ unv it, zrobiei $A=1$,.e. Relatio i evien elar gy. firpyre de $t h a l$ game is thai heit is suive du Marical eige, thaph in woit prave 5 ahs ta fr vesalegornien: Haber alle pragfe de A agean ohe riga niafl E, not in das Maga is sie frappe it de
 "Lar二abe" م M Mex tue sipe-ilapt E: dosht gaur it E-prer \&beth-bar. Daran poget watísbict E-betflearkit, wi.2h esbed chungevehes. ootvE die cigen miafh abers? ? serir, so kaum man ci Berquil \&is \therefore hetheare 1 algos aveenian foughe geber,
 bethear in.
$H=-a$ Newnown (Hull)
30. 8. 5T Dawsichlimptheoris eudlicher grüppen.

Ist go der Exponent eines enclichen gruippe of, so ist jeter Charablar rove of (ine gewörhulichen Sinue) tebore dens,

 schlieplich oow R. Beacien bevoiesere wönde, ist eire werwe infectere Berecis oungetrageu vondece. Der Becolis folgs
 weum es eine औ" x geliönge Daredeeling mit Voeffifisoly ails $P(\sqrt[8]{1})$ gits.
$-146-$
danouis, defo (1.) jedero chanoebter \% einer rilpolukheu U = dosisa lesognippe ழ̧ sou g übero $P(\sqrt[g]{n})$ reprếsukienoher isd, (2.) die Eigurschaps, 酋ber $P(\sqrt[\%]{1})$ repräsectiesobor zë suis, beiv دиděrsciouspnozess ünd bei lineasoes feis holtee bleibs, (3.) jeden Chansablex voce of sich liwear aris Judizierleu sou Charabteren nilpotulers veulessgsï ppen Da

4. ist (eine nechers Beweis wrende vou W_{n} 'tt gegebeu) \% ind
(2.) Seho eimfach fer sehere isd, so verolaughol (3.) eiven Bawais. Dev n̈rspnëugeich Rou R. Braciar segebeue Berser's vore (3.) to (3ule oslubbide verolinfachot wexder.
 ders ig-adischen Charsablestringe $X_{k y}$, die ains deu
 Luboveickes ac̈f deu Julegnitätsboveich der y-gouquee zoblece der gg -adiseleen K_{0}-per $K_{\mathrm{g}}=P_{p}(\sqrt[90]{1})$ eutstehen. Die dimelos ünzonhaghoren Jdeale eines soleben Riuzes $X_{\text {sj }}$ sind máculioh. ringe vilpolentent Uurerigoceppen vace g. - Dovo salz (3.) gestattet woch mauhigfarke Duweudeingeer: so arhält mau ačs iluue feom Berispier dere Satz, dap jede L- Ferubrion einero galoissdree Zablhômar enveifaning Aided Qutisusbla eive meroueorplee Frimbliou ist.
P. Roqüetto

Zela-Fïutchionen qüadratishes Forwen.
 definiten quadsatistion Fiom. In Vesallgenncinounng des EPSTEIS' notuen Jeta $=$ finutation

$$
\zeta_{1}(\gamma ; s)=\frac{1}{2} \sum_{\eta \neq \sigma}(q \mid \gamma \eta)^{-s} ; \quad \operatorname{Tos}>\frac{m}{2}
$$

Sei des die Sünnue intes elle Gorkerpüntele $g \neq \sigma$ des mu-dimensitiovalen Rañmes习ïerlsecken ist, sürden dic Reileen

$$
-147
$$

$$
\begin{equation*}
\zeta_{n}(r ; s)=\sum_{\left.\sigma^{l m i n}\right)}\left|a^{1} r_{o}\right|^{-s} ; \quad m \geq n \tag{1}
\end{equation*}
$$

inkessicht. In (2) ist die Siname inber alle gaingen Mialrijen of (m, M) vom

 des Darshllimgpangallen kamn man (1) steriben:

$$
\begin{equation*}
S_{n}\left(\gamma_{;} ; s\right)=\sum_{\{7\}>0} \frac{A(\gamma, 7)}{E(7)} \cdot|7|^{-s} \tag{2}
\end{equation*}
$$

$A(r, 7)$. Athateic liv hypell dos ganypu Liningen $*$ son $x^{\prime} r *=7$, ant $E(x)=A(x, x)=x>0,7 x$ ist $A(r, y)$ colhid.
Dabir dïrdiläift $7^{(n)}$ un valles Syssem oh redïgisten parrition Sutizign,
 qüadr. Formu kan hewrisen dafo (1) fir $R \lll \frac{\mathrm{~m}}{2}$ ofrobert teruvergent ist. Bildet maw mim

$$
\begin{equation*}
R_{n}(\gamma ; s)=\pi^{\sim\left(\frac{n-1}{4}-s\right)} T(s) T\left(s-\frac{1}{2}\right) \ldots T\left(s-\frac{n-1}{2}\right) S_{n}(r ; s) \tag{3}
\end{equation*}
$$

(4)

$$
f(x ; x)=\sum_{\pi \alpha, \pi} e^{-\pi \sigma(x \alpha r a)}, \quad x>0, x^{(x)}>0
$$

 Tunforuming dises Tulegrals gitt os dic analytivele Fistsefging oow $R_{n}(r, s)$ fis alle komplexen \& und maw kamn ghiclysitig als. Aualogon gis

$$
\begin{equation*}
R_{m}(r ; s)=r^{-\frac{n}{2}} R_{m}\left(r^{-1} ; \frac{m^{m}}{2}-s\right) \tag{5}
\end{equation*}
$$

blesen. Bei des Amperming des Iuhgabs wird wesemblich dic Irausformation fromel

$$
f(r ; x)=|r|^{-\frac{x}{2}} \cdot x^{-\frac{m}{2}} f\left(r^{-1} ; x^{-1}\right)
$$

veroendet, div man driach Amutending des POISSON mben Sümmatiensformel aif (t) whalt. Su $\left(r_{i} s\right)$ egilt srid alsmanin do gangui Ebeme analytirstic Finution mit Aüsmalune whe Rolem artern Oodiming hei

$$
s=\frac{m-r}{2} ; \quad r=0,1, \ldots \quad(m-1) \text {. }
$$

Ans (2) relelipst man in des inffidien Weise.

$$
\sum_{\substack{|\gamma|>0 \\|\gamma| \in x}} \frac{A(\gamma ; 7)}{E(7)} \cong|\gamma|^{-\frac{n}{2}} \cdot \alpha_{m, x} \cdot x^{\frac{m}{2}}
$$

In Bewsis (5) agill side mebenhes das MiNkowsicl berechmele Vohinmen

Vibestaging aif be ven SIE GEL aingefistem modenefoswen u-len Grodes ist migaich.

Max Koecher.
brigs siber sis Antrit mow F. Lambet: The iumensibility 31. 8. 57. of a somvigroupo into a group. Cauadiau fourn. of. lesth, 3, 195, $34-43$.

Graites.
galvis. Therrie rein-ins eparabler Creveiteriugen mu Exponenter 1.
wrun $L=K\left(c_{1}, \ldots, c_{m_{1}}\right) / K, c_{i}^{P}=d_{i} \in K$ uic rins-inoep. Eres. vmis Ssep. 1 ist, Danm definient man als "Ablsiting in L "bor K" inim Endomorplicmüs of oer abstiven gruppe m L, $\operatorname{sen} \forall(x y)=x v(y)+V(x) y \quad \hbar \cdot \forall(a)=0$ fur $a \in K$ esfillt. ori Mange ries Rblitingen sfinint biwet bei wahe hegend effivition on Valuingimigen einen Moric mit L als ofuelolen belich, nït vern man als Ceunuer dorstzt $\left[g_{1}, g_{2}\right]=\theta_{1} t_{2}-g_{2} g_{1}$ tefinien, vimen dieschen Ring v. His iv loye ainh is (p Char. m K $)$ siuble in itwe. Solche Geschen Riege m aobitingun, rie gighore hotive ibes L sint nict mis sives aresiting ot aïes of uthable, volem sir p-Leringe neumen. Es pilt sum der vem Heäptsaly or blerincher golois-therie punin int-
 Ereveitery. L/K ist is omopph ji den jinu Vubane de p-ilic-Ruturnige vou v suten Vob-acat" su Ismmphiomin sin veucikilt sius di arrilenughenges $\begin{array}{ll}\ell \subseteq \vartheta & t \rightarrow K(f) \text {, wo } K(f)=\{x ; f(x)=0\} \subseteq L \\ L 2 S 2 K & S \rightarrow \rho\left(N^{\prime}\right) \text {, wo } \rho\left(N^{\prime}\right)=\left\{v ; v\left(N^{\prime}\right)=0\right\} \subseteq \mathscr{L}\end{array}$ (Facobson, Trausact. 42)
1.9. 1951. Normalform von Natriven viber belintigm Mainpum.

Dinse Instibtivo wind dor Sperialfall des Maipptsatues íber abelshe Yrippen bevisen, bei dum der Operatonenbevich cin Polyurning, iber imum Kirper K ist, Dabic ist die Yimppe in Tthtorsamin $R^{\prime \prime}$ ind die Amwending dor Eperatoren wird dirich $\mathcal{F}(z), \tau=F(s)(v)$ defininet, wo $q \in R^{n}, F(z) \in K(z)$ nind \& inc feste limeare Thansfornation vou R^{n} in sink ist, Ais dimen Kaimptsale ugiot inh ime trifipalting $R^{n}=S_{1}+\cdots+S_{k}, S_{\nu} \cap S_{\mu}=\{0\}$, wa $S_{r}=K[z] \cdot \rho_{r}\left(d \cdot h\right.$ die S_{γ} sind monogen).
If $\tau_{y}(z)$ das anminliciounde Polynom von S_{1} (S.h. das Polynom telimsten Gyrades, das alle $\tau^{\circ} S_{\nu}$ wit dic (ivicl abribidt A), sov spallitsinh S_{y} gemis/s der Birnverleging won $\mathcal{F}_{7,}(x)$ weite anif. Rn int
 das unillierende Polynom von γ_{0} inue Primpolga, ompotione $P(a)^{x}$ ist. Ist $P(z)=2^{n}+a_{1-1} 2^{n-1}+\cdots+a_{0}$ and wihll man in S w. Pain $n_{1, n+\mu+1}=P(z)^{k} x^{\mu} r_{0} \quad(\nu=0, \ldots, \alpha-1 ; \mu=0, \ldots, n r)$, so argitt-sinh, da β the Matina or der lim. Timanf. 0 an dingouder Aneinandursishing oon Kiasthem der Yestalt.

intricts.

In Talle, haß K algebrisath abgendlussen ist, ogitt sish die Jondansike Vornalform.
W. Wioll
1.9.51. finr varpleleñg fincyor kinga.
fo pi \mathcal{L} mir fricur filfer king aire h for
 Jafern aer Fanftipinctimenning. Iu Lm on Thikuañ over Joman air f_{1}, Vi funargon som paon un in

alyangighaifon sour formun in Lin viry Renfurin in Su, oum grimpuring oir frummerity gesire tom fquerm. zü Lim yofore vin derae
 sivin aqpijacionn thing or vergerece mine, sas may derle phes unofeing in. fo pins vegro
 on a, err frumgen som goa on is sur fyriguen \dot{v}, aysisomerv, ef. $\mathscr{L}_{m}=\Omega_{m} Q_{m}$. Im sint viny $\Omega \mathrm{m}$ nompinagive, is is $\mathscr{L}_{\mathrm{n}}=\Omega_{\mathrm{m}} \mathrm{Z}_{\mathrm{m}}$. 2i finföfring wan Rongen in firlem ping 4 , s.f pherman $f\left(x_{0} \cdots x_{n}\right)=0$ fi cocnticl, bivorithe \sin Fomgonificion vins kiveries M ind, or peren "thewe" san $f\left(x_{n}, \ldots, \lambda x\right), x_{i} \in \mathcal{R}$ aue: fáce. vani is $L=2 / m$ unu $L_{m} \cong 2 \mathrm{~m} / \mathrm{X}_{\mathrm{m}}$. wir $m_{m}=\mathscr{L m} \cap m$.

 sappr biy refo ving pine singza sic mrithan. siany ormunnt?
 Guganthent nor alyatro.

Griver.

$$
2 \cdot 4 \cdot 51
$$

$-151-$

 $[a, k] \rightarrow\left[l^{\prime} b^{\prime}\right]$ mann $a g \rightarrow a^{\prime} z^{\prime}$ mind $b z \rightarrow b^{\prime} g^{\prime}$. Zni yather morthyinggo $n=\left\{f\left(x_{1}, \ldots, x_{n}\right)\right\}$ yitt it $\sin \beta \quad f\left(x_{1}, \ldots d x_{n}\right)=f\left(r_{i} x_{1}, \ldots x_{n}\right)=\ldots . .=f\left(x_{1}, \ldots r_{i} x_{n}\right)$
(Gaill, Brelle A82 verbal and manginal subgroups. shomist sipt Ainf is onllpa denpifikantion in

1. $n o \simeq n b^{\prime}$
2. $g / x \simeq g^{\prime} / R^{\prime}$
3. $n_{0}\left(a_{1}, \cdots, a_{n}\right) \rightarrow n_{0}\left(a_{1}^{\prime}, \cdots a_{n}^{\prime}\right)$ mamia $\left.a_{i}\right\} \rightarrow a_{i}^{\prime} g^{\prime}$

 Pimima ther sume soll fin parin sherp/ipitantion

Topfonhor thist.
4. 9.51 .

Die hermitivhe Morulgmppe \mathcal{H} ist folgudermamen definist太 sei ein inaginar -quadratineer trekörper und die bebrartutue Matrisen M solene gause Elemente hebur die \bar{K} angoliören. Setht $\operatorname{man} J^{(2 n)}=\left(\begin{array}{c}0 \\ -E^{(n)} \\ E^{(n)}\end{array}\right)$, damm berterd \mathscr{g} ans allm M sody

$$
\vec{M}^{\prime} J M=J
$$

ist. \vec{M}^{\prime} bedulet dabi die transpomise kongugiente Matris si M.
Durde Relerminantutild mug fogst ais $\bar{M}^{\prime} J M=J$ sofurt $|M|=\varepsilon$ wo ε evie Erirkcit aus $\dot{\alpha}$ bedentec. Daniter hiviais gill der Sath dap soger $|M|=\varepsilon^{2}$ ist. Es wh de ein Beweis dieses Satres ungetragin. (Vergluiche: Hermitian Modular Fundious III Amaes of Mathematies 53 1951, Sertion 3)
3ram

Farme normale d'unue matrice our sun carpo commertate of Dincuantrations dureeto nawo ubtiliser if th. foandannentat seur les groupes afiliems ni le th. de Jordous our les suiten de compassition Soit A prerateur finiecure sur E (eppaca velotovicl sur corppo comualalif k), If 10 $P(x)$ porlynname muiurial de $A, \varphi=\varphi_{4} \ldots$. Is la dicomparition - fut, de φ mer facteuro primainen.

1. Les sous-sppaces $E_{i}=\left(\prod_{j \neq i} \varphi_{j}\right) E$ romt slablen pouk A or l^{\prime} ar a $E=E_{4}+\cdots \nmid E_{n}$ (ramme direele) - De plins e'opuratuur in dwih dams Sc: E_{i} a poun polymame mivivinal $\varphi_{i}(x)$.
2. Le thiorinse pricideut ramine à f'e'lude d'ens quialeur à polyname munivial primavie soil $\varphi(x)=\Psi^{\alpha}(x)$ (Ψ presuia) On considire E cannme modute sure $K[x]$ en fusouk $P(x) u=P(A) u$ $P(x) \in K(x)$, $u \in E$. On nute $E_{K[x]}$ a inoduk aftence.
The'arime. Ekery at dicompusable en une somme diveche de soussundules mosnogeines formanlv des soun-tspaees $G_{i}=\left(u_{i}, A u_{i}, A^{\gamma} u_{i}, \ldots\right)$ de dinieusian $\beta P(P$ digré de $\Psi, \beta<\alpha)$. Le namfore M_{β} de saur-upace de drineusian βP eat ensique

Panaun $E_{i}=$ ensemble diou $\in E$ Jolo que $\psi^{i} u=0$. Causiderann ler mile de noun- espaces

$$
E_{1} \cap\left(\varphi^{\alpha-1}\right) E \subset E_{1} \beta\left(\varphi^{\alpha-2}\right) E \subset \cdots \subset E_{1}
$$

E_{1} puat itre considéri comme eppacu vectoricl rus $K[2] /(\varphi(x))$ Sout alaro $u_{1}^{\prime}, u_{2}^{\prime}, \ldots$. . ure bave dans E_{1} telle pue

On virifie que:

$$
\begin{aligned}
E_{K[0]} & =K[x] u_{1}+K[x] u_{2}+\ldots . \quad \text { c'ut }-\dot{a} \text { - durì: } \\
E & =\left(u_{1}, A u_{n}, A^{2} u_{i}, \ldots\right)+\left(u_{2,} A_{2} u_{2}, A_{1}^{2} u_{0}, \ldots\right)+\ldots
\end{aligned}
$$

L'unicite' de $M_{\alpha-1}, M_{\alpha-2}, \ldots$ renutle de $m_{\alpha-1}=$
$D \min E_{1 \cap}\left(\Psi^{\alpha-1}\right) E, M_{k-1}+M_{\alpha-2}=\operatorname{Din}^{\alpha} E_{1}\left(\Psi^{\alpha-2}\right) E, \ldots$

Consider the matrix

$$
M=v_{1} \times A_{1}+\cdots+v_{k} \times A_{k},
$$

where U_{1}, \ldots, U_{k} are square matrices of order n, wist elements in an algelracially closed field, and. A_{1}, \ldots, A_{K} are square matrices of order m, whose elements are all indeterminate over K. Here $A \times B$ denotes the kronecker product.

A systematic method was deccibled for finding factors (i fang) of $|M|$ of He form $\left|\lambda_{1} A_{1}+\cdots+\lambda_{k} A_{k}\right|$.
$U_{s e}$ is male of this s suppose one, at least, of v_{1}, \ldots, v_{k} is now-singular. Lemma: S There exist non-singular matrices P, Q such that

$$
P v_{i} Q=\left(\begin{array}{cc}
a_{i} & u_{i}^{\prime} \\
0 & v_{i}^{*}
\end{array}\right)
$$

If and only of the pencil e of matrices $U_{i}-\lambda_{i j} V_{j}$ have a common nil-vector g,$~ i . e . ~ a ~ v e c t o r ~ n u c h ~ t h a t ~$

$$
\left(v_{i}-\lambda_{i j} v_{j}\right) \eta=0 \quad(\text { ad } i, j) .
$$

The rffecication of this lemma is clear from the

$$
\begin{aligned}
& \text { result: } \\
& (P \times E) M(Q \times E)=\sum_{i=1}^{K}\left(P U_{i} Q \times A_{i}\right)=\left(\begin{array}{cc}
\sum_{i} a_{i} A_{i}, & * \\
0 & \sum_{i} v_{i}^{*} \times A_{i}
\end{array}\right) \\
& \text { and then }|P|^{\sigma}|Q|^{\sigma}|M|=\left|\sum_{i} a_{i} A_{i}\right| \cdot\left|\sum_{i} v_{i}^{*} \times A_{i}\right|
\end{aligned}
$$

If all matrices of the initial set, V_{1}, \ldots, U_{k} are singular we make a linear transformation

$$
\vec{v}_{i}^{W}=\sum_{j=1}^{k} \lambda_{i j} U_{j} \text { woe }\left|\lambda_{i j}\right| \neq 0
$$

and obtain a set ${\overline{v_{1}}}_{1}, \ldots, \bar{v}_{k}$, at least one of which is nom-singular. Then we consider the matier $\bar{M}=\bar{U}_{i} \times A_{1}+\cdots+\bar{v}_{k} \times A_{k}$ It is cary to s hour that if $|M|$ has a factor $\left|\mu_{1} A_{1}+\cdots+\mu_{n} A_{k}\right|$ then $|\bar{M}|$ has a factor $\mid \bar{\mu}_{1} A_{1}+\cdots+\bar{\mu}_{k} A_{k}$. and conversely. So we factorize $|\bar{M}|$ and then transform the fetors into fetors of $|M|$. It is always possible to find one of $\bar{v}_{1}, \ldots, \overline{v_{k}}$ mon-singular, unless the golem $\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}$ |M| vanishes identically.
21. X. 51 Enfluss der Vorseichen der Ableitungn eimer Tundtion anf ithen anolytisichen Charakter

Boas and Polga funvisen 1942 dem Sutz: is serien $m_{1}<m_{2}<\ldots$ and g_{1}, q_{2}, \ldots..
 $f^{(m k)}(x) f^{\left(m k+2 q_{k}\right)(x)} \leqq 0$ in $-1 \leqslant x \leqslant 1 \quad(k=1,2, \ldots \ldots) ;$ fills dam $\quad m_{k+1}-m_{k}=O(1)$. $g_{k}=O\left(11\right.$, so ist $f(x)$ sime ganse Finntion vom Exponentialtypow, d.t. $\mid f(m)<A e^{B / x}$.
 Anmonaly in frogenmen Formel $(k$, r game, porsitior):
(1) $\quad f(r)(x)=\sum_{\nu=0}^{k-1} Q_{\nu}(r) h^{-r} \Delta_{k}^{\nu+2} f(x)+Q_{k}(r) h^{k} f^{(k+r)}(\xi)$
 Kirffisurton in $\left(\frac{\log (1+2)}{x}\right)^{2}=\sum_{x=0}^{\infty} Q_{n}(2) x^{n}$, uns ξ int im Wert in $(x, x+(k+2-1) h)$ Der Thaythiffssuth m Burs ane Polgn laukt: Tills pard positing gure
 $g^{(p+2 q)}(x) \leq 0$, drmm in $g^{(p)}(x) \leqq A^{p+2 q}(p+2 q)^{p} M$, wn $A \leqq 30 e^{300+1}$.

 fini $x=0,1,2, \ldots .$. herrsion, $d . h$ is int $f(x)$ isin gave Trumbion nom Expromentialoypin.

Soplaornermin
11. X. 51 Tonstruktion multiplicativer Funktionen zew Thongruewzgruppen. Aus Teilwertew der Funtetion $\otimes_{1}(v, \tau)$ genvinnt man eine Jeasse multiplikativer Junk fionen der Haypt tongreen zguppen $\Gamma[\mathcal{F}]$, deren Fourierkoeffizianten mit sehrallyemai! nen Partitionen puutcionen ius ammenhiaingen. Diese eubstehew aus der Chassischen Partitionenfuntation durch ein Herationsprindip, Jorigruenzbedingungen und Bes Chriankeungen fir die Summanden und durch Fn bringung aszillierender "Gewr chte", Die Hblei_ tungen der multipliceativen Funkctionen noche lassen sich mit thife der Poixcaré-
$\bar{\mu}_{k} A_{k}$ schen Reihen der Dimension -2 vom parabolischen Typus mit Polen in den Spitrees auf Differentiale erster Gathung redurieren, Von diesen wird durch Rweivatige Auwen_ dung der Mehisierung geneigt, hass sie videntisch verschwindew; jene Thblentungen sind also exper rit bestimmbare Ľinearkombinationen der genannten Poincaré-Reilien. Dar aus folgt, dass jedes der verallgemes nerten Partis ss onen fumbtionen durchabsolut konverghle Reifher nach Art der Rademaduerschen Partitionen experwell dargestelet wrid.
21. ㅍ. 51
 teretm ind TRinumamiphe Oibints.

 Nin ham. genen Jithmiep lighest, - Itt
 Obsinh gin, Woyu joh arryiging whe

 whe Pawifurfother $(82$ E Sylirther imifirin. perbiver Mester, ve2) Atatio di uteffinde- habe
 Hertiantalingin t_{1}, \cdots, t_{n} : freten) bentiofim:
 phing $\because(\pi)$ iges in in $\sin (\pi)$ vinhity i)

 is simm jeintat P undpifl twip finp ing Fir. wol. vish gifflofjum exvinijigen flifh fr in P g.fics buninpm, laps tifo Utimerip exsiputyaim quai.
K. Flim
22. 区. 51 . Dic Jensen-ode Formel in beliebigen Gebieten bei mehveren Veroiinderlidion und die Chavalit enibik meromovphe Flichen Die fensen ache Formel wird fïr meromorphe Fmulttinuen f 10 ouf uouplase, $2 n$ dicmensionale Mannigfaligh Visiten $\pi^{2 n}$ ad
-1562
2ij. angeop rochen. Jot $H \subset m^{2 n}$ offen, \bar{H} Kompollt, and hat $R d H=S$ eine in srese Nomule, sobeweist man fir jedes φ mit in \bar{H} stetigen
'wist Ableitungen'
2 vers: (1) $S_{S} \log \left|f 1 \partial^{2} \varphi \partial x^{2 n-2}=\int_{1-1} \partial \log \right| f 1 \partial^{2} \varphi \partial x^{2 n-2}+\int_{H-1} \log |f| \partial \partial^{t} \varphi \partial x^{2 m-2}$
2nin (i) $S_{S} \varphi \partial^{1} \log \mid f\left(\partial x^{2 n-2}=S_{H}^{1} \partial \rho^{2} \log |f| \partial x^{2 n-2}-2 \bar{\pi} \int_{\pi \sim H} \varphi \partial x^{2 n-2}\right.$
Nan. Dabei ist ve die Flädu der Pol = und Nullstellen von f und vilure Vieffachheit. Die altervierenden Differentiale laedenten:

$$
\begin{aligned}
& \partial \varphi=\sum_{v=1}^{n}\left(\varphi_{z_{v}} \partial z_{v}+\varphi_{\bar{z}_{v}} \partial \bar{z}_{v}\right), \partial^{\dagger} \varphi=i \sum_{v=1}^{n}\left(\varphi_{z_{v}} \partial z_{v}-\varphi_{z_{v}} \partial \bar{z}_{v}\right)
\end{aligned}
$$

Q6. der Dimennicu 2n-2 eive posibive itanserbelegeng. Wählt man it, and $R d G=r, R d g=r$ cive ainssere No mmale bzge G 'bzarg habes, beatimint man p als Liscung der Randwertaufgabe $\operatorname{dg}^{1} \varphi \partial x^{2 n-2}=0$ in $H, \varphi(P)=\left\{\begin{array}{l}0 \quad P \notin G \\ 1 \\ 1\end{array}\right.$ und wendet remen (1) anf $H,(2]$ anf G an, 20 ergibt sich eime Verallgemeinerung der haber, beatiminut man
Anvogs $y^{1} \varphi \partial x^{2 n-2}=0$ in H,
af $H,(2)$ anf G an,
: H, Hensen schen Foverel
$=$ Hy (3) $\frac{1}{2 \pi} \int_{r} \log f f\left(\left.\partial^{2} \varphi \partial x^{2 n-2}-\frac{1}{2 \pi} \int_{\gamma} \log f \right\rvert\, \partial^{2} \varphi \partial x^{2 n-2}=\int_{\pi} \nu \varphi \partial x^{2 n-2}\right.$
T1) D Eine meromophe Feciche ist eive merromo yphe Abbildung $\partial 0(P)$ 2n in bon $\mathrm{me}^{2 n}$ in den projelltiven Vektorranm der Dimeusion $2 m-2$. Maltipli-
(n. R) list man (3) mit R, wobei $R^{-1}=\frac{1}{2 \pi} \int_{\Gamma} \partial^{1} \varphi \partial x^{2 n-2}$ ist, bildet man das invere Produllt von 10 mit dem Velltor $\vec{\alpha}:(\not \cap O C P), \vec{a})=\sum_{\mu=1}^{m} \omega_{\mu}(P) \alpha_{\mu}$, lef 2 tman $f(P)=\frac{(m 0, \vec{Q})}{(20, \overrightarrow{3})}$ in (3) ein, oo erchält man, wie bei $n=1$, dus 1. Hampt satz : $T\left(G^{\prime}\right)=N(G, \vec{\alpha})+m(\vec{r}, \vec{\alpha})-m_{0}(\gamma, \vec{\alpha})=$ dasselbe in $\vec{\beta}$. Fiir die Charabteristik $T(G)$ kamm man unter anderen anch folgende Integraldurstelling angoban:
1%

$$
\begin{aligned}
& T\left(G^{\prime}\right)=\frac{1}{\pi} \int_{G^{\prime}} Y \partial \omega_{2}\left(m_{b}\right) \partial x^{2 n-2} \text { mif } \psi=R \cdot \varphi
\end{aligned}
$$ Jusgasbant zeigt sich, dass der A. Hauptsat a fï-ancolytische kurven, wrie er von H. mady. Weyl in "Meromorpfiic sorden functions and analytic curven (1943) dorgestelltwinde, Mtionen had dev l. Howipt satz für mevancorphe Fuultionen in Velltorvanen

MamnigfaltigVeiten übertragen werden Kamn, wobei die Séeiversis allerding etwas nomplizirstere Jutegralumformmengen verlaugen.
w. Stuee

V̈̈rsquine V wallgewsinerungen des BCoshichen Patzes. sit $E_{\eta}^{(i)}$ fin $\eta=\left\{\begin{array}{l}-1 \\ D_{1}\end{array}\right.$ berw \{hie Krais hive $(x<1$

 die Riculameschen Plichen F,G:GCFCE $E_{2}^{(\omega)}$ (dL. Glingovingmispirionleyest die

 oder ein Vngsrigmupspunkt rong nust wengerals n Bliltern liept. (F habe terine Vise vingouppmutet wil wenizer cle n BCattern). Unter dem Raniabstani des Pinktes $n \rho \in \mathcal{P}_{n}(G \rightarrow F), \rho_{\eta, n}=\rho_{\eta, n, F}\left(\frac{n o) \text {, venstainn }}{}\right.$ sirdie obere Grence des Ravren (in. Simuetrr η-Metrik) alhr Kuissduig mit nes als Nittelpunkt, die 2 re $P_{n}(G \rightarrow F)$ getörm. Sovawnwerde fin dum verallgmeinertun tukerisracius von Ggesctst: $\rho_{n}=\rho_{\eta, n},\{\in\}_{=}$ $=$ ob. Gr $\rho_{\eta, n, F}(n \rho) \cdot G(\eta, \alpha, n)$ nidie Merge dleir Ricuraunad,
 te mit veriquals A Blitten und entstehe ans $E_{-1}^{(z)}$ durch erive (fin
 ist $(\alpha<1$ fini $\eta=-1$) trivirallemineneste BCoksche Koustante werde enklärt ornch: $B_{(G, \alpha, m, m)}=\operatorname{mint}_{G \in G(\eta, \alpha, n)} \rho_{\eta, m, F}\{G\}$
doure wint on fate beriesem: F Fel.
Es gilt (fin $n \geq m$)

$$
\begin{aligned}
& \text { Es gilt }(\text { fin } n \geq m) \\
& B(\eta, \alpha, 2, n) \geqq B(\eta, \alpha, m, 2) \geqq \frac{\alpha \sqrt{m^{2}-1}}{m \sqrt{1+\eta \alpha^{2}}+\sqrt{m^{2}+\eta \alpha^{2}}} \quad\left(\equiv f_{2}(\alpha, m)\right) \\
& \text { Hierans tole }>B \text {. } 1-n=+1
\end{aligned}
$$

Hierans folp $1 \geq B$. for $\eta=+1, \alpha \rightarrow \infty$:

$$
B(+1, \infty, 2, m) \geq B(+1, \infty, m, 2) \geqq \sqrt{\frac{m-1}{m+1}}
$$

dh. insbesonden: :Qive eimpadisushgde Piemaruesche Flachevorn parabolrsthen Typues, die sibor der tiemaurechen zathen knge (eventuill vizamig2) angebrilet int und keine Verzorijumg punkt unit wenger als m Blätterm besitit iuber deckt schbist en'ue Krisscheste vom Racius (der (+1)-Metrik): $\rho_{+1}=\sqrt{\frac{m-1}{m+1}}-\varepsilon$ (wabis 2ujudem poritiven Belinbig klisien E eine soluhe Kuisschibe gefunth urdun kaun)", $m \rightarrow \infty$ liefert den fate: Jude eisfach zusaunvenkingurer Rines)
 sumerewengt in"bolaget ist, i"bodeckt sulicht En jidun pos. bel.
 sqettifin daushe Korstants $L \geq \frac{1}{2}$) Hauptuittel des Baruies ist borlegest dic auf $\mathcal{F}_{m}(G \rightarrow F)$ defiviente Metink $d s=\mu \frac{|d w|}{1+\eta \omega \omega \hat{\omega}}$ callatoy mit $\mu=\frac{A\left(1+\eta \rho^{2}\right)}{m \rho^{1-\frac{1}{m 0}}\left(4^{2}-\rho^{\frac{2}{m}}\right)}$ wit $\rho=\rho_{\eta, m}(w)$ und yerignet ket rang
*. (F In Lrothlculor Koustanto A, sowie eine Mettiore vor Allfors, dem die sich in dortbrbit, i, An Extension of Suhare' Leruma. Traeseot. restehn Am. Math. Foe. (1938), p 359-364 fiudet, und hierrn trinh. uissdiy vor allun eine von Ahl fors stanmende V vallgenesiverny adefins des Shurarrochen Leumuas (o sin dorhgr. Hacpot theoremen A2) $n, f[G\}=$ Li Konstuktion dor dam nöhizes Nitguetrik valaugh inige waun ausfrituliven libsheyruges vor allum fir $\eta= \pm 1$.

Run Puche. 22.10 .51
 rante zu gegeloenen: Nullotellen bei wehmercen unabliangjen Veründubides.

Eine Verallgemeinerung der Jensen- Poisson-sden Formel auf n Verainderliche gestaffetes, zu jeder. Null tellenfläd x, deven grenzexponent s in $q \leqslant \rho \leqslant q+1$
 of Divergene exposent, i\& konwergenzexponent), eine mevomopphen $h(y) \neq 0$ awnageben, des anf x mit vorgexdiviechevom bemer Vielfeed thiif $\langle z\rangle \geqslant 0$ verscharindet bzw wompllich wird, Whn (dies besagt schon der zum Bewres; beroutzte Setz von Cousion) Ver- und fir die
berdedet (1) $\operatorname{lng} h(y)=\frac{(n-1)!}{\pi^{2}-1} \int_{r c} X(z) \in\left(\frac{(y) 18)}{(z \mid z)}, q\right) \partial \omega_{2 y-1}(z)$ ehik): in jeder kugel $k=\left[|y| \leq m_{0}\right]$ gilet, in der Mn rtteer ist. blisen Debei ist $\partial w_{2 m-2}(z)$ das pojellting Oberfleichenelemenet von
$m \rightarrow \infty, x,(y \mid z)=\sum_{i=1}^{m} y_{v} \bar{z}_{v}$ und r Ring , $\quad(y, z)=\sum_{v=1} y_{v} z_{v}$ und $d^{n-1}\left\{x^{n-1} \ln \log \left[(1-x) e^{2^{2-1}, x^{v}}\right]\right\}$
$-159-$
Joth(y) Kanowisch, d.h. gilf(1) wit $v(z) \geq 0$, 20 ist Ord $h=$ Ond $N(r, 0)=\rho$, Ke., Typ $h=K \ell$, Typ $N(v, 0)$ Der Beweis ven $H . K$ meser für $n=2$ lässt sich richt auf $n>2$ übertvagen. Er gelingt für $n \geq 2$ wit zwei Hilppätzo

1. $\left.F(z y) \equiv(n-1) \int_{0}^{1} \log |h(\tau y)|(1-\tau)^{n-2} d \tau \leq \frac{(n-1)!}{2 \pi^{n}} \int_{\mid 01 /=1}^{\log \mid h(}(\lg \mid 00) \alpha\right) \mid / v$ wobsei fiir $|y| \leqslant r_{0}$ das ghich heibzeicher giet.
2. Wenn $M(r)=\operatorname{Max}_{\mid\langle y| \leqslant r}|h(y)|, H(r)=\operatorname{Max}_{\mid(g \mid \leqslant r} F(y)$ ist, pogith $\log M\left(\frac{v}{4}\right) \leqslant 8^{n}[H(r)+N(v, 0)+v(v, 0)]$.
Weiter eshalt man diesselben Aussagen über ordmeny, Keose. Typ fir meromoyphes $f(z)$ - und allgemeiver frïr meromomphe Flaichen us(z) - wie bei $n=1$. Al kam mit vereinderlichem o ouf or mit $\rho=\infty$ übartragen werden.

Gequashar der Unkernendevery biloh. dir feciohen disises Sheden hemplemen
 periodis serer doprpextenionkiak Ender deanstelels lassennit Qei quasike.t. Afhiloknze per cin sdelidxhe ERem $/ 5 /$ ro
 In bevertes, dars hecriss defable. Werl 1 diffrule Kërumes. Oi Nesiforsocisicuren der nekinshkinden flödur peid merike, dous evio Ver.
 sotivihery der Grund-

irapagität ur Atrablungofeldem.
Im 3-dien. Evel. Roven sei in berdininbtes dunes.
getitt ors vinem zusanumenha'ypuden Ansrengetiet W durch glate ofspliden Ω getrecont. Oleke tivieurgen u des Sthringungesbinkuy $A u+K^{2} a=0 \quad(k>0$), getten ale gelienj, die der "Ausstranlangobedinguyy" sena'.
 gegetive Rawhierten $H(s)$ and D. Es silt der Eür dwtigkitroth (Maque Rellif, ben iolina an

 Kisn K(vN), desen Anguuruete anf A rarieres. Sienen ansits bebord der Esyaingung, remen die trangerninte hovirgen Eleinhun, $(E+N)=0$ nidt-trinidh Tisumss hat. In der cigentlielen Potentialtaessie (os o arid mas dieser thvirig tiot tlerr, inden sum das "Kns.
 Beleguyy hiugrefint: Abe de dest sebmuett Argurewect, dofo den Diridlet-Dntignd provii-dafinin int, rersyt hier. Man neurs ors der Maruistactiofenir

 hohem Exponcutin l. Rii cetercehkwen Hegeichunvery
 ans den Elevececten $\eta^{\prime}=\eta(E \times k), \eta \in H /$. Ken Crintiminn
 milt-awquted Hilliverformon wn $\eta \in H_{l}, \phi \in \frac{\theta}{c}$ il, mix
 $\eta \rightarrow \varphi * M \eta, m_{n} H$ anf os henrike, den rich and Envied des Eiidhentylvitescatyes als midt-ausgentt heranentellt. Sil toaffijientrm de 2guunetrieht tsitorn ($3, M$ M") sied das Auslygrn da Kapagita'ts. Kreftijicitan. ken kivin tiur eect'rueder 3

Bacis on H_{l} durchlauften levees (grosen Kapopitätomatin), oder aker fi' 3 cim Bani in H, fir, "ime Broi
 sie Buvein stivitun sich auf cive einfoch Anend, dii aud des Kikiltriis dúsor beiden Koptetren orll staindy plairt.

Heruann Leel
Líckenreiken cind Jrauszendente Bablu.
 die vou. Mahler (Crelle 167,1932) uind Kokstua (Monatshepto 48 (193q)) aif verschiedenen, aber in Erfoege gleichwertigen Wegen heraingeschäl coirden. Das Vexfoleren rith añif deu Axproxi vationssigenschapter; wir verwesen dati a uf die Einleiking des Vortwags oom 19.8.57 vore Th-Selueider (iudiesem Barde). Die Ehassiohe Theone de tr.Z. vou Herwite bis auf Fiegel (riua Felford bechoudelt Tromsur-
 guvissee liceorer Difreestiolóleichingle II. Ordening erscheicen (odec wit solaken lug zisammenhängen, wie $e^{z}, \log _{z,} \sqrt{0}(z)$...); setztman for z tiue olgetransphe Zolle bee, so wird w(z) live of odee T-babe. - Liocivilles uste Konstritthion tr. Zohan (185) ereaibles, sine kacu niek forbetzfarer Potecuzviheu $w_{(}(z)=\sum_{k=1}^{\sum} c_{r_{k}} z^{2_{k}}$ heramshinhebui, deren Wertoorrol an des acidre Eude den Mabiu-Kokewa sehur Keassifinotion
 wister weise liussitafogon ish. Sie keosse \& swaetet anif in aboallebar viele keossen $u_{g}(g \circ 1.2, \ldots)$, wo g deyjenige Fradid, forden zrieith $\omega(g)=\infty$ wivd vgl.obeub. Sehceider), wöllread $\omega(1)=\ldots=\omega(g-1)<\infty$

 bai. - tuse Reikenkeasse zeige gauz rol. Koeff. q_{p}, \neq mir fur $v=v_{k}$. Kowrengent in $R \mid<1$, and die Lu"ckenbedregering

$$
\lim _{k \rightarrow \infty} v_{k+1}: v_{k}=\infty \text {. }
$$

Ensolaber $w_{L} z$) is dawn iber $|z|<1$ hivains vich forbethber (CARLSou Mz.9, tqa1). Uuser ingibris of doun: Setzt wan eive alg. Zoel S=? visrakg (am $\mid z(<1)$ ene, to wird w(s) sive Zole aur u_{g} oder A_{g}; dober
$-162-$
(ini), nuis eivbezogen werden die Zügh änigkeit von w(ξ) tul klossen h_{d} oden A_{d} mis d / g, insibepnadue $u_{1}, A_{1}=K(1)$. Degegen ist ciumogeiel, daß $w(\xi)$ нine S - odu T - boll wivd, our bei S_{g} vom grade g, das $w\left(\xi_{g}\right)$

- Iidern engitt sich foegende köquereigensehof - ciber die Einsictur bei Mahler kokswa hivaīs: Eiw körpes g-ten Ireides K_{g}, erzerigh dural Approximatirn row l_{g}-bollm ollain dierch Elenvente ois $k g$ wiedu eiven körive tr. Z. ans kg . Ug stuetat anf in korper, de dir köner İg wiederstiegelu. Eive verwandte Alistage soleher A1 it ziend vin Bespes Levi ise Jolle der h_{1}-tablen = Livivile zahlen gemoch worder. Nötheres: Ans.Akad. Wiss. Wien 1ogr sind demwachst in de Mz.

Egne lerich.
Wen bu Gain-Bowndiden Satz.
Auefors 4at in 7. 1437 don Gaun-Bometioken Soz Ranuit

 Dibunauseber Fifoick aine Grenderage zu hidion fioì die Eut.

 evis Otkeavie anfboum wire, beider die chondîustiveten Zug̈e den klavivater Ohearie (Gille emen komxadou Fiackes)

 ecie movasiante shetrite $\mu(z) \mid d \mu=d \sigma$ eni $(0 \leqslant \mu \leqslant \infty)$,

$$
x=|z-\alpha|^{\mu} a_{1}, v=\left(z-\left.p\right|^{-\mu} \mu_{2} \quad(\mu, v>0)\right.
$$

 Manket dame die Gause-13annebich Fosmed:

$$
2 \pi x+K=\sin \sum_{q}(\mu-\nu)-\int_{\Gamma} d \pi
$$

Byeideact.
 end anf denes Yraics dre an-yrintination $z=x+i y$, thei der den hollenit x endanhig int rued duch dio Randurecte $x=0$ anf doo Jequayung Γ wow $G_{0}, x=\bar{A}(=\operatorname{con} t)$ anf Γ jeregologt cosid, wober \bar{x} so feriert avid, dan

$$
\int_{x=\operatorname{coses} t} d y=2 \pi
$$

Seझा man die Gam-Bametrahe Naswal an can Sabiet Ga ($0 \leq m a$

$$
\begin{aligned}
& (\bar{x}) \text {, so eqgisf side } \lambda \\
& \qquad 2 \pi \int_{0}^{\lambda} \lambda(v) d x+\int_{0}^{\lambda} K(x) d x=2 \pi \int_{0}(\mu(x)-\nu(x)) d x+\int_{\Gamma} \operatorname{eg} x \cdot \cdot d y
\end{aligned}
$$

swo das Azguinent (x) angier, dan dieं behogfender Gionar dueb dar Sobier Sx begoper worder sollen.

Fies die Theovie des Abuader Differantivel sind foegende Favere soristetrg.

1) $u=|f|$, wo $f d r$ eni Agesohes Defferameinel ít
a) $u=\sqrt{|f|^{2}+|\varphi|^{2}}$, wo $f d z$ ai Beliblioges Aboevere Dopthe anctiol $\varphi d z$ en Differsutial 1 . Geleñy ists
D) $u=\sqrt{\left.1 F\right|^{2}+\left|\frac{\alpha \sigma}{\alpha s}\right|^{2}}$, wo

$$
\left|\frac{d \sigma}{d s}\right|^{2}=\sum\left|\varphi_{u}\right|^{2}
$$

die Beogomansche Farm ist.

Galny ainf over roulubroubilen Glanem op bovakt dew in de AFondesung, dan (ini dow obiges Falen 1-3)), dio Curvabuer
 die Ckarnblicieia $\cap(x)$ - Daram foegr spegérl dei ent opredende Engmardeft fiir die Aogaverfunbleover D and pe, rebaliè gn X. CrupNorvationg
$-164-$

 gew t wan ohe Jotopintions themes.

 (I) $D(x) \neq 0 . \quad$ S $(e)=0$ fiake $a \sim \quad E(E)=0$.
(a) $D(x) \equiv 0$ fire ax heri of.

 as fire \& pirs any lime fivelin.

Hous corilhial.
24. alt. 57

Drie Singulavitaten anvgtiocher Finhtionen (Serichs)
 fonclions de passiems varizbles complares VI, Tohake Mact. Sormal 1942 wurde zum entein Male ein Bevein fui dhi vow EELEU 1911 wi den tmali di muthematice am gespuoshure Vermuting erbaht: So, dedes pisendoherwerve seliet in Ramm rum 2 hompl. Veraindulichen it mi Regülanihts. geliet (Evintenzgebict einer Funhtim f(wizi)". Da emi schigeaser Tie du Untersuthungen in du Funthtorou Chooio mihuerer Veraizdulichen smit dieser Figge eng toscmene. haingt ode gar sie selest behifft, ou gibt eai benieti iber di Entwictlung osicuas in des Behandelung diter Figge Vinblich in den SAnflan den Funhtionentinori meheres Va aindulichon moikend din blite 4 Dahrsolnte. tum Vastöndnis de Lessishen Untirswahmgen mid int den thbeiberosw F.Hutage 1905-1908 begonmen. Dii loganiltimishm Komvewitait und da Kontinnititis ta lin seines spress elan Fassong) werden er hliit. Es folgt dii Behandeni dos lands der Hyperkingel und dimen ent en Benint wher dhi berden thbeiton m E ELeiviburntirciche Icenson bai Funttion
 ini hleiven hinstaichend. Dit ore esthen Horsen? O. Scume bace

 die Versutis wikhy oitfin Harhogesshe ind Waikoyer. "in werenthile cieves sihrs"tint di kiffutey on Negulai homvesithat duncl Cantand Thulen, Dri Regnketris hislan wrib defirmink motihe iggentefit bespuosken D ams usid den Kowergentse bs firiergulvaititigh hich und sain Konrequenst bentandeft Is folgen thi Polgedu = gelieternd die molnawibly den ti ithen regulaice Penthion Dem mird du Ohar de Bemeñ angedenlet a drun DFG morch an firtilich div Kemequensen berpuenk, dco (B)
sichans den Entdechung orn Ohe agelien

- Sieche H. Behuhe ind K. Stein, Nieinin Achieforon Wishinda

在. 1951. H. Setanhe

Becuertecuger zew thedie de farysuceschen Siffeentiale anfoffiven Rieinam 'shen Peother.
 LiLgimbere Raveneusise Differesisa ar kilde eimen

 paaramin ostlogo de suild und norb deman id jide $v \in \Omega$ cindentij in Kromprecenta jelage
 $\left(\omega_{c}\right)^{*} \in \Omega_{e}$ and $\left.\left(\omega_{e}\right)^{*}=\right)^{*} \omega_{c}+c_{c}$. Fugehe sill ciringe Kouncgueg. fictire Qierenannhen Teäshe, die per OAD adet urll ge. OHD gehrien, fover fien die evindensjen Larw. Aht nil ceedershem Disideet2ickel. Den numintebore An don ge doisen Benvenenge gol die Mibid on Válacea ibber cim Delyrae dantalkeng genornd 2teptbace bifferetich i_{n} de Aum. Acar. Fii. Fen … 1950.
Bervekenngen ribes die reguleiren Antomorphismen tes offurn R^{2}. Uuter eivem regulime Antomopolizuius des offenen $R^{2 n}$ verde cise nequlärontopologothe Abbiony des $R^{2 n}$ anf sish verstandun. Siere
 fir jites $v=1 \ldots n$ dietchen $x_{i}=0$ i $y_{v}=0$ riburght. Fin $n=2$
 ebunothen Antomophisimen $A_{j}^{*}, j=1, \ldots k(\rho)$ de Gestilt:

$$
A^{*}: y_{1}=x_{1} e^{-\beta(u)}, y_{2}=x_{2} e^{\alpha f(u)}, u=x^{\alpha} y \beta, \alpha \beta \text { gune } \geq 0, f /(\omega)
$$

Fi $B=A_{k(\rho)}^{*}, \ldots A_{1}^{*} A$ gilt $\boxminus D$

$$
\begin{aligned}
& b_{\mu \nu}=0 \text { fī alle } \mu x \nu \leqslant \rho \text { gaing, }
\end{aligned}
$$ art A^{*}. Fir alle r.a.A.in dar puersillen ant A^{*} und belichagns zusau mensetsnugm aus entertavialm solthen giet: $\frac{x_{1} x_{2}}{y_{1}, x_{2}} \frac{\partial\left(x_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)} \equiv 1$.

$$
D\{A\}=\frac{\pi x_{v}}{\pi y_{v}} \cdot \frac{\partial\left(y_{1} \cdots y_{n}\right)}{\partial\left(x_{1}, \ldots x_{n}\right)}
$$

 modungen fïs den $R^{2 n}$) die folfonie Kenuntury rehegolyt:

Fïr jubm r.a.A. des offemen $R^{2 n}$ gilet: $D\{A\} \equiv 1$."

 es gebe eine unenthile Frgervon Vetetorm $v_{v}=\left(\rho_{v 1}, . . \rho_{v n}\right), v=1, \ldots$ and cine folge n_{v}, wit $\lim _{v \rightarrow \infty} m_{v}-\infty$, voiap firs alle Pruckts $\left(x_{1}, \ldots x_{n}\right)$ mil $\left|x_{j}\right|=\rho_{v_{j}} \quad g_{g} \cdot \alpha_{i} \rightarrow \infty$ und churro Sate 2: Fíi dim r.a.A. "A" des offinme $R^{2 n}$ sei de Bedingung B_{2} exfillen: is gebe eive Folge von Veptorm $\gamma_{v}=\left(\sigma_{v, 1}, \ldots \sigma_{v n}\right), v=0,2, \ldots$ $\lim _{v \rightarrow \infty} \sigma_{v j}=\infty, j=1, \ldots n$, und sine positive Koustante Munit:
$|D| A\} \mid \leq M$ firir alle Pmekt $\left|x_{j}\right|=\sigma_{v j} v=1,2, \ldots$, daumgiti $D_{\{ }|A|$. Jetan r.a. A. des offrum R lapt sich sinduntig ein Tripelvon gruser Finktome eiver kouplexen Varriabem zaiorrum: $h_{1}(t)=f_{1}(t, 1), h_{2}(t$ $=f_{2}(t, 1), h_{3}(t)=\left(\frac{\partial f_{1}}{\partial \mu_{1}}\right)_{4=0}$, rorap fī je euri minchicme Autowir
 tarauf lifftst sine Metrik auptaven.

Emin Penke.

 in of pi noil tole fryinthe Athiniformifinenater:

$u(9)-\Gamma(9-1)=-w(q)-p+1 \quad, w(q)=0$ miming mang.
K fripe intuturis' $x(1)=\rho=1 \quad \underset{V}{ }(1)=\sigma=p$

 Sin $\leqslant p+y_{q}-1$ fins.

 suitt fif sis stafinitione an flomants 1, z-si: 3. Gutsing

 sumitas.
genat Rope
Über die Keschundzung von Randotellen Riemanomokes Tleshen.
See Vortras gith eimun Beitrag sur Erkunctuis des Pusammowhanges swishen des gernetriolues Strutetese eimes Riemanushen Tlaiche und des Wotorefeileng des sic estengenden nuert mopphen Funktion. Shiefs man die alphaindum Windruppunthe in der von cos $\sqrt[z]{ }$ ersengleen Fläne aus den Koordinaten ± 1 heram पitur andise Koordinalen $p_{v}>0, n_{v}<0$, dic rich sgen ∞ hänfen, 2o versumilpt des unpringlich vite oo gelegene logarithuninche Wih-

 ordnung fir die Funbtion W(z) anf, die die deformioste Ferick No eseryp. It dic Kouvergeng des p_{v}, n_{r} gegen as staNe genns, 20 trits dic ordmuperviedrigung wirklech in, und sie it luscubenhas, weun dic Konvergent segelmà nis gung it. Pur Abchätoung des Orduumy vou w(e) wird Ins geipmet sennuittew und durth eimen Fweij de mumulie anf 30 eindentijue Funkfion $\zeta(W)$, des Uunkceiruny des Madulfunction mit den kifichen Puntuten $\$ 1, \infty$, uni formiricA. Surch geipute Normiemy shoitt man ats Bied von To ein nuendlichvieseitiges
 Paralleten zur imasinären Achse Einshuitte hagh wis neuncen

$-170-$
das zypunwhich tur imaginären Athse it und ganz innerhalb Q liegt, 20 wird dic Wachsteunsordnung ω von $w(z)$ unher gewinzen Varansoekungu ìber dic Regelmänijkert des Vouvergent ron p_{v}, x_{v} durh dis Fornel

$$
\omega=\lim \frac{\log (\rho \cdot \sin \lambda(\rho))}{\int^{\rho} \frac{2}{\lambda(\rho)} \frac{d \rho}{\rho}} \text { segelen }
$$

des Wachstumitypus duoch das werhallen won $\overline{\lim } \frac{\rho \sin (/ 8)}{e^{n \cdot S_{x}^{2}} \frac{d s}{s}}$ geghen. Nisuskeche Strïte des AGchïitouns it Teinumilles's Maduliak.
Beippice fir Flävuen der thetrachteten Klarse bilden dic vou $E \alpha(z)=\sum z^{n} / \Gamma(1+\alpha n)$ esenglen Flaichen fïx $\alpha \geq 2$. Burch geipube Wahl der Verravigen Sorten p_{v}, x_{r} Kann man fernes Funktiowen W(z) Koustriisen, dic füs abrälhlhas vile Wase ak noritior Iudizen der Algebsaischen Vatwigthe't halau, die nus dunh die Bedinepungen $\vartheta\left(a_{k}\right) \leq 1 / 2, \sum \vartheta\left(a_{k}\right) \leq 1$ eingeschrönve ind, im besonderen also auh wiht rational su sein brauken.

In ähubliker Weize länt rich dic Γ - Funktion unterzenhen; man Kaun anf dise Weise allin aus der geonotrinhen Struk tur der von $\Gamma(z)$ erenglen Feäche siblissen: $\Gamma(z)$ hat dis Wachiturnordxung 1 vorn Kasimeltypus.

Subibt man ungetehst dic Windrnippunkte der Häche von cos \sqrt{z} ntue Koosdinaten p_{v}, X_{v}, die sich segen Null hä̈spen, 20 outhleht eive mistelbax Randilelle über Null, die bei geñigender Stätke Aulan zur Exhöuns der Wackitunsorkenugs sibe. Triedrich Hrukuaun.

Dois Zenorimperoblem.
Myan de. Srotlenestelling bithe ict den Leser, meinen Nortrypsberiett vorin 7. T. 4g i in dicser vorkrystweh, feiteq) nadendesum.. vir Vortrong gits eine Xibersiad ibber den lyesimitijen find des Lentringuradems.

Dins vor C.2. Siyel 1942 bemiesere Kangetsemeltet kanes to formuliert marders: Ber Sisepunt/ J der andytiseten sundtion $f(z)=J+o_{1}(z-J)+r_{2}(z-J)^{2}+\cdots$ is ein "bentrimi", venun © (8)
$a_{1}=e^{2 \pi i \delta^{2}}$, 8 reell und keine Liosenillesche Fisonssendente ist, d.h. mein es smei prosisivive dailen $\lambda>0, ~ u>0$ gibl,

$$
\left|g-\frac{m}{n}\right|>\frac{\lambda}{n} \quad \text { gilh. }
$$

 Laft kombinienerde Bencis findet sich si den sivits of deathemcactics, $43(1942), 160$, -612$)$.

 finir die des Nallymanthein Rentrome ist. sinderesreity fill es an
 mendex, ninuixk 30 , ays ts. $\lim _{x=0,2, \ldots}$ ing $\left|0,^{x}-1\right|^{n=} 0$ yill, soyeer ganse Emothionen $f(8)=0,8+\ldots$ jeden dindenny und jedes dypus, firr die der challpuolt kein Lextrom ist. Wemen wibendies $\lim _{n=1,2, \ldots} i^{\prime}\left|\sqrt[b^{n}]{a_{1}^{n}-1}\right|<1$ gill, nud $f(8)$ cincorationnle Sullime
 Fagemett kein Lentrem sein. Eirnsi liy. Kein Rentrinu vor,
 O_{n} der Bedinyury $X A_{n}$

$$
\lim _{n=1,2, \ldots}\left|\operatorname{los}_{1}^{x}-1\right| M_{n}(x)^{\log r}=0
$$

gexig.t, worbei $M_{n}(r)=\underset{|z| \leqq r}{\text { dllast }\left|g_{n}(z)\right| \text { ist. }}$

 Zisunitlescten Redeen definitionyemitf somisso phon der Sill ist) durch mentionule 2 atlen. mynoximist merolen. Hes cin intereseantes, anch nom thendyuntt der the vm dees Ampsuedexten Rollem amissuntes Problem eryibt sich abso des Heer

Rubent Cnoment tifis
\therefore Beimosteing zis meikavisition Oivadrata
\& wirde sescigt, dap fie jedse aüadratrifonid -bri, uppuctinil sin intervallenitte gelegenen Aesginten- ein Anologan pir Bodersten find Eiler-Maclairivithen Simineuformed axiltint: 25-10-57
H. Biehers.
 Vevmindechiduen

 $x_{i}(1), i=1,2, \ldots$, th syetmen. Geden den x_{i} ximin den x_{i} - thene enf oin or.
 menge in . Paven, die olm Revidange $X_{i}(1) \in X_{j}, i=1,1, \ldots$, m gemijt, mije on dimpuiles ferut Δ in D gethiver. Iochem xaim $\sigma_{i}=\Delta_{n}\left(X_{i} \in C_{i}\right) \&$ diin 4

 $x_{i}(r)-x_{i}(g)=\sum_{r=1}^{m}\left(q_{r}-\xi_{v}\right) \mathcal{P}_{i r}(2, j) \quad, i=1,2, \ldots, m$.

$$
f(1)=\frac{1}{(2,)^{n}} \sum_{i \lll i_{i}} \int_{i_{i}} f(\xi) \cdot D\left(\eta_{0} \cdots \eta_{n}\right) d f_{1} \cdots d \xi_{n},
$$

ordes ithe all midinemnituaken amalyanta Kante sintgrient osiod. Sitels dn Betummente-iduntitit

$$
\text { [duthi xi } \left.d \overline{y^{*}}=\frac{d \xi}{N^{k}}-\frac{k\left(\xi-\frac{z}{2}, d \bar{\xi}\right)}{N^{k+1}}(\xi-\bar{\xi}), N=\sum_{\alpha=1}^{\infty}\left(f_{k}-z_{\alpha}\right)\left(\bar{f}_{\alpha}-\overline{z_{k}}\right)\right]
$$

$$
f(x)=\frac{(-1) \frac{m i n}{2}}{(2, i)^{n}} \int_{\sigma} f(f) D\left(\frac{\sum-N^{-}}{N^{n}} d y, \ldots d f\right) d f 1 \ldots d f n .
$$

 dimamionale Kount n $\triangle \mathrm{m}$ astherla nivd.
7. Yonnuer
 Maporspingur.

 der Plegtridion on geseriver thinitt analy its.

$$
P \lim _{2}
$$

Tónurahtion der Degularifäts fäldu Vou Peblen und Halotubew... it is He Yes Gebiet of ins $R_{2 n}$ besits, cime Requlaitiftidle of xoy), iox di esentixite Gertabt ist im ollgencinen weving bikont. Sir jeenelle eqe-

 Sabe I ist dis elamentingeomefrisch lenoesee Hlille oon 7 . Twosh beiniesen

 fiv $t>t_{0}$ in den gebigeu $v(t)<q(t)=\{a w+82+c(t)\}$ regulai. I(t) lomargin

 - Ler 2, Etrens mil do veellu x_{i}-tebre 3. Nliltsilfe des obigan Mont. sohes wind geserigt,
 $\tau^{*}=\left\{P_{1} \in g_{1} \varphi_{1}\left(P_{1}\right)<x_{2}<\varphi_{2}\left(P_{1}\right),\left|y_{2}\right|<\infty\right\}$ fortseken läpl. Dabiinity

 Rive rebith du Hailloubildong it kourtublis. Die Requlaitits tille vore $\lambda^{* *}$ sulluplibh isf $r^{* *}=\left\{P_{1} \in g_{1} \phi_{1}\left(P_{1}\right) \angle x_{1}<\phi_{2}\left(P_{1}\right)\right\}$, wo $\phi_{1}\left(P_{1}\right)$ dis grojple rubftarnoviscle clivercube vor $f_{1} 1$ ist und is due kbinote supartarimouncle
 mey. Oremermawn.

Wathirliche Gbichingen rimes Hypupbide
En wiod der Begrift de natrinliobon Gleidininges eiwr ebenen Punve oinf Hypritleciem ains yedelent ind dor foegencle Sar bewiesen:
 sion, oo gibls in der Mngetang von $p^{t}=0$ im alleguneinen sime nad mior sime Hyp flaide $\tau\left(r^{r}\right)$, welche foleanden Bedingingen gemigst: $(1 \leq \sigma s m)$
a) $\varphi\left(p^{2}\right)$ in in $p^{2}=0$ analytics
b) $\left\{\rho^{4}\right\}$ sind geodaitixare paralbelroorlinaten anit der Faiche

 Hypiperes,
d) die Hype-flide geht firs $p^{l}=r^{e} ; p^{n}=0$ dired $\Gamma(A \leq \ell \leq m-1)$."

She- niber die Bystimming einer Hyperfliche dind ishe erde ind bwoile

- 175 -

Grialform irbrald. Es lëpM sil mämlid dosi phir die theffibienten diser, Enineformen esgebende System partiiller Differentialgexichingen enter and bwaider Oredning mail dem Sart wor Si KOW ALEWSK; sindentigy and in analytioder Winse aisflijen. Nael einigen Tolgeringen ind Ergärzüngen dieses Sabes waden amochriefsend noch abodrisbende Resistate über matin, tiche Gleichingen giner Fliche $(n=2)$ refrient,
pr.tichtwer?
Zur Julegraegeomerie.
Ije fir Polyeder behamenten kinematirehen Heamptformeen

1) $\int v_{01} d g_{1}=8 \pi^{2} b_{0} b_{1}$, 2) $\int A_{01} d g_{1}=8 \pi^{2}\left(U_{0} A_{1}+A_{0} b_{1}\right)$.
2) $\int M_{01} d g_{1}=8 \pi^{2}\left(M_{0} b_{1}+\frac{\pi^{2}}{2} H_{0} A_{1}+b_{0} H_{1}\right)$, 4) $\int C_{01} d_{g_{1}}=8 \pi^{2}\left(b_{0} C_{1}+M_{0} A_{1}+A_{0} M_{1}+C_{0} b_{1}\right)$ rouden bewiesen für Gobiese, die bon thetijg gehraimusteen Fleieren begrenzt sind. Jabei sinse $b_{0}, \lambda_{0}, M_{0}, C_{0}$ bolumen Oberpaice, Futegral der leitte. Krimunung, Jutegral der ganforchen thrimiunsung is Eudsprecusa tind $b_{1}, A_{1}, M_{1}, C_{1}$ firs des bewegre fetiet g_{1} erneärt, dessen hinematirele fickle $d g_{1}$ ist. Von, Aor, Mor, C_{01} besicken tich anf ous furchochuitt. Thir die Chnithnurve its bei Mor des hilvienintegree des habben. "Kautenwiuthels", bei Con ouf beiden Flicken dash:Futegral der peodatiteken Krivumeng mikurechuen.

7e. Barsuce.
zui propthim ksinualik in linsimn yelister

 RICCATi"e mifferfidefuidy.

$$
26.3 .1952 .
$$

-176^{25}
Hurr den Sarz von M. REISS.
Sinneidet mem einst algetraische C_{n} mit eimer Geraden G und find $1: R_{i}$ dic Kensinmgen in vem Schmitypinken and I_{i} dre tchnitwointel, to rit moeh Reiss 1837

$$
\begin{equation*}
\sum \frac{1}{R_{i} \sin ^{3} c_{i}}=0 \tag{1}
\end{equation*}
$$

S. Lie hat 1882 amgergeten, dous man die alyetraizchen Kuwen ewureh plresel Bursching Kenusechen kouns und F. Engel hat (Dentsche hath 4, 1939) Bewrese dam gegiben. Sind x_{i}, y_{1} dere belnitipemate olve C_{n} mit G,rofor $\ldots y=t x+b$, und sind sire

$$
\begin{equation*}
S_{i}=\Sigma x_{i}^{n} \tag{a}
\end{equation*}
$$

so findet man aus (1) nacis J. Teixidir 1952

$$
\begin{equation*}
\frac{d^{2}}{d b^{2}} S_{1}+\frac{t}{1} \frac{d^{3}}{d t^{3}} S_{2}+\frac{t^{2}}{2} \frac{d^{4}}{d b^{4}} S_{3}+\cdots=0 \tag{J}
\end{equation*}
$$

pror alle t : tumit ist S_{k} un Polynom k-ten fravoles in y.
brim folgist monn niticels. Newtons Frameln ${ }^{x}$, daes anch die symmeterschen germdefmbtstonen the t_{i} Pblynome Y_{k} k-ten grades sind. Aarour folgt

$$
x^{n}+Y_{1} x^{n-1}+\ldots+Y_{n}=0
$$

w, 2.b,w.
$26 / 3 / 52$
W. BLASCHKE
vogl. anch B, SEGRE, Ammali कi mat. 1947 (?)

Zur eindentigen Bestiunnuy von Floilen duss dic este
Fundamen lalforn.
MiA Hi\&fe der HERGLOTz-sclen Su leopalfonnel:

$$
\iint \frac{\|A i k\|}{S} P d o=-2 \iint\left\{H-H^{*}\right\} d o-\oint A^{i k} x_{k}\left(P R_{i}\right) d s
$$

wunden sinige SaXe über Kongroeng inounetrixcler Flảdenstinche mil Röndens (dic gemise Eigenschaflen hahen) bewiesen. In dor vostelenden

$$
\text { * } S_{1}+Y_{1}=0, S_{2}+Y_{1} S_{1}+2 Y_{2}=0, S_{2}+Y_{1} S_{2}+Y_{2} S_{1}+3 Y_{2}=0, \ldots
$$

Inteopeeffonuel ist Air. dic Differenz des beiden Haupllenoronen do beiden inousetrischen Flachen. Weiter is $\Delta^{i k}=\varepsilon^{i \alpha} \varepsilon^{\alpha p} A_{d}$, nud $\varepsilon^{i k}$ in dor arg. Pishimimaulenbenoor dr Fláden. n_{k} heipe intriuseler Nomudeuvichor! $x_{k}=\varepsilon_{2 k} \dot{u}^{2}$

Es sind Z.B. zwei inoustrisd aufeinoudr algelifitue Floiden mit Röudon, die in imsesen Flócheupensllen poritive GAVSSscle Knimumung haten, ungruent adr ayusuetrizes, wem dic Randsbeifen kangraent ader nyermestriad sind. Aber enco inouetrische Fläden srind kengnent ader ayumetries, weun dic handoseifen gevissen schuöbbren Fondorangpen yenüqen abs dor Kou ppouz. Fondons wir nuer (brit $k>$ of in innosen perm $a=0 ; c=0 ;$ adr $a=0 ; b=$ cours lömp den Räudon, wo fulóé uiedor dic Yydentilot do Flóchenstrich mudule do othoogouralen Grappe. $\left(a=B_{i x} \ddot{u}^{i} x^{k}\right.$ - goud. Tossion und $b=-B_{i K} \dot{u}^{i} \ddot{u}^{k}=$ Nomull hnimuy dessseifens)
 de villorielle" Yubequalsof bencegt:

$$
\iint \frac{\left\|A_{i}\right\| \|}{g} \xi d o=-\oint \underline{A}^{i k} x_{i} \varphi_{k} d s \text {. }
$$

27. II. 52
K.p. Gortemeyear (Goittings)

Eine Bemestrany riber dic Flöulen mil festr mitileser Krimmuny.
 shiches festes mittlear Unimunung, no yits dis Formel:

$$
\int\left\{H^{2}-K\right\}(e \xi) d 0=\frac{1}{2} \oint[\xi \supseteq] \cdot\{H \dot{e}+\dot{\xi}\} d s
$$

Hun in $H^{2}-K$ sebs ≥ 0. Da man firr Feỏchen van besclecll Kall, dic fostes H hodhen, $(e \xi) \geq 0$ madweion kawn, hat man sinen sinfoulen beweis des Safes, dap mutos allen geoclersenen Flóchen mit $\mathrm{H}=$ corins dic kugehs die einzigen sind. Fones engilt rich drSoyt, dop in einem Gelict, welles vou einer splärisden kurce ouf einer Feoake mil $H=$ ares bordetet wind, nur Nablelpan be liegen. Dic Methude löpt sid ond in dic affine Fez'den llasie ihbersagen
\qquad 27. III. 52
K.P. Grotemayer
(Gith ing © 0 (8)
$-178-$
27.3.52. ûber die Finsler-Räume mit $A_{i}=0$.

In einem n-dimensionalen Finslerraum mit der Metrik $d s=F(x i x i) d t$ sei in der Bezeichnang mach E. CARTAN $g_{\text {ix }}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial x^{i} \partial x_{k}^{k}}, A_{i k c}=\frac{1}{2} F \frac{\partial g_{i k}}{\partial x^{k}}$. Es torind geacijt, daps. ber dom specicllen Finflarschen Ráumen mit $A_{i}=A_{i k}{ }^{k} \equiv 0$ die Inablatrix $F=1$ der Mapbestimmung in jodem Purntet eine ctpinspkare int. Nack einem Sathe der affiner Niflerentialgeom. (W.BLASCHKE, Diff. Geom. I, $\$ 74$), der axp I Dimeracionen ver allgemerizent uind, xind die einsigen affinsphäriscten Eiflächen die Eleipootide. Es läpt sich weitor zeiger, dafs jede gesklomene uffinsphane komvex ist, who ein celijnsil. Foyglick aind die in der kiteratur öfters evivaifuten specríllen FIASLER-Rñume mit A : $\equiv 0$ mit den Niemannschen Räumen identisch, falls man diá Indileatrix als gesidcossen voraussetet ($F>0$ fïn jede Richtung).

Amo Dericte
28. 5. 52.

 sharigen itt.
ferizer.
28.3.52 Singülanilitenthinven wif FCilum, darn Agmplotmeinion de cirmen Slen Cineuren Komplenen my heirnes.

Kall,
nou
den
nich

 Kinmen). (mye. 7.8.51.). Whenti: Bamnes
m)
20. 352 bulder tilfe emes halbin vxicmber Kaltwes fin aller. merence Fowen (vgl. 26.11.s.0) woroden Formela angegetun mor Kehmelleng der Figm sueree veroutamidter Kingonenser
 ${ }^{3}$ poncmeive wonh BIANCHI veitannthen Komgeneme thansforicice emen Flisthe qiet \rightarrow inmer enic je.. newrsome Kongenan thass promie le 3 le Clex mony. Man far dame ens un 2 Palnmulen aotringiges Röbiús ntes Teleneren parn, heidem oure tiche emi Flühe te nhueits dis un ba himdini ligetonde ti here des anterm Teleaceen Revihes wire. Vecallegemer.

L.B(ANCH), Renc.Civecur. Palarmo 25 (rgo.P) 2g1-325 S.FINIKOFF, Amiali Pida (6) $2,5 \eta-p_{0}$
Solnol
8.4.52. Fintrionalghenginuper in Borelffen Cegermen.

 $a+b=a b^{\prime} \omega a^{\prime} b$. Fion Booleff sinuthina fot in gyynle

$$
f(x)=a x \sim b x^{\prime}=a x+b x^{\prime}=c x+b \quad(c=a+b)
$$

 espmymu:
 $f(x)+f(y)=x+y$ spiminaten haragringen. (bye. Eelis, Cumadian Prum. 3, 1957, 88-93; 145-147.)
2) si grmomosppinthringringraw
(I) $f(x y)=f(a) \cdot f(y)$
(II) $f(x \sim y)=f(x) \sim f(y)$
(III) $f(x+y)=f(x)+f(y)$
(I) sinow (II) tispron any $f(0)=6 \leq a=f(I)$ sinut any wis

Ihonatencia $f(x) \leq f(y)$ serun $x \leq y$, (III) aniy $b=0$, aff $f(x)=c$. (Vge. keklinsey Trempait. An. Kisth. Sor. 40, 1936, 343-362.)

 vir now v. Nenminen numt Pirve Fiund. Hath. 25, 1935, 353-375 nugggitun
 govelepar míuttinum wi' notronoutig.
b. Givica.
10.4.52 In der Spictherie (7.v. Nemmaun-0.Morgenstern, Theory of grues and economic behavior (1942)) bercht der infachere Tiil, die Cheovie der ansggglichenm Zwei-Persomen-Siele (zero-sum-tho-/verson games) ouf zwei Sotsen. Setet man

$$
A=\sup _{x \in K} \inf _{y \in L} f(x, y), \quad B=\inf _{y \in L} \sup _{x \in K} f(x, y)
$$

so gilt in elementare fats
I. $\quad A \leqq B$
bei ganz belictign Verändenlichkeitsbercichen K fïr x uno L fing uns belichigen (reellen) funletionen $f(x, y)$. Die noterntige sigänzung
II. $A=B$
wurde 1928 von 7.0. Reumanm anfpestellt no beriesen fir den fall, or sur frielen mit envich viclen "IFNategien" (ah. Entschßßniglichkiten fir die beion Spieler) entspricht, ninlich den fall, daß

1. K das Einheits simplex $\left(x_{\mu} \geqslant 0, \sum x_{\mu}=1\right)$ des $\left(x_{n}, \cdots, x_{m}\right)$ Raumes uns L des $\operatorname{limheitssimplex~des~}\left(y_{1}, \ldots, y_{n}\right)$-Remmeesist, miv 2. $f(x, y)=\sum_{\mu=1}^{m} \sum_{v=1}^{n} a_{\mu v} x_{\mu} y_{v}$ ist.

Bei Spiclen mit (abrę̈lbar-, kontinumen-orve soustwie) unentich vilen reinen Arategien gilt II. vicht allgonein; Voraussetzungin, unter denem II. gilt, sind von I. Ville, A. Wals, S.Kashin (s.u.a. "Contributions to the theory of games, Princeton 195) angegeben worden. Is wind in Beveis vrm II. vorgetrajen, der auch in sun infachen foll or Voraussetennge, 1. uns 2. als nitüslich escheint (jecmfalls ran Vostragenin),
\qquad © (8)

- 181,
zugleich aber unter den folgensur Voraussetzungen gilt:
1.' K unis L sins konvere Mengen in irgend velchen Vektoräumen (über hun Kïper der reellen Zahlen),

2! $f(x, y)$ ist bilinear, ग.h. $f\left(\rho x+\sigma x^{\prime}, y\right)=\rho f(x, y)+\sigma f\left(x^{\prime}, y\right)$, $f\left(x, \rho y+\sigma y^{\prime}\right)=\rho f(x, y)+\sigma f\left(x, y^{\prime}\right)$ gilt fier $x \in K, x^{\prime} \in K$ (mit) raher $\left.\rho x+\sigma x^{\prime} \in K\right), y \in L, y^{\prime} \in L$ (also $\left.\rho y+\sigma y^{\prime} \in L\right) ; \quad \rho \geq 0, \sigma 30, \rho+\sigma=1$,
3.' Kträgt ince Copologie, in der ake Funktionen $f(x, y)$ (bei fistem $y \in L)$ stetig sind, und ist kompalet bezüglich dieser Topologie.

Ein teil in fricheren Engebnise ist hierin enthalten; bei in anshen ist es noch nicht fortgeotellt.
H. Kuseer.
11.4.52. Groupes abilieus à tarsian - Sot G un groupe abilien ayouts ins inneccur d'operiateurs R vèrifiout les conditions:

1) $R \supset 1$ et $i u=u, u \in G \quad$ 2) R est commutatig 3) Touts idéal de R ests principal 4) Tout íleneut $u \in G$ a un. annalateur de la gorme $\left(r^{m}\right)$, où p est mu e'lemeut pramier fixe de R et aì n depend de u.

Soit $R^{\prime} P^{\prime}$ anneau des endomarphismes de $R\left(\theta \in R^{\prime} s i\right.$ $\theta(u+v)=\theta u+\theta v, \theta a u=a \theta u \quad a \in R, u \in G)$. Soit S le yroupe additify des applications de G dans G; an pouth munir S de R_{a} - strueture unifaruse de P_{a} couvergenee smipple qui'est difunice par be systemie fandament af de vorimiages de $0 \quad(0=$ applicatian mulle : $o u=0 \quad u \in G)$:

$$
\left.W_{u_{1} \ldots . . u_{m}}=\sigma \in S \mid \sigma u_{1}=0, \ldots \sigma u_{n}=0\right\}
$$

R^{\prime} etr forme' daus S ets sí au dérigue nar \bar{R} Pa furneture de R aur a $R \subset \bar{R} \subset R^{\prime}$

Thíarènce. $\bar{R}=R^{\prime}$ ett e'quiralutr à "Get du dype t f " au du dype poo"
(G eur du dype pre is $G \approx R / h^{\mu}$ os G ent due dyge pos si $G=U G_{m}$ an $G_{n} \cong R / \mu^{\mu}$ is $\quad \psi G_{m+1}=G_{n}$)

Deninaurtration. 1) R ev \bar{R} Paisout intoriauts es mêms sous-graupe de G 2) Soih $P=\{u \in G \mid \hbar u=0\}$
l'armulateur de P exte (f) ce qui purnueh de causiderer i P comme espace vectoricel sur $R /(n)$. Os a D ini $P=1 \gtreqless$ "G atr dus bypu tur ous du bype pr. 3) $S_{i} D \sin P>1$ our peutr brouver $\theta \in R^{\prime}$ q-ii se baiss pas invariaut un sous-groups de G invarioust pour R, daus $\theta \notin \vec{R}$.
B. Charle

4. Ridaley.

 yärpt rin Kaun, thas inn ज̄nten setkeuden Bepsff nack etwas milgenumht

 Ende nisiudestecer eives Dductiaisstsiches hedentet ein cherwheves, añf daes
 dieser Sibvikuaise vertangen dere knterte fageude "Bysifs layen":
"the S and P^{4} :
P, thle S wind wivit P^{4} :

$$
S \longleftrightarrow P
$$

${ }_{n}$ Evinge δ rind $P^{\text {? }}$

Dos "dichum de amni et nullo" perfillt in folgeude syebteblishle Regeler:

 ithersidithich hergebilet werden (seke fholeoplewh. Thasely. Is s. 235 ff).
 shetrt pirt fating \hbar^{B} (A ist eckte hacherad wan B) usitd ein Bewess fir die in der Klansotuen Lyj'K geleterler Huhol lherse der Kalyassbeven
 Ihutifäts-nind thaduspoñasuerha thearve benitht.
 urlotue dre Kansptue daj'K lekile, wind s"kisckkar, weune maer ebyge
 meilurt üud de Nyateijuescliaft dirnch erne weitere Operatiausregel

 tilët st, $2 a$ wisd, buher die im fickene (i) lugeade Tarhanaingryegel, en̈ch die couvesia per keciduns nojgere, wind bie jestaftet, ein vinghyes Sikena allu "inuwiffellavin'Solelis seer pigntudefer lyen. Figleidh

$-184-$

 pigt, weldues Pinfip guvels milyespiett hat.

1. Seranktryloy toringkaft.
2. $\overline{V 1}: 52$. Las Polygonmass in der elementeren axiomatirthen Planimetric.
Ion Hhibbert wurde darauf fingroiesen, dass der Grossenchanakter dex Polygonflicien in der Planimetrie nikht selfitverstinallith ist. Insbesondere hat or ain cllodede den Planimetrie aufgestell, in welehern in echts Tilrechterk eines Rechtecks diesem enga"ntungspleik ist. Frilich ist dieses Modell in varcifarder Flinsiciet anormel: 1. des System der Strecken ist nicht-erckimedisth (euth des dex Trinke), 2. des Ireiectes-Thongrauktroiom gilt nur fitr gbiilsinnig rugeondmete Sreieste. Tieran wird die Frage getencipft, welihen Eiffete dic soiomatitite Ginfiubrang der ctunahme hat, dess die Polygoninkelte in (miikt notwendig archimedikites) yrossensystem bilden, derart lass qbithsinnig bongruenter Axcienben die gleiche Siraise eutoment und dess bei dex Eusannmensteung dex Polygone sich die ihnen entommendun 4 roissen eddieren. F (misfth r)
3. 6. 52. De Explikation der Implikation.
humar fir esien Velichijen kalkade of (Anssagen pi,y,...) asral tine Rygel Then- $\quad V_{1} n^{\cdots+1} p_{n} \rightarrow p$ "ablatbar" genaind, wem p ableitber nad of ith beo: el, Siminfogrung van p_{1}, \cdots, p_{4} als Ariomen in Q. Eive Regel Ri Shfe
 ist bei finmarigung ven R_{1}, \ldots, R_{4} als, Regelen in at. Die Kouscyulnien, von. A Lilden sinen Kalkol, dessen Kowrguenien betractilet werclan

- 185 -

Kömen. Belishige Jheration dicses processes filt anf einen freien implitativen fallversand. Jxh enteleidbar, so eutdelt dunch Jimmmake vo "eliminierbaran" Regeln ein Qoalesher Versand.
p. Aoreacen.

FEs wind gexeigt, dass bei Xinsuffigung dieser Aunalme en cinem choiomentystom, in welodem dels Areciects - Tongruensasciom nar firr glecilsinnig berogene Dreiethe cuffestillt ist, der Sate van bor Gaickleit dur Besiswinkel in gleishsehenbligen Ireieck beweisbex wird. Bei der Bewoisfibloung sfielt do Set vam Chomem eine erkeblithe Rolle.
P. Bernays
3.6.52 Es wind af le Bedaturs des Slleiemmosebes (A) higemier
 bene das alsuhaial Iquivalel des mull pliRlin sow. jul'v gesefes id. Es s. μ : (1) (A) foly $n \cdot \mu$ aus de sellie: sougrais, die den iibrix Sllempsaibe, die eive selich.
 gues (D) (3) (A) folgl ans des Sch va Pappos. Parcal (P) lume dremejoe Anueding va (P) ruiak fele Trige gerde. (4) (A) it äminalect sur kafgumain $\left(16_{3}, 12_{4}\right)$, he man chal ebene Stuill der rämulie Reyge-Kafigunatin erlielf.

Dege (2) han ma de aftime Ebane ibe Siliftimpen aurh dure de Scly (A) fenzech, de den multiplihat. ver Arsazilingsels elspill, eben mie lies fiv lie Oline Elene ibe kirpe duml de Sob (P) misfle id, ler den mall, plikelive Kommiale gesels elbouill. Sns (2) al. (3) eqgill sil ei never Bures des Haxalagsia Safes
$-186=$
das (D) ans (P) folge. Qbe gesbaltel de fllhus va (P) af le γ (i) äquivaleh Saly (A) Rive unmi Mal bere alfehaii sche Slepretalio. Qie Qualise, der Bezieh (2) il geeigute athivesyialiemg listen weile Jiguse, lie äquivell si 子 (D).
W. Khisule,
3. Juin s2. Senetire - Konstriktiu- Srunidagu- de Fu二 damentaligotum, dur frojutium frometric: Das Reforat niemunt das Thena wum 29.9.49 un7 raaindeRen Methoden ä̈f. Ziel ist, ein Solagrem aífrestelen, das A_{i} ARiffob- cin Nkiomesystems Afien Kamm.
 Qriplimm, obur ant kilf rom logirden Mitteh rived salt fir Satz in krap gretzt.
 fodanken diven (hir: zarsteleif, symmetride. VNeminf -).
 "Existemzomisag-" i-Lnetcel crkGaiz. AL Hrab-e kiafe fir

In der rangun=pij- Enilimfoeg surde div Exarsaj
id, ainzen dormflin ithruact, of bew. wi itu... brstandij Vabhaitowest giggthict zorde Kimenc. Kin wis

 ferunatric.

On forig In= damutolegos in sideropmile frui, wrie a so

 orkidim expr. Es at volestaing, inden den Entmike yprer formen ans rix hormos sorihat.

Wamn as himmichend watgmism augnchen zied, dap
 Arovace ackien getrofin mird, die stit an.. logise angegezichay Moguckent writem, so Kam groges werden, dap im Eigh.
 dhork rion logish- E-jule-ff angeroridineth Syoum gikermmesridnet worden it.
Tino Kave

4 Jumi 1952-Gerwetispahe 多 Nentung der Laguerve Torsyth paumische Firm eiver hiveasen Loungeanen ISfferentcalgleichung-

A efferentcal equation of osder n sepregentr a set of frojectively equivaluyt curoys in Sn-1. A chovice of a fuopationaliby factori am of a faraneter for the cooricuates of a pount of the urrve C anountsto the reterninatian of tho curves C_{1}, C_{2} each belaging to the revelopathe zurface of the frecelang ave choh deternination can be accompheshes intsinsse cally. A taflace reqnence, closed on both tidy on C, each rurface of mhich hay equalinvasiants anta perairatic form of constanst curvature, is alsodetomi.

 Gien haven ny to poyn am saftintyon hamfit, to fet vate
 ($A B \cap C D, A C \cap B D, A D_{n} B C$), fues tis fin mi ncef. Month, thife.

 fies tis fir ui ferlelengracucu jothtu.
q. paran.

(nossurlt in Filaiper Aufingennwafin=,

 unp.

 - pewote B jorsh.

İ. matreltitim if Amouthon.
I. Preme theter os vïl wir sthen ffe r \% sui hihev os.r frumbt, if lep fide hatrom $n, 6$ int the videm Hfeen r,s da geopugen a.1 =a

$$
\begin{aligned}
& a \cdot(r+s)=a \cdot r+a \cdot s \\
& a \cdot(r s)=(a \cdot r) \cdot s
\end{aligned}
$$

$$
(a+a) \cdot r=\text { oir }+4 \cdot r \text { pelhin. }
$$

- 189 -

VI. Ar $f^{\text {Lh }}$ Ahtinu $a_{1}, \ldots, a_{n} f 0$, lep $p^{2 h}$ haterv af giuer ene MuF is to form $y=\sum_{i=1}^{n} e_{i} \cdot x_{2}$. eipuleter it.
FII. Joher hitare is i\% im rulle Iffe/a/ el Lhty forgenstest, Iep $|\mu r|>0$ fir $\mu \neq 0^{*)}$ ind $|\mu \cdot r|=|a||r|$ gell.
 Nhion: $a \perp b>b \perp a ; \quad a \perp a \longrightarrow r=0 ; \quad r \perp z, a \perp y \leadsto a \perp p+y ;$ $r \perp \gamma^{*}>$ on \perp p.r.
 a_{n}, \ldots, a_{n-1} unt $a_{1} \perp a_{n}(i=1, \ldots, n-1)$.
I. $|a|=|h|, \quad a \cdot r+b \cdot s \perp a r \longrightarrow b \cdot r+a \cdot s+b$
 phen \Rightarrow-nes ins I-Ir frge) in fiy atroffe.
G. pimn.

4. Juni 1952 Aniwahlaxious and vesall gemerierte Kontinumus hypothese. Bericht $̈$ bhar einen $S_{a t z}$ won lindenb ann and Tamki (C.R. Soe. Sei. Varovie, Cl. II. 19, 299-330 (1926), S. 314), wonach dan Ams waheqxioun ans der veralegenesierten leontinummi luypo there folft. Hinweir anfeine inïghiche verchärpurg anf grund der fogenden Satzer (bevis bar dive Aurwale axioun) : It m eine Mähtigheit $\geqslant 5$, so ist m^{2} nicht fröner pliinh $2^{\text {m. }}$.
E. Specher

 fify, orlation" Desfentiningour $\underset{r^{\prime \prime}}{a} \leqslant \gamma^{\prime} \leftrightarrow$
1) a pnomanumes $<\gamma^{\prime}$
[$\&$ pail win, tomproumain']
2) $\Lambda_{k_{1}, k_{2}}\left(k_{1}, k_{2}\right) \in a \wedge\left(k_{2}, k_{1}\right) \in a \rightarrow k_{1}=k_{2}$
 a butivitu tor O

 liff tringingefringigion wor: 1) $M_{k_{1}, k_{2}} k_{1} \leqslant k_{2}<k$ pir reffortuning (fir jitis k).

$$
\text { 2) } M_{k_{1}, k_{2}} k_{1} \leqslant k_{2} \text { pi reglemtining. }
$$

 $\sum_{l}^{b} a^{(l)}=M_{k_{1}, k_{2}} V_{l}\left(T_{L_{1}} \pi\left(l, l_{1} ; k_{1}\right), T_{l_{2}} \tau\left(l, l_{2} ; k_{2}\right)\right) \in a^{(l)}$.

$$
\begin{aligned}
& \vee V_{L_{1}, l_{2}} T_{L} \pi\left(l_{1}, l_{;} k_{1}\right) \cdot \in \underbrace{\left(l_{1}\right)} \wedge T_{2} \pi\left(l_{2, l} ; k_{2}\right) \cdot \in a^{\left.a^{i l_{2}}\right)} \\
& \left(L_{1}, l_{2}\right) \in b_{\wedge} \wedge\left(l_{2}, L_{1}\right) \notin b
\end{aligned}
$$

 iupforoer obbicting), than pri

$$
a^{u}=M_{k_{1}, k_{2}} V_{\substack{t_{1}, l_{2} \\(2, t) \in a}} k_{1}=t_{1}^{U} \wedge k_{2}=t_{2}^{U} \quad \text { inin in } \gamma_{x} \text { indtuleteare Nofemeis }
$$

Deutsche
forschung
Fouschungsgemenschatt

Beweis des Zorn'schen Satzes von J. Dieudonné. (Deuitsohe I emma. E sei eine teilgeordnete Menge, a ein Element von E, f eine Abbildung von E in E, welche für jedes $x \in E, f(x) \geqslant x$ erfullt. ff sei das System aller Teilmengen X von E mit folgenden Eigenschaften:

1. $a \in \mathbb{X}$;
2. $x \in X$ hat $f(x) \in X$ zur Folge,
3. wenn eine nicht leere Teilmenge Y von X eine obere Grenze in E besitzt, so gehört diese obere Grenze zuX.
Unter diesen Voraussetzungen wird behauptet:
4. fist nicht leer.
5. Der Durchschnitt \mathbb{A} aller Mengen $X \in f$ gehört zu f.
6. Für zwei beliebige Elemente x, y aus A ist entweder $y \leqslant x$ oder $y \geqslant f(x)$ 。
B e w e is. Das System fist nicht leer, denn die Menge aller Blemente $x \geqslant a$ aus E gehört zu f. Man prüft leicht nach, dass $A z u$ f gehört. a ist kleinstes Element von A. Die Teilmenge Bvon A bestehe aus allen Elementen $x \in A$, welche folgende Eigenschaft besitzen:
(P) Die Relationen $y \in A$ und $y \leqslant x$ haben $y=x$ oder $f(y) \leqslant x$ zur Folgan Die Menge B ist nicht leer, denn es ist $a \in B$. Wir zeigen, dass sich aus $x \in B$ und $y \in A$ exgibt:
(Q) $\quad \mathrm{s} \leqslant \mathrm{x}$ oder $\mathrm{y} \geqslant f(\mathrm{x})$. eng ist.

Zurn Beweis wählen wir aus B ein beliebjges Element x aus und bilden die Teilmenge C von A aus allen Elementen $y \in A$, welche (Q) genïgen. Wix zeigen, dass $C \in f$; wegen $C \subset A$ ergibt dann die Definition von A, dass $C=A$ ist. Weil $a \leqslant x$ ist, hat man $a \in C$; aus $y \in C$ und $y \geqslant f(x)$ folgt $f(y) \geqslant y \geqslant f(x)$, also $f(y) \in c$ nach Definition; wenn $y \in C$ und $y \leqslant x$ folgt aus (P), dass $y=x$ oder $f(y) \leqslant x$ ist; $y=x$ bedeutet: $f(y)=f(x)$; in jedem Falle ist also $f(y) \in C$.

Sei endlich y teilmenge von C mjt einer oberen Grenze bin E, so ist $b \in A$ wegen $A \in f ;$ wenn $y \leqslant x$ für jedes $y \in Y$ gilt, so folgt $b \leqslant x$; andernfalls existiert ein $y \in Y$, sodass $y \geqslant f(x)$, whad es ist $b \geqslant f(x)$ ist, Wir haben also gefunden, dass $C \in f$, also $C=A$ ist.

Das LImma ist bewiesen, wenn wir $B=A$ ableiten können. पierffïrs geniigt es zu zeigen, dass $B \in \mathcal{f}$ ist. Zunächst ist a $\in B$. Aus $x \in B$ folgt $f(x) \in B$; denn ist $y \in A$ und $y<f(x)$, so folgt nach Eigenschaft (Q) $y \leqslant x ; y=x$ hat $f(y)=f(x)$ zur Folge, $y<x$ liefert nach (P) dagegen: $f(y) \leqslant x \leqslant f(x)$, womit $f(x) \in B$ bewiesen ist. Nun soll Y eine Teilmenge von B mit einex oberen Grenze b in E sein, welche natiurlich zu A gehört; $y \in A$ exfülle $y<b$; wäre $y \geqslant f(x) \geqslant x$ fiux jeđes $x \in Y$,
$\square+\cdots+$

so würde $y \geqslant b$ folgen, was der Annahme widerspricht; also existiert nach (Q) ein $x \in Y$ mit $y<x$; woraus wir mit Hilfe von (P) die Beziehung $f(y) \leqslant x \leqslant b$ folgern; also ist $b \in B$ und somit $B=A$. $C o x \circ l l a x$. Wenn A eine obere Grenze b in E besitzt, so ist $b \in A$ und $f(b)=b$.

Ist E eine induktiv teilgeordnete Menge, so gibt es nach dem Auswahlaxiom eine Funktion f mit $f(x)>x$, wenn x nicht maximal ist, und $f(x)=x$ für jedes maximale x. Aus dem Corollar folgt also, dass jede induktiv teilgeordnete Menge ein maximales Element besitzt und dies ist die Behauptung des Zom'schen Satzes.

Aspect pris par la théorie des è ${ }^{\mathrm{ns}}$ D.P.

quand on souhaite I'approx effective des solutions.

Meme souci \longrightarrow eq $^{\text {ns }}$ D.O.

$$
\begin{array}{ll}
\frac{d M}{d t}=\vec{f}(t, M) & |\vec{f}(t, P)-\vec{f}(t, Q)|<K|P Q| \\
\overrightarrow{O N} \text { intég }^{\text {le }} \text { a } \varepsilon \text { près } & \text { si }\left|\frac{d N}{d t}-\vec{f}(t, \mathbb{N})\right|<\varepsilon
\end{array}
$$

a) une intég. exacte issue de \mathbb{M}_{0}
en prenant

$$
\text { b) } \ldots \ldots \ldots \text { à } \varepsilon \text { près } \ldots \ldots \ldots M_{1}^{t_{1}}-t_{0} \text {. }
$$

on a $\max |\mathbb{M}|<e^{K\left(t_{1}-t_{0}\right)}\left[\left|M_{0} \mathbb{M}_{1}\right|+\varepsilon\left(t_{1}-t_{0}\right)\right]$
ce qui, pour l\}integrale is-sue de H_{0} établit son UNICITE sa CONTINUITE / M
Critique de la théorie de $f(x, y, z, p, q)=0$ sons forme classique. Méth. de_Lagrange (ou de I'intég. complète)
à des èq. ${ }^{\text {ns }}$ formées par éliminn, on applique I le critère de dèpendance tablant sur l'annul n du jacobien. I^{\prime} applic ${ }^{n}$ effective comporte l'intég ${ }^{n} \widehat{\varepsilon}^{\text {près }}$
 d'unelčq ${ }^{n}$ asx \quad.T. Mity.de Cauchy, engendrant l'integ a par les caractéristique

Pour intègrex une dq. D.T. on laerche les intersections des surf $\mathrm{f}^{\text {ceS }}$ intéq́g les avec les $\xrightarrow{V}(x, y, z)=c^{\text {te }}$ en prenant V de manière que les directions de $\overrightarrow{\text { grad }} U$ et (P, \vec{Q}, R) soient partout distinctes.- Ded ${ }^{n}$ d'une intég. à ع près.

$$
\text { Rèsol }{ }^{\text {n }} \text { approchèe } d^{9} \text { un syst. }
$$

$$
\begin{array}{ll}
\text { Rêsol approché dyun } \\
f(x, y, z, p, q)=0 & \text { où } g=\text { integ. } 1 \text { ère } \\
g(x, y, z, p, q)=\lambda & \text { syst.caract que. }
\end{array}
$$

d'où l'espoix d'une intég $^{\text {le }}$ compl.approchée espoir très fugitif: prendre $I^{\prime} e^{\prime} q^{n}$ de CLAIRAUM.
D'abord, dans le plan: en affinant l'ens.des pts d'une courbe

$$
\begin{aligned}
& y=f(x) \\
& p=\varphi(\omega)
\end{aligned}
$$

on accroit l'incertitude sur la famille des tg. en affinant l'ens. des tg. écrites $x \cos \theta+y \sin \theta-p(\theta)=0$, on aceroit l'incertitude sur la fæuille des pts de contact.
Dans l'espace si I 'on prend la famille de plans
$x \sin \theta \cos \varphi+y \sin \theta \sin \varphi+z \cos \theta-p(\theta, \varphi)=0$
les enveloppes de familles $\begin{aligned} & \text { a } \\ & l\end{aligned}$ param. extraites de cette famille sont malaisées à obtenix.
La méth. de Lagrange sort des méthodes vraiment utilisables.
Caractéxistiques (Lagr. iennes)-Partant de la famille
$z=[\varphi(x)+a][\psi(y)+b]\left|\frac{p}{z}=\frac{\varphi^{\prime}(x)}{\varphi(x)+a}\right| \frac{q}{z}=\frac{\psi^{\prime}(y)}{\psi(y)+b}$

$$
\left.\frac{p q}{z^{2}}=\frac{\varphi^{\prime}(x) \psi^{\prime}(y)}{z} \right\rvert\, p q=z \varphi^{\prime}(x) \psi^{\prime}(y)
$$

11 y a des Caract. I, pas de caract. C, si $\varphi^{\prime}, \psi^{\prime}$ sont non dérivables (cone étèmentre 2^{e} ordre, mais allure singul ${ }^{r e}$ courbe élémentaire)

$$
z=[\varphi(x)+a][\psi(y)+b]
$$

caract.

$$
\text { c }[\varphi(x)+a] f \psi(y)+b=0
$$

$$
p=\varphi^{\prime}(x) \cdot[\psi(y)+b]
$$

$d p, d q$
n'existent pas

$$
q=\psi^{\prime}(y) \cdot[\varphi(t)+a]
$$

Les remarques concernant le critère de dépend ${ }^{\text {ce }}$ déduit du JACOBIEN montrent l'impossibilit̀ éventuelle d'une élim ${ }^{n}$ effective même génèralce
\qquad

\qquad
\qquad

Avisob moth Jices
Cet of one ebice
\qquad
satbiat avelva

1. Partant de $z=V(x, y, u, \lambda)$ d'où $\left\lvert\, \begin{aligned} & p=V_{z}(x, y, u, \lambda)\end{aligned}\right.$
si on élimine λ entre $\begin{aligned} & z=V \\ & p=V_{x}\end{aligned}$, puis entre $\left\lvert\, \begin{aligned} & z=V \\ & q=V_{y}\end{aligned}\right.$ on obtient un syst.

$$
\begin{aligned}
& f(x, y, p, q, z, u)=0 \\
& g(x, y, p, q, z, u)=0
\end{aligned}
$$

Si. \mathcal{L} 'on satisfait àcsyst. on prenant $z=v(x, y, \mu, \lambda) u=\mu^{u}$
la recherche de fonctions $\left.\begin{array}{l}z(x, y) \\ \lambda(x, y) \\ u\end{array}\right)$ telles $q u$ 'on ait $z=V, p=V_{x}, q=V_{y}$
donne un prob. èquiv ${ }^{t}$ à la rèsol ${ }^{n}$ du syst. $f=g=0$.
Même marche que dangte cas classique où u est Eui-memeleliminé

$$
\begin{aligned}
& q(u)-x+p(u-z)=0 \\
& \psi(u)-y+q(u-z)=0
\end{aligned}
$$

Ex.: le syst.
conduisant a des sol ${ }^{\text {ns }}$ partic. $S_{u_{\lambda}}$ qui sont des $s p h$. centre $[\varphi(u), \psi(u), u \rrbracket$ astreint à dèrire une
2. Soit une fam. de surf. $S_{u v}: z=V(x, y, u, v)$

$$
\begin{aligned}
& p=V_{x} \quad(x, y, u, v) \\
& q=V_{y} \quad(x, y, u, v)
\end{aligned}
$$

Si l'élim ${ }^{n}$ de u, v ne gaze pas, on reste attachè au probl. Lagrien : rech des fonct. $u(x, y), v\left(\frac{x, y)}{\left(\frac{e(x, y))}{2}\right.}\right.$ telles que $z=V, p=V_{x}, q=V_{y}$
Ex: cas des sph.
(1) $(x-u)^{2}+(y-v)^{2}+[u-\varphi(u, v)]^{2}=[\bar{p}(u, v)]^{2}$
(2) $x-u+p(z-y)=0$
(3) $y-v+q(z-\varphi)=0$
d^{\prime} ax où un syst。(1),(2),(3) afyent des èquiv ${ }^{\text {ts }}$ sans que s^{\prime} achève $1 a$ reditection. On ne peut donner que rèp.indir a la question. Ecrire une è $q^{n} F(x, y, z, p, q)=0$ ayant pour integ ${ }^{\text {le }}$ une famille q c q spheres 2 parametres.
Le cas $n^{0} 1$ (ou cas intermed ${ }^{r \theta}$) induit vers la paramètris ${ }^{n}$ quant à $p, q d^{\prime}$ une $\frac{d}{} q^{n} F(x, y, z, p, q)=0$
d'où

$$
\begin{aligned}
& p=A(x, y, z, u) \\
& q=B(x, y, z, u)
\end{aligned}
$$

en cherchant u telleque

$$
A(x, y, z, u) d x+B(x, y, z, u) d y
$$

soit une different ${ }^{l e}$ totale.
D^{\prime} où $l_{a} \operatorname{cond}^{n}(I) A_{y}+B A_{z}+A_{u}\left(u_{y}+B u_{z}\right)=B_{x}+A B_{z}+B_{u}\left(u_{x}+A u_{z}\right)$ èq. $\operatorname{lin}^{r e}$ en u_{x}, u_{y}, u_{z} et donnant u. Une Lois u trouvée, il rest a intégrer

$$
\mathrm{d} z=A(x, y, z, u) d x+B(x, y, z, u) d y .
$$

Caractques de (I)

$$
\frac{d x}{B_{u}}=\frac{d y}{-A_{u}}=\frac{d z}{A B_{u}-B A_{u}}=\frac{d u}{B_{x}-A_{y}+A B_{z}-B A_{z}}
$$

$=$ courbes de l^{\prime} esp. (x, y, z, u) le long desquelles les pentes p, q, se déduisent des relations $p=A, q=B$.
Ainsi définies dans l^{2} esp $^{\text {ce }}(x, y, z, u)$, les caract ques vont se projetez sur I^{\prime} esp ${ }^{\text {ce }}(x, y, z)$ suivant celles de $F=0$ 。
Notions de paratingent, d'intég ptg ${ }^{\text {te }}$
Exemple de l^{\prime} eq $^{n} \frac{(A p+B q-q)^{2}}{1+p^{2}+q^{2}}=m^{2}\left(A^{2}+B^{2}+C^{2}\right)$ qui, pour $m=\sin \alpha$ tendant vers 1 , se décompose à la limite en 2 éq indép tes $\quad \mathrm{pC}+\mathrm{A}=0 \quad q \mathrm{C}+\mathrm{B}=0$ dont l'ens ble équivant à $A d x+B d y+C d z=0$. Pour une ligne I non orthog ${ }^{\text {le }}$ au vect. $(\overrightarrow{A, B, C})$ la tg. en oh.pt.va tendre a etre intér re au cone élém ${ }^{r e}$. On Supposera done orthog ${ }^{\text {le }}$ en ch.pt, au vect. ($\overrightarrow{A, B, C}$)

Soit aussi bien $(p+y)^{2}+q^{2}=\varepsilon^{2} f(y, z, p, q)$ qui pour $\varepsilon \longrightarrow 0, s^{\prime}$ approche indè f^{t} de $d z+y d x=0$.
I^{\prime} axe des x est bien une ligne intég ${ }^{l e}$. La reoh. d^{9} une surf f^{00} passant par l'axe des x donne

$$
\left(\frac{d z}{d y}\right)^{2}=\mathcal{E}^{2} \pm\left(y, z, 0, \frac{d z}{d y}\right)
$$

Avantages de la méthode de Cauchy
On engendre la surf ${ }^{c e}$ intég ${ }^{\text {le }}$ par des multip ${ }^{l e s}$ caraotques s'appuyant sur la courbe support (élaborée en bande de départ). $^{\text {a }}$. Stabilité, du pt.devue général.
Stabilité des bandes précédentes dans $I^{2} \operatorname{esp} .(x, y, z, p, q)$, déduite des propr. des syst.diff ${ }^{l s}$ \& inég ${ }^{l e s}$ diff ${ }^{l e s}$. Cela ramène aux éq. D.P. elles Ce qui va ètre indiqué.

Sol hns de $p^{2}+q^{2}=1$ fournies par la PCD d'un pt.a un ens. plan (pt. Eplan de I'ens.). On obtiert une int le otg ${ }^{\text {te }}$ de $p^{2}+q^{2}=1$

Intég les otg tes de $1^{\prime} e^{n} q^{n}$ d'Hamilton-Jacobi obtenue de même on remplacant la PCD euclidienne par une autre PCD quant a l'intég le $\int f(x, y, d x, d y)$ (le otg. gardant les mêmes caracterés spécifiques) Général ${ }^{n}$: idées de champs de courbes dones convexes
Général ${ }^{n}$: ides delde courbes dont la tg., le otg.le ptg. est partout intér, au cône du chomp,
(cela géomfrise linét
diffdr ou les syst. d'inég:
Emmission d'un point d'un ensemble.
Frontière d'une émission, fournissant (MARCHAUD) une intég le ctg. de $I^{\prime} e ́ q^{n} D . P$. engendrée par le champ de cones.
Retour a (S) $\left(\begin{array}{l}p=A(x, y, z, u) \\ q=B(x, y, z, u)\end{array}\right.$ à $d z=p d x+q d y$ et $a(1)$.
Une hypersurf. sol ${ }^{n}$ de (1) une fois obtente, il faut chercher surf ${ }^{c e} \sigma$ située sur cette hyp., ou une $\operatorname{sur} \mathrm{f}^{c e} \widetilde{\omega}$ proj ${ }^{n}$ de σ sur $u=0$ et vénffiant
$d z=A \quad x, y, z, u(x, y, z) \quad d x+B(x, y, z) u(x, y, z)) d y$ Etudions (S) autour d^{\prime} un ($x_{0}, y_{0}, z_{0}, u_{0}$) out le vect. \dot{A}_{u}, B_{u} est $\neq 0$.
on peut alors passer de (S) \& une 6́q. $f=0$, P.ex. si $A_{u} \neq 0$, $\perp=0 s^{\prime}$ écrit $q=B[x, y, z, V(x, y, z, p)] V$ dériv $^{b l e}(1)$ en x, y, z. Partons d'une surf ${ }^{c e} \tilde{\omega}$ intég de $t=0$ 。 En oh. pt. de $\tilde{\omega}$, les 2 éq ${ }^{\text {ns }}$

$$
\begin{aligned}
& p=A \ldots \\
& q=B \ldots
\end{aligned}
$$

ont une sol ${ }^{n}$ commune en u. De \mathscr{d} on déduit une surf ${ }^{c e} \sigma$ sur l^{\prime} hypers ${ }^{\text {ce }}$ de $0, x, y, z, u$ par laquelle σ passe en général une intég le bien déterminêe (l), soit p.ex. $1^{\text {'h }}$ ypers ${ }^{c e}(h)$. (elle est engendrée par les caract ${ }^{\text {ques }}$ de (I), elle aura peut-ètre des plots //Ou. Soit (ω) la varieté ou cela se produit. I' une des surf ${ }^{\text {ces }}$ o'́ $^{\prime}$ sillonnant (h) pourra a^{2} couper (ω) suivant une courbe γ. La proj ${ }^{T}$ $\widetilde{\omega}$ de cette σ a dès lors une arete de rebrousst, qui est ellemême la proj ${ }^{n}$ de γ sur $u=0$. Posons le probl. Cauchy pour $f=0$ et une courbe C.
\square
\qquad
asgines
2).
Iat

Soit $\tilde{\omega}$ une surf $f^{c e}$ sol n : elle est la proj ${ }^{n}$ sur $u=0$ d' surf ${ }^{c e} \sigma$ qui est sol ${ }^{n}$ d'un autre probl. Cauchy pour (S et une courbe T projetée sur $u=0$ suivent c, et le long de laquelle u s^{\prime} obtient, une fois p, q trouvés par le processus classique, $\frac{3}{2}$ partir de (S). Partant de Γ, on peut retrouver l_{a} surf ${ }^{q e} \omega^{2}$, e recourant a (h), intég ${ }^{\text {le }}$ de (I) qui contient Γ : il y a sur (h) unc surf ${ }^{c e} \sigma$ contenant aussi Γ et projetée suivant \tilde{W}_{0}

Cela explique les cas d'indéterm ${ }^{n}-S i \Gamma$ est une caractque de (1) (S) associe a Γ (le long de laquelle x, y, z, u sont fonot ${ }^{\text {ns }}$ d'un certain param.) une courbe de I 'esp x, y, z, le long de lagrers en vertu de (S x, y, z, p, q sont aussi fonet ${ }^{\text {ns }}$ de ce param. Ainsi s^{\prime} introduisent les bandes $d^{9} e^{\text {e }}{ }^{\text {ts }}$ de contact. D^{ρ} oul une introd ${ }^{n}$ naturelle à une étude didactique de $f(x, y, z, p, q)=0$.

Il suffit maintenant, dans la méth。 précédente, d^{0} introd ${ }^{2}$ des cond ${ }^{n s}$ suppl ${ }^{\text {res }}$ peu restrictives pour pouvoir établir que (h) $=i^{n} e^{\text {le }} \mathrm{ptg}^{\text {te }}$ de (I). I'intég le au sens de Cauchy est alors proj ${ }^{n}$ dune intég ${ }^{l e} \mathrm{ptg}^{\text {le }}$ dans σx y zu。

Aspect pris par la théorie des è ${ }^{\text {ns }}$ D.P.

 guand on souhaite I' approx effective des solutions.Même sou.ci \longrightarrow èq $^{\text {ns }}$ B.O.

$\overline{\mathrm{ON}}$
intég ${ }^{\text {le }}$ à ε près
si
a) une intég, exacte issue de \mathbb{M}_{0}
en prenant
b) $\ldots \ldots$ à Eprès $\ldots \ldots . . M_{1}$
sur l'intervalle $k\left(t_{7}-t_{0}\right)$
on a $\max |\mathbb{M N}| \angle e$
ce qui, pour l'intègrale issue de \mathbb{M}_{0} ètablit
son UNICITE
SA CONTINUITE $/ \mathrm{M}_{0}$

Critique de la théorie de $f(x, y, z, p, q)=0$ sous forme classique. Méth. de Lagrange (ou de l'intég. complète) à des èq ${ }^{\text {n̄s }}$ formées par élimin n, on applique le critere de dependance tablant sux I'annulin ${ }^{n}$ du jacobien. I'applic ${ }^{n}$ effective comporte

Poux integrex une èq.D.T. on cherche les intersections des suffees intégles avec les $M(x, y, z)=c^{\text {te }}$ en prenant M de manière que les directions de grad M et (P, Q, R) soient partout distinctes.- Dè P^{n} d'une intég. a そprès.

$$
\begin{aligned}
& \text { Rèsol }{ }^{n} \text { approchèe d'un syst. } \\
& \begin{array}{ll}
f(x, y, z, p, q)=0 & \text { oû } g=\text { intèg. } 1^{\text {ère }} \\
g(x, y, z, p, q)=? & \text { syst. caract }
\end{array}
\end{aligned}
$$

Rev.Scient $\mathbb{N}^{0} 3291,15$ fév.1948, p. 230

d'où l'espoix d'une intég ${ }^{\text {le }}$ compl. approchée espoix très fagitif: prendre l'èq n de CLAIRAUT D'abord, dansle plan: en affinant l'ens.des pts d'une courbe

$$
\begin{aligned}
& y=f(x) \\
& p=y(\omega)
\end{aligned}
$$

on accroit l^{\prime} incertitude sur la famille des tg. en affinant I'ens. des tg. K'crites $x \cos \theta+y \sin \theta-p(\theta)=0$, on accroit l'incertitude sur la famille des pts de contact. thans I'espace si l'on prend la famille de plans
$x \sin \theta \cos \varphi+y \sin \theta \sin \varphi+z \cos \theta-p(\theta, \varphi)=0$ les enveloppes de familled a l param. extraites de cette famille sont malkisdes a obtenir.
La méth. de Iagrange sort des méthodes vraiment utilisables. Caractéristiques (Lagr. iennes) - Partant de la famille
$z=[\varphi(x) z+a][\psi(y)+b] \quad \frac{p}{z}=\frac{y^{\prime}(x)}{\varphi(x)+2} \quad \frac{q}{z}=\frac{\psi^{\prime}(y)}{\psi(y)+6}$
$\frac{p q}{z^{2}}=\frac{\varphi^{\prime}(x) \psi^{\prime}(y)}{z} / p q=z \varphi^{\prime}(x) \quad \psi^{\prime}(y)$
il y a des Caract. I, pas de caract. C, si $\varphi^{\prime}, \psi^{\prime}$ sont non dérivables (cone étèment ${ }^{r e} 2^{e}$ ordre, mais allure singul ${ }^{r e}$ courbe élémentaire)
caracli. I

$$
\begin{aligned}
& \text { c }[\varphi(x)+a]+\Psi(y)+b=0 \\
& p=\varphi^{\prime}(x) \quad[\quad \Psi(y)+b] / \mathrm{dp}, \mathrm{dq} \\
& q=\psi^{\prime}(y) \quad\left[\quad \varphi(x)+a 工 n^{\prime} \text { existent } p\right.
\end{aligned}
$$

Les remarques concernant le critère de dépend ${ }^{\text {ce }}$ déduit du JACOBIEN montrent l'imphssibilite èventuelle d'une X'fim ${ }^{n}$ effective~mẻme gènèrale

1. Partant de $z=V(x, y, u, \lambda)$ d'où $p=V_{z}(x, y, u, \lambda)$
$q=V_{y}(x, y, u, \lambda)$
si on élimine Nentre $\begin{aligned} & z=V \\ & p=V_{X}\end{aligned}$, puis entre $\left\lvert\, \begin{aligned} & z=V \\ & q=V_{y}\end{aligned}\right.$ on obtient un syst.

$$
\begin{aligned}
& f(x, y, p, q, z, u)=0 \\
& g(x, y, p, q, z, u)=0
\end{aligned}
$$

Si I'on satisfait à syst. en prenant $z=V(x, y, u, \lambda) / u=\mu^{u}$
la recherche de fonctions $\begin{aligned} & z(x, y) \\ & \lambda_{(}(x, y) \\ & u(x, y)\end{aligned}$ telles qu'on ait $z=V, p=V_{x}, q=V_{y}$ donne un prob. équiv ${ }^{t}$ à l_{a} rèsol ${ }^{n}$ du syst。 $f=g=0$.
Même marche que dans le cas classique où u est lui-même diminé

$$
\varphi(u)-x+p(u-z)=0
$$

Ex.: le syst.

$$
\psi(u)-y+q(u-z)=0
$$

conduisant a des sol ${ }^{\text {ns }}$ partic. $S_{u \lambda}$ qui sont des $s p h$. centre $[\varphi(u), \psi(u), u]$ astreint a decrire une courbe assignèe; ray λ.
2. Soit une fom, de surf. $S_{u v}: z=V(x, y, u, v)=V_{x}(x, y, u, v)$

Si l'élim ${ }^{n}$ de u, v ne gaze pas, on reste attachè au probl.Lagrien : rech des fonct. $u(x, y), v(x, y) z(x, y)$ telles que $z=V, p=V_{x}, q=V_{y}$

EX: cas des sph.
(I) $(x-u)^{2}+(y-v)^{2}+[z-\varphi(u, v)]^{2}=[p(u, v)]$
(2) $x-u+p(z-\varphi)=0$
(3) $y-v+q(z-\varphi)=0$
d'où un syst. (1), (2), (3) ayant des equiv ${ }^{\text {ts }}$ sans que s^{\prime} achève l_{a} redvection. on ne peut donner que rep.indir te à la question. Ecrire une è $q^{n} F(x, y, z, p, q)=0$ ayant pour intè ${ }^{\text {le }}$ une famille q c q sphères 2 paramètres. Le cas $n^{0} 1$ (ou cas intermed ${ }^{r e}$) induit vers la parametris ${ }^{n}$ quant a $p, q d^{\prime}$ une è $^{n} F(x, y, z, p, q)=0$
d' où

$$
\begin{aligned}
& p=A(x, y, z, u) \\
& q=B(x, y, z, u)
\end{aligned}
$$

en cherchant u telle que soit une different totale.
(
$D^{\text {'où la cond }}{ }^{n}$ (I) $A_{y}+B A_{z}+A_{u}\left(u_{y}+B u_{z}\right)=B_{x}+A B_{z}+B_{u}\left(u_{x}+A u_{z}\right)$ èq. $\operatorname{lin}^{r e}$ en u_{x}, u_{y}, u_{z} et donnant u. Une fois u trouvée, il reste à intégrer

$$
d z=A(x, y, z, u) d x+B(x, y, z, u) d y
$$

Caractques de (I)

$$
\frac{d x}{B_{u}}=\frac{d y}{-A_{u}}=\frac{d z}{A B_{u}-B A_{u}}=\frac{d u}{B_{x}-A_{y}+A B_{z}-B A_{z}}
$$

$=$ courbes de l'esp. (x, y, z, u) le ling desquelles les pentes p, q se déduisent des relations $p=A, q=B$.
Ainsi définies dans $I^{\text {'esp }}{ }^{\text {ce }}(x, y, z, u)$, les caract ques vont se projeter sux $l^{\text {'esp }}{ }^{\text {ce }}(x, y, z)$ suivant celles de $F=0$.
Notions de paratingent, d^{\prime} intég $^{\text {le }}$ ptg $^{t e}$
Exemple de $l^{\prime}{ }^{\prime} q^{n} \quad \frac{(A p+B q-C)^{2}}{1+p^{2}+q^{2}}=m^{2}\left(A^{2}+B^{2}+C^{2}\right)$

qui, pour $m=\sin \alpha$ tendant vers 1 , se d'compose a la limite en 2 éq $^{\mathrm{ns}}$ inđép tes $\quad \mathrm{p} C+A=0 \quad q C+B=0$
 Pour une ligne I non orthog le au vect. $(\overrightarrow{A, B, C})$ la tg, en ch.pt. vat tendre a etre intér re au cone étém ${ }^{r e}$ 。On supposexq ${ }^{\text {\% }}$ donc Corthog ${ }^{\text {le }}$ en ch.pt.au vect. $(\overrightarrow{A, B, C})$

Soit aussi bien $(p+y)^{2}+q^{2}=\varepsilon^{2} f(y, z, p, q)$
qui. poux $\varepsilon \rightarrow 0, s^{9}$ approche indè $t^{t_{d}} \quad \mathrm{dz}+\mathrm{y} d z=0$. I'axe des x est bien une ligne intég ${ }^{\text {le }}$. La rech. d^{\prime} une surf ${ }^{\text {ae }}$ passant par I^{\prime} des x donne

$$
\left(\frac{d z}{d y}\right)^{2}=\varepsilon^{2} \quad f\left(y, z, 0, \frac{d z}{d y}\right)
$$

Avantages de la méthode de Cauchy
On engendre la $\operatorname{surf}{ }^{\text {ce }}$ intég $^{\text {le }}$ par des multip ${ }^{\text {les }}$ caract $^{q u e s}$ s'appuyant sur la courbe support (étaborée en bande de départ). Stabılité, du pt.devue génếral.
Stabilité des bandes précédentes dans l'esp. (x, y, z, p, q), déduite des propr. des syst. $\mathrm{diff}^{\text {ls }}$ \& inég ${ }^{\text {les }}$ diff ${ }^{\text {les }}$. Cela ramène aux éq. $\mathrm{D}_{\mathrm{o}} \mathrm{P}^{\text {ciles }} \ldots$... Ce qui va ètre indiqué.

[^0]Sol ${ }^{\text {ns }}$ de $p^{2}+q^{2}=1$ fournies par la PCD d'un pt. a un ens.plan (pt. E plan de l^{\prime} ens.). On oblecert une int le otg ${ }^{\text {te }}$ de $p^{2}+q^{2}=1$ Intég les otg tes de I'èq n d'Hamilton-Jacobi obtenue de même $^{\text {len }}$ en remplaçant la PCD euclidienne par une autre PCD quant à l'intég ${ }^{\text {le }}$ $\int e(x, y, d x, d y)$ (le ctg. gardant les mêmes caracte̛rếs spécifiques)
Genèral n : idées de $\left\{\begin{array}{l}\text { champs de connes converkes } \\ \text { de courbes dont la tgo, le ctg. le ptg. } \\ \text { en partout intér. au cóne du }\end{array}\right.$
en partout intér.au cone du champ,
(cela geométrise I'inég ${ }^{\text {té }}$ diffèr ${ }^{\text {le }}$)
ou les syst. d'iny.:
Emission d'un point
d'un ensemble.
Frontilre d'une émission, fourmissant (MARCHAUD) une intég ${ }^{\text {le }}$ ctg. de 1 ' '̛́q, ${ }^{n}$ D.P. engendrée par le champ de cônes.

$$
\text { Retour a S }\left(\begin{array}{l}
p=A(x, y, z, u) \\
q=B(x, y, z, u)
\end{array} \text { à } d z=p d x+q d y\right. \text { et'd (I). }
$$

Une hypersurf. sol ${ }^{n}$ de (1) une fois obtenke, il faut chereher une surf ${ }^{\text {ce }} G$ située sur cette hyp., ou une $\operatorname{surf}^{c e} \tilde{\omega} \operatorname{proj}^{n}$ de σ sur $u=0$ et vérifiant

$$
\mathrm{dz}=\mathrm{A}[\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})] \mathrm{dx}+\mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \hat{l}(\mathrm{x}, \mathrm{y})) \mathrm{d} y
$$

Etudions (S) autour d^{\prime} un ($x_{0}, y_{0}, z_{0}, u_{0}$) où le vecit. A_{u}, B_{u} eots $\neq 0$, On peut alors passer de (S) à une éq. $f=0$, p.ex. si $A_{u} \neq 0$, $I=0$ s'écrit $q=B[x, y, z, V(x, y, z, p)] \quad U d^{\prime} x^{\prime}{ }^{\prime} v^{b l e}(1)$ en x, y, z, Partons d'une surf ${ }^{\text {ce }} \tilde{w}$ intég $^{\text {le }}$ de $f=0$. Ench.pt. de \check{w}, les 2 èq ${ }^{\text {ns }}$

$$
\begin{aligned}
& p=A \ldots \\
& q=B \quad \ldots
\end{aligned}
$$

ont une sol ${ }^{n}$ commune en u. De $\tilde{\omega}$ on déduit une surf ${ }^{\text {ce }} \bar{\sigma}$ sur I^{\prime} hypers ${ }^{\text {ce }}$ de $0, x, y, z$ u par la quelle G passe en geŕnéral une intég ${ }^{\text {le }}$ bien déterminée (l), soit p.ex. l'hypers ${ }^{\mathrm{ce}}(\mathrm{h})$. (elle est engendrée par les caractques de (1), elle aura peut-ètre des plotg // Ou. Soit(ω) la varieté ou cela se produit. I'une des surf ${ }^{\text {ces }} \mathfrak{j}$ sillonnant (h) pourra ${ }^{2}$ couper (ω) suivent une courbe γ. La projn ${ }^{n} \tilde{w}^{n}$ de cette σ a dēs lors une arte de rebrouss ${ }^{t}$, qui est elle-meme la projn de γ $\operatorname{sux} u=0$.

Posens le probl. Cauchy pour $\mathrm{I}=0$ et une courbe C.

Soit $\tilde{\omega}$ une surf ${ }^{\text {ce }}$ sol n : elle est la proj ${ }^{n}$ sux $u=0 d^{\prime}$ une suxfic σ qui est sol ${ }^{n} d^{\prime}$ un autre probl. Cauchy pour (S) et une courbe T projetée sur $u=0$ suivant C, et le long de laquelle u s'obtient, une fois p, q trouvés par le processus classique, à partir de
(S). Partant de T, on peut retrouver $l a \operatorname{surf} f^{c e} \omega^{2}$, en recourant a ((g) (h), inttg ${ }^{l e}$ de (I) qui contient T : il y a sur (h) une surf ${ }^{\text {ce }} G$ contenant aussi T et projetée suivant ω^{2} 。

Cela explique les cas d'indr'term ${ }^{n}-$ si Γ est une carachque de (I) (5) assoive à Γ (le long de laquelle x, y, z, u sont fonct ${ }^{\text {ns }}$ d'un certain paramo) une courbe de I^{\prime} esp ${ }^{\text {ce }} x, y, z$, le long de laquelle, en vertus de (5) x, y, z, p, q sont aussi fonct ${ }^{n s}$ de ce param. Ainsi s'introduisent les bandes $d^{\prime} e^{\prime} l^{\text {ts }}$ de contact, D^{\prime} 'oil une introd ${ }^{n}$ naturelle à une étude didactique de $f(x, y, z, p, q)=0$.

Il suffit maintenant, dans la médh. précédente; d^{2} introd ${ }^{r e}$ des cond ns suppl pes peu res (rétives pour pouvoir établir que $(\mathrm{h})=$ intég $^{\text {le }}$ $\mathrm{ptg}^{\text {te }}$ de (1). I'integ ${ }^{\text {le }}$ au sens de Cauchy est alors projn d'uneintèg ${ }^{\text {le }}$ $p t g^{l e}$ dans σ_{x} y zu.

[^0]:

