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MARTINGALE
17.5. bis 23.5.1970

Tagungsleiter: H. Dinges (Frankfurt/Main) und L.J. Snell (Hanover)

'Wahfend:'ﬁber Markoff‘sche, stationéfe und’-GauB'sche Prozesse
regelmébig Tagungen in aller Welt sféttfinden,-wurde unseres
Wissens den Martingalen, dem vierten Grﬁndtyp étochastischer
Prozesse, nocﬁ nie eine Spezialtagung gewidmet. Um der Gefahr
auszuweichen, daﬁ die Vortrdge sich in den weitgestreuten An-
wendungen def Marfinéaltheorie Qérlieren, waren»die Herren D.
Burkholder, J.L. Ddob, P.A. Meyer und L.J. Snell flir Uberéichts—

1vortrége ﬁber‘die Hauptstrémungen vorgesehen. AuBérdem standen -

“allen Sprechern mindestens dreiviertel Stunden fiir iﬁren Vortrag

zur Verfiigung: D. Burkholder, P.A.Meyer und H.Rost referierten
sogar in zwei langen Sitzungen. |

ﬁsjhat'sich'gezeigt, daB die verschiedenen Forschungsrichtungen

innerhalb der Martingaltheorie einander ergdnzen und in Speéial;
tagungen wertvolle Impulse geben k&nnen. Die Atmoéphére~0berwdl—
fachs hat.viel zum Erfolg der Tagung beigetragen. Die Teilnehmer
waren sich darﬁber'einig, da® in etwa zwei Jahren eine weitepe Spe-

zialtagung lber Martingaltheorie wilinschenswert wdre.
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Vortragsausziige

G.A. Brosamler: Superharmonic functions: Quadratic variation

and Ito formula

Let R € R" be a Green domain, 0® its Martin boundary. Let u be

the difference of two positive superharmonic functions on Q,

extended to oR by the fine boundary function u¥*. Let Y be Brownién‘_

motion on Q, stopped when reaching Q. The process u(Y) is dis— o

cussed from the point of view of quadratic varlation The Ito

'formula is valid for u without smothness or growth conditions.

. D. Burkholder: Martingale Inequalities

Recent work on inequalities of the form
| Go(VE) < c - GO(UR) (%)
is described. Here f = (f1,f2,.. ) is a martingale belonging to
»séme family of martingales and U and V are operators on the fa-
- mily. The vasic question is: When does an inequality.of the fofm'f
APO L p(VEXA) < - Uf||gg,Lx>o, imply (*) 2
Thére ére two:cases: o |
1.  © general, f special. Here & satisfieé &(b) = ? ¢(X).dx,
0LD S.“. where @ is nonnegative and measurablg and satisfieé
the growth condition ¢ (2X) < ¢ - ®(X\),X > 0, and £ is any tra
form of a fixed martingale satisfying a regulary gondition.
2. @& convex, f general. Here & is assumed aiso to be convex and

E)

f is any martingéle relative to a‘fixed_seqﬁence of o-filelds.

H. Dinges: A proof of the Martingale Convergence Theorem.

Most proofs of the convergence theorem use an estimate on un-’
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and downcrossings. It is shown that theiintroductionvof some
strictly convex functlon provides a natural proof: If k is
pos1t1ve and strictly convex and if 1y denotes the tangent

in y, define Ug(y): = (x: k(x) < 1; (x) £ 8] and apply the
Cauchy criterion: A sequence of random variables y -which is
hounded a.e., converges a.e. iff for £>0, 5>0, there exists N:

P[yn(m) ¢ Ué(yN(w)) for some m>NJ< €.

'J L. Doob: State Spaces for Markov Processes

’

The general Drinciple is: The fransition function and state snace . .

of -a Markov process should be chosen 1n such a way that the su-

‘permartingales defined in terms of the ‘transition funcfion are se-

" parable. This pfinciple is illustrated in the case of Markov Chalns

W. Hansen:"Hunt's‘theorem and potential theory

Let E be a locally compact space having a countable. base and (&t

a family‘of'numerical functions .on E; A potentbl cone $ on E |

is a convex cone of real-valued continuous functions > O on E
together with an additive and positive homogeneous manping S (called

support) of<® into the family of compact subsets of E having a de-

. composition property. %ﬁ then is the set of all real.-valued con-

UFG

tinuous functions f > O on E satisfying f+p Z.q; whenever p,q€ Band
f+p2qon S(q). B is said.to be sub-Markov if 1 e'sm.

Using Hunt's theorem we get: G is the family of excessive functions
of a Feller semigrouo whose potential kernel maps Gk into 6' if |

and only if G .is generated" by some sub- Markov potential cone $

satisfying T—F =
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$ is said to be weakly adapted, if for all p eﬁ$
1nf(fe%pfea*]=o ‘

If P is weakly adapted and if for any X € E there is a p € B

such that p(x) > 0 a thorough study of 8$ gives the existence

of an f € %m such that f~ % c @ . ThlS leads to the following

' corollary of the preceding result:

G is the family of excessive functions of a qua51 -Feller semigroun

if @ is generated by a weakly adapted sub—Markov potential cone:

!

satisfying GO c F=7%.

This corollary can be apniied directly to get a Hunt process for

any strongly harmonic space.

~In Inventiones math.5, 335 - 348 (1968) a somewhat stronger result’

is proved by using a generallzation of Hunt's theorem.

o

~J. B. Knight: On a connection between square integrable martln-‘

gales and Brownian motlon

‘Let_B1, B be square integrable martlngales on (9, &,p) W1th
_'natural increasing process< B, > e < B > such that Bi - < Bk> a

" are martingales, 18k < n. If By l.B forj=¥k “and if the By

“have continuous vath functlons,-then' (if %33 < Bk>t = oo, 1 < k £ n;

a.s.) the processes (B1(T1(t)),;..; Bn(TA(t))), where Tk(t),is

the right-continuous_inverse function of < Bk>t5 is an n-dimen-

sional Brownian motion.

) .JII .
J.F. Mertens: Repeated games with incomplete information.

There is considered a>specia1:kind of games Pn(p) with incomplete

infogmation,‘whefe'p = (pi,...,nk) is’a'orobability vector;;It
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| is shown that the values yn(p)dof‘the games Pn(p)ﬁconverge

to some function v(p), although the game I, (p) has in general

no value. The function v is the unique eolﬁtion of a system of

' eqalities Some'differentiabiiity properties Of v and examples

are given. The arguments devend heavily on martingale theory, to--7

gether with the Minimax theorem.

‘P.A, Meyer: Survey. on Stoehastic_Inteérale
The topics considered are |
 1w. Stochastic integrals with respecf to Square‘integrable
;martingales | |
2. Stochastic integrals with resbect to non square integrable
| maftingales and with respect to non square integrable non-
martingales. | L |
vThe'first talk consists entifely of claseical results. In the seéond
.talk are introduced semimartingales, that is,»nrocesses X which
admit a decomp051t10n Xt = X + L + At where Lt is a local mar-

tingale, and At is a process whose sample functions are of bounded

variatlon Stochastic 1ntegrals of predictable locally bounded pro-

cesses can be defined with respect to such X. A general change of

varlables‘formula can be given as followsl‘

F(X,) = F(X,) + J© Fr(Xg_)aXg + - "fz F"(XS_)d[XCXc]s

‘.’+ Séﬁ (F(XS)—F(XS_)_F'(XS_)(xs_xs_))

where F is twice continuously differehtiable. An application is
Catherine Doléans'exporential formula: the only solutiodn of the

stochastic.equation
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t
Yo= 1+ [ Yo%y s

Y, = exp(X.- 5 [X°X°1y) - By (148X exp(-8 .X) .

A. Nguyen-Xuan-Loc: Strong limit of some class of projections
: in an L-snace . '

Let H be a Hilbert space, | H a norm on H which is weaker than

the hilbertian norm and X the completion of H with respect to
I II. For I = [o, td] let (X )t eI be a ‘class of subsnaces of
'rx; X subspace of X, for s < t, and Pt < the nrogection 7
',Xt'+ Xg t 2 5. A martingale is defined as a collectlon [xt :‘telij
‘of elements of X: . ' . ﬂ ' o
for t € I

.1) x, € Xy

t 2) Pt < (xt) = xS for t >‘s;. 8,t € I
Theorem. If [x 2t e I} is a martlngale, ~"r',hénthevfollowin'g.'"
"wf statements are equivalent° o .
1.'.[xt :t e I} is relatlvely compact
z;ffxt ; t e I) is weakly relatlvely compact

o 'nﬁjé-s - 1lim x ex1sts e
® : T t7ta b | -

4, Ix Xy = Pt(x)

i H,.Rost: Suitable stopping of Markov nrocesses

'Let_(Pt) be a (continuous or-discrete) semigroup of kernels on a
"? measurable svace (E,B) and p a fixed measure on (E,B). Tne.pro-
v;~b1em.is to characterize~those measure v:which'occure as stopving

.:distributions vV =u PT of the process with transition function (g)

~and startlng distribution M. The answer in the. tlmely discrete

case 1s given by
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. Theorem 1: ~ There exists a T such that w P, = v iff

T
<B,£>> <V ,f > for all excessive f, i.e. for

| all f : O ¢ Pf ¢ T,
. There 1s‘still another theorem,}analogous to Skorokhod's Lemma,. N
in the discrete time case: |
VTheorem,Q: " If §is a suitably defined cone of defective fUﬁctiohs
(r def.: &0  f ¢ Pf) and if |
<t > <<, f > for fes , then there exists a
stopping time T such that -

| . I T
a) v>upu Pp D) cH (deT) = | ;%m G (fOXTAn).
. .The method of proof consists in considering the double sequence
of measures ( filllng procedure"):
S : _
= (unP-Vn)", ='(unP'Vn) §)

n+ 1 Vhe1

= (-v) v = (w-v)7,
n > 0; it shows that the desired. stopping times can be defined
in a "canonical" way. A slight modification of this method in

' case of continuous time yields the result (analogous tQ:Th, 1)

 Theorem 3: Ir (P.) is Standard and pU > VU, where uU is
- locally finite, then one has vV = uPT, where T 4is.

‘a suitable stopping time.

In 'this case T is also constructed in a canonical way.

‘M. Silverstein: A characterization of HP_Svaces

Let D be the unit disc in the complex plane, u a harmonic func-
- tion on D, u(o) = o; qu the conjugate harmonic to u such that
-»u(o)“;'o, be F'=u + 1 G Then u e‘Hp means

HuﬂHb = Sup | (2m)”, 1 f dv (F(rei‘}))p ]p < o,

-9~

DFG Deutsche
Forschungsgemeinschaft




If T‘;} is the convex hull of the pointde€ 8D and the disc
C(z s |z] <7}, o« r < 1, define the nontangential maximal func=- .
i *¥¥(Y) = S

_tlon p** () ze%g | u(z)|. | e

Let B BroWnian motion in D, started at»O stopped upon reaching &D

and € the hlttlng time for 8D. For f a function on D define

£%* w : | . ' |

( = o5¢Re l£(By )I |
Theorem. u € H® if and only if ukE € Lp(d0 6D), P > .

This is a new result for o < P < 1

‘ | The proof consists of three estimates:
. [ ) *®il -
1o lullge < UF*ly
2. : * cju¥*
_ el <e Ih_x I,
3. - <c-fluxx
5o el <ol

’L.J. Snell: Remarks on a theorem of Doob
Doob'proved in 1957 that if R is an open set In N sbace with a Green;'
function, u und h positive superharmonic functionsion R, then %- H
‘has a finite fine limit at H—almoszevery point of R U R". Here
R™ is the Martin boundary and H is the measure which represents h
. in term of maximal funetion. In 1963 Brelot and- Doob showed: how to
: obtain from the above theorenlthe fact that’ 1f u and -h-are- |
strictly positive harmonlc functions in the half plane then ?;hasﬂ
‘non-tangential iimits This latter theorem is discussed from the

poinf of view of a proof which is both relatively simple and empha-'

- sizes the role of martingale theory.

i

D. Strook: A.Martingale Approach to Diffusions.

d

Let a(t,x) = ((a.J(t,X))) t > 0 and x € R be a con-

143 ad
tinuous, bounded, positive definite, symmetric matrix valued func-

tion. Denote by Q the space ofcmmtinuous maps W from {o0,®) into Rd

~10-
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and let x(t,w) = xt(w) be the position of w at time t. Define
m$ = B{x,rs<uit] and m° = M. Given x € RY and s > 0, it is
-shown that there is exactly 6ﬁé4probability measure P on < Q,ms>
'suéh that |
(1) P(x(s) = x) = 1 | _
(i1) for all f € Cg (rY), < £(x(t)) - ; Luf(x(u))du,m:,P >
_ : s
- | 1 ' 52 |
»is a martingale, where L = g»Zaij(u,y) 3§§g§3
Some consequences of this fact are discussed. In particular it is

‘'shown how this result implies the existence (and uniqueness) of

a Feller process whose generator is an exteﬁtion’of L. "'h

S.R.S. Varadhan: Diffusion Processes and Martingales

.Let G Rdvbe a region such that there exists a functionl@(x) in

c2(r%) with G = (x:0(x) > O}, 8G = (x:®(x) = 0) and [V®| > 1
‘on 8G, (éij(t,x)) and (bj(t,x)) diffusion coefficients in T X [O,w)_ §
 with | | ’

(i) (aij(t,x)) is continuous, bounded and uniformly pbsitivef

definite,

(ii) (bJ.(t,x)) is bounded and measurable. o ®

| Lef P(t,x) be a bounded, continuous, nonnegaﬁive function on
5G X [0,0) and y(t,x) an Rq-valued function on 686G X[o,®)
which is bounded, continuous-and satisfies the inequality
< y(t,x), (Vo(x>>B>0 on~ bé X[{0,). The problem is to find : v%
- a proéess corresponding to the diffésion coefficients.a,b in G
with the boundary condition Puy + < v, V.u > = o on 8G: |
>Lét5§ > o and x‘e G. P is called a solution to the»sﬁbmartingale |

—11-
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problem if P is a measure on Cl[[s,»=)x G] such that
(1) P {w : x(s,w) = x} = 1 and
4'(ii) For every u e.ég’g[[s;w)x G] with Pu.+ <“15Vu >>0
on [s,m)xhﬁ, o

(t,x(t)) f( + =3 &% le‘ bu
u X - u, 5 Za; . +
’ S A F1J 5316xj J 6x

is a submartingale.
Theorem 1°¢ For each s, X ét least oné‘solution exlists.
Theorem 2: | Under the additibnal asSumptibns o
(1) v satisfies a Llpschitz condltlon in t and X
(11) P is either 1dent1ca11y zero or is strictly positive -’
'»\.and'satisfies a Llpschltz condltlon (can be dropped in the
homogeneous. case) |
for each s,x the solution P = PS x " is unique.

Corollary: (P } defines a strong Markov Feller process

John B. Walsh: " Birth of a Process

There are considered two examples ob subprocesses of‘a‘giVeﬁ

strongly Markov process X:

A random variable L is an L-time if 1) L& € (= lifetime)

2) Loy (L-t)* . Define "killing operators k' by

t=
X. st
(Xoky) ¢ {A? s>t

‘An L-time is a co-terminal time- 1f in addltlon to 1) and 2):

3) s> L :»Loks = L.

Th 1: Let L be'an L time. Thé T Ll
' eorem 1: e.’ e an -time. e process Y, =1a L
is again strongly Markov with semigroup
- 12 -
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| Pt(x dy) = 5{1} P, (x,dy)
0 if ®(x) =
where ®(x) = P* (L>0}.
‘Given a‘coterminal time L,'there ié aﬁ associated terminal - X
time T : |
[inf{t:Lok > 0} )
TL ) ={m if above is empty = 1St time L become interesting" '  e
If Qt is fhe semigroup of the process killed at TL and f

¥(x) = P*(L=0} we have a martingale. .
~  Theorem 2: If L is an exact terminal time, the process (Zt,t > o) ‘lD

where Zt = XL+t is strongly Markov with transition
u,‘ probap1lities Qt : (Qt(x,dy) = ?%¥} Qt(x,dy )).

- H. Bartenschlager
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