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Finite Géometries

16.5. bis 22,5.1976

This years"Pinite Geometries conference was held
under the leadership of Professor D.R. Hughes (London) .
and Professor H. LUneburg (Kaiserslautern). An
innovation- and major feature this year was two series of .
three lectures, one presented by Professor J. van Lint .
(Eindhoven) and the other by Dr. P. Cameron (Oxford).
Professor van Lint described ‘some of the recent results
obtained by members of the Combinatorial Theory Seminars
in Eindhoven and Amsterdam, whilst Dr., Cameron dlscussed'
various kinds of conflguratlons which have proved useful
in the study of multiply transitive groups. Malnstreams By
of the conference were Designé and‘Codeé, with somé
attention being given to other combinatorial problems
and graph theory. Amongst many other fine lectures,
particular attention was paid to those of Professor ;
Buekenhout (Brussels), who presented an elegent general- . :
isation of Dynkin diagrams, Professor Seidel (Eindhoqen),J, |
who discussed codes and designs on the unit sphere, and - {
Professor Ott (Giessen) who éstablished that a flag :
transitive finite projective plane is of prime power -order.
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Vortragsausziige

H. BEKER : On Strong Tactical Decompositions

R. Harris generalised.the concept of affine
2-designs to a class of strongly resolvable 2-designs,
which includes all affine designs and is closed

under complementation.:

I shalY define a class of 1-designs, called
strongly divisiblé,'which includes all symmetric.and‘M
strongly resolvable 2-desigﬁs and is closed under both

complementation and duality.

I shall give a brief summary of some of the’
results that have been proved for strongly divisible

designs.
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Jean-Claude BERMOND ¢~ Hypergraphs and Designs

We study relations between hypergraphs and designs.
Let us denote by : a (v,k,1) t-design a system of

subsets called blocks of a given set X of v
vertices, satisfying : (i) each block of cardinalify
k " and (ii) each subset of t elements of X belongs

to exactly one block.

Ks the complete t-uniform hypergraph (the edges

are all the t-subsets of a given set of n vertices).
'Lt(H) the graph whose vertices represent the edges

of H, two vertices being joined if the corresponding

edges intersect in at least t elements.

A first reiation.is:to consider a (v,k,1) t-
design as a partition of the edges of Kj into
hypergraphs isomorphic to Kt. This suggest
generalizations. An other way consists to relate
the existence of a kv,k,l) t~design to the determination
6f the stability nuhber of Lt(Kﬁ). The determination
of the chromatic number of this graph is related to other
problems of designs. Determinations of stability and
chromatic number of Lt(H) for- other hypergraphs are
related to the existence of orthogénal arrays and new

configurations.
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A.E. BROUWER : Optimal constant weight codes and
" related designs.

i In order to determine the optimal constant weight
i ’ codes with parameters d = 6 and w = 4 one has to

construct certain designs.
The following theorem says that these designs

‘ ' almost always exist :

. -Thm.

(i) S(2,4,v) exists iff v = 1 or ¥ (mod-12) [HANANI]

- 2 . ’ :
€ii)B({4,7 }; v) exists iff v =7 or 10 (mod 12),.v#10,19:

(iii) 6D(4,1,2;v) exists iff v = 2(mod 6), v # 8

\
|
|
|
. - & c oo

_ (iv) GD(4,1,{2,5 };v) exists iff v = 5(mod 6), v # 11,17

A - (with 5 temporary exceptions).

|

|

F. BUEKENHOUT - DIA"GIi‘AMS' FOR INCIDENCE STRUCTURES.

associated incidence geometries discovered by Tits

. LoL - T
was discussed. Examples are otote ... oto for -

af

the geometric lattices, o-0—0-0 ... o-0 for the

< Af

‘ A generalization of the Dynkin diagrams and the
| affine spaces, o=c-o for the inversive planes.

A series of sporadic simplle groups do have a diagram

build on the classical strokes and one additional

stroke oo for instance, My, ¢ oio—-o,
oy 000500, J, ¢ =050,
HS : fo-020, F,, : ofo%S0-0=®,; etc.

c <
. M2.3" o—o0-0-0, M
24
|
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P.J. CAMERON : SOME' COMBINATORIAL STRUCTURES AND
‘ " THEIR AUTOMORPHISM GROUPS : TWO-
" GRAPHS, ORDERINGS, PARALLELISMS. I.

This was the first of a series of-threg talks on

various kinds of configuration which have proved‘ﬁseful
in the study of multiply‘transifive groups. A two-
graph is a éollection T of‘3-subsets of a set X “such
that any -subset of X‘ contains an even. number of>
mémbers of T. Equivalent-congepts inqludg;; Double
coverings of cﬁmplefe graphs; switching classes of
grapﬁé;xséts of gquiangplar‘iines in Rd. TA t&o-

graph is régular if it is also a 2-(|x|, S,Xj design.
Eigenvalue-arguments.give necessary conditions on x|
and X§  for the existence éf regular two-graphs.

A theorem of Shult and Seidel on gfaphs with the
"triangie-property" can.be translated into the language .

of two-graphs.
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P.J. CAMERON ': SOME COMBINATORIAL STRUCTURES AND THEIR
" AUTOMORPHISM GROUPS : TWO-GRAPHS,
ORDERINGS, PARALLELISMS. ITI.

-

(1) If a group G aects on X (not necessarily finite

or falthful) so that 6 1is 2-transitive and.‘Gx_ has

‘ - - a strongly cIosed subgroup Néx) of index 2

(i.e. N(X) ﬂ~G§ f:N(y) } which is transitive on the
~remaining points, then either G has a subgroup N
of index 2 with NN 6, = N¢x), or G acts on a

nontrivial two-graph or an "oriented two-graph" en X.

"(2) If X is infinite and a group. G is t-homogeneous

:on X for ald t >0 “and r- but not (r + 1)-
‘trans1t1ve, then r < 3 and there is a 1inear or

cirecular order on X preserved or reversed by - G

(3) K t-(¢v,k,1) design is basis-transitive if its
i automofphiém group is transitive oﬁ*érderedv t + 1)-
tuples of points not contained in a block.  Such

designs arise from Jordan groups and from (t + 1)-

. o _transitive groups which act imprimitively on t-subsets.

UFG

Some partial classifications exist.

Deutsche
Forschungsgemeinschaft

o®




P

P.J. CAMERON : SOME COMBINATORIAL STRUCTURES AND THEIR “
AUTOMORPHISM GROUPS ':" TWO-GRAPHS,
ORDERINGS, PARALLELISMS. TIII.

A parallelism of the set'(t)_of t-subsets of
the n-set X 1is a partition of (t) into "parallel

classes™, each of which partitions X.

(1) The necessary condition t|n ‘for the existence ‘

of parallelisms was shown to be sufficient by Baranyai,

using the Integrity Theorem for network flows.

(2) Some results on enumeration exist for t=2. They
are comparable with results on Latin squares and

Stelner triple systems.

(3) Défining a subspace in the natural way, it ean be
shown that, if n > t, then a subspace Y has |Y|<in,
with equality if and only if X - Y . is a subspace.

Many examples meet the bound for t=2-..

(4) The parallelogram prepefty asserts that any (t+1)-
subset is contained in a subspace of cardinality 2t.

~Apart from trivial cases (t=1, t=n, n=2t), the only
systems with this property are 'affi-'ne spaces 6ver’ GF(2) .
and a unique example with“'t=u, n=24. »
(5) A parallelism with‘ (t+1);transitive”automorphiSm
group,elther has the parallelogram property or t=2, n=6.
There is a purely group-theoretical consequence : any
(t+1)- trans1t1ve group which is imprimitive on ( ) is .

one of these.
(6) A final question concerned graphs defined from

parallelisms.

Deutsche . . - .
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M. DEHON : Planar Sféihef triple systems.

A regular planar Steiner triple system is a
Steiner triple system provided with a family of non-
trivial subsystems (calIed’planes)Asﬁch that ¢
(i) all the planes'have.the~samé'cardin§lity.

(ii) every set of 3 nqn—coilinear pointé-is contaiﬁed
in exactly one plane. A . '

(iii) for every ptane P and every line £ such that

"B N %= ¢, there are exactly a planes P' such -

that & CP' and P NP" is a line!

Theorem : A régular planar Steiner triple system is

.necessaréely. one of the follow1ng

(1Y a projective space of dlmenSlon greater than 2
over G F(2).

(2) the 3- dlmen81onal afflne space over G F(3)

(3} an .‘S-(2’,3,2(5m+7)-(3m + 3me1)+1) with m > 13u

the planes are 6(2 3,6m + 7) and a = 1.

(4 an 5(2,3,171)5 the planes are S(2,3,15) and o = 2.
(5) an S(2 3,183); the planes are S(2,3,21) and..a = 7.

-(8) an S.(2,3,2055); the planes are §(2,3;391 and a = W.

o
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J. DOYEN : DESIGNS, GAMES AND TRANSVERSALS

Given a design & , two players A and B

‘color alternately a point of ® (in red for A, in _

green for B, say). ' The winner is the first piayei'
who succeeds in coloring all points of a block of &
with hlS own eolor. If. A plays first and if A and
B play as well as possib_le , then. either. A has a
V-i;ini:ng'.strategy or every game on é eﬁde in a draﬁ.

For e;'caz'nple_—' A has a w1nn1ng stpategy on every Stelner

- triple system of ender > 7, but every game on a flnlte .
»§rbj_ectiye piané eri»ds_: in- a draw ‘(except on the plane

of order 2). It is not known what happens if 3 is

a finite projective space PG(d,n) -with d -2 .and "

n > 2.

A transversal of & is a set of points of ) 5.
wh1ch has & non empty intersection with ever'y block of
&_ . If B succeeds in .coloring all points of @

tran‘sversa-l in'g—veen," he can obviously force a.draw.

‘ThusL if A plays on ol( ‘B is actu'élly playing,

on- the spac_e Tp. 56 of all minimal transversals of o
(note that Tr(Trs) =a). The transversals of minimum
cai‘di,nélity in PG(d, n) are the hyperplanes. In a
finite affine piane AG(2,n), we conjecture that every
transversal is of cardinality "> 2n - 1 (this is knewn

to be true for n = 2,3,4,5 and 7).

o®
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BERNHARD GANTER : '~ t-covers

A.t-cover is the. design of the t-generated
substruetures of a structure, i.e. the .system of the
f;generated closed sets of a closure system. -Mqré N
precisely, a‘f—cover.of a set P is a set .

B C #(P) satisfying_r

G Ve PRt B
(11) Vocp Fyen X Sb | _-A__h_'
; xeﬁk(p) ) ?EB . B _ T
(iii) S -
- =
vxe@t(p) ) (_\ b B

x CbEB .

t-partitions are t=covers in which any set of - t distinct

points'is contained in a unique biockz The well known.

d1v151b111ty condltlons for the ex1stence of a t-

v part1t1on with glven bloak sizes areﬂalso necessary for

t covers.

t-partitions and t-covers have been used to construct

combinatofiaI and algebraic structures.. We give a

-general approach to these appllcatlons by 1ntroduc1ng a

‘ 1anguage for comblnatorlal and algebralc.structures and

characteplze-the axiom systems of those classes of
structures, for which the construction metheds using

t-partitions and t-covers apply.

o®
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J.M. GOETHALS : THE EXTENDED NADLER CODE IS UNIQUE.

Constructions for a 32-word binary code of iength
12 and minimum distance 5 were publishe&'in 1962 ‘
by Nadler and in 1972 by van Lint. These codes are
ndt equivalent, but their extended codes-are. By use

of the results of Delsarte and of the fact that this

" code is optimal, we shOW'that,'up to a'permutafion of .

“the coordinates, there is a.unique.wéy'to construct

the- extended code.

J. HALL : CONPIGURATIONS‘RELATED’TO"EQUIDISTANT‘CODES

"An  (r, A);system is an incidence structure whose

'incidgnce matrix satiéfies At = (r--A) I + AJ, and

- so-gives a special type of equidistant code. Stanton

and Mullin (Ann. Math. 37 (1966) ) conjectured that
if no block isibn—ail points then- the number of points
v satisfies' v’i:g£§:lz + 1, and fufthef‘ff equalify
holds the.systemrmuét.ﬂe'a.s&mﬁetr{& dgéign. ~ This

is true for X'= 1 but not true for X > 2. ‘For

A= 2, .v‘jr——:Q— + 1 but equality can be achfeved
for systems other than biplanes. 7 These exgmbles are
related to the Hadamard 3-design on 8 points and to

projective planes containing complete ovals.

Forschungsgemeinschaft
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D.G. HIGMAN - : - PARTITIONS OF X2

We define the properties of stability, njstability,
coherence and 6rbitality for a partition V of X2,
X a finite set. For each of these properties Qe show
the exlstence of a unlque coarsest reflnement of v

with that property. " In partlcular, we obtaln in

'this’way a coherent confxguratlon-based on the

maximal flags of each geometry having a‘genefalizéd

Dynkin diagram as defined by Buekenhout.

JaWLP} Hirschfeid’ ' The twisted cubic

In PG(3,q), q = p§, every twisted cubic C can

be written as C = {P(t) = (t3, t2, t, 1) | tEGF(q)Un}.

At eacﬁ point P(ii- of C, there is an. osculatlng
plane = (%) w1th~equat10n X -3tx1+3tx2-t3x3—0
For \\#3, there is a null polarity A 1nterchang1ng

"P(t) and n(t) The 11ne coordlnates>of P(r)P(s)

are (sZ, ®S, R%-S, S, -R, 1), where S':rs and

R=r+ s. A llne with these-coordlnates 1s ealled

‘a real chord, a tangent or an 1mag1nary chord .as

x? - Rx +8S has. 2, 1 or 08 roots in GF(q)
Under A, these lines become respectlvely a real
axis, a generator and an imaginary axis of the osculatihg

developable. For (q + 1,3) = 1, the imaginary chords

o
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}nc1dence structure of a.circle. ‘If one—assumes
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and the tangents form a set of (q2 +.q + 2)/2

mufually skew lines such that every other line meets

one of these. For - (q + 1,3) = é, the imaginary

chords, the tangents and the imaginary axes form a spread.
For @ > 2, the‘épread is not regular and #o-defines a

non-Desarguesian plane, which was previously found by

Hering for q odd. The construction also Carries
through foﬁ q -.2h” to ‘the (q + 1)-arc .

k“}, fk, £ 1 jte GF(q)Un}, where k = 2" and

An, h) = 1 So, for b odd, thIs deflnes ®(h) distinct

translatlon planes

X HUBAUT GEOMETRIES'ASSDCIATEB WITH GBNERALIZED:
DYNKIN DIAGRAMS.

We use the usual strokes appearihg in Dynkin

diagrgmsvwith a supplementery one intréducéd'by o ' .‘_ -

that the rlght groupsare actlng on a classical

bnlIdlngs one;may-obta;n the-extensxons by o-o
bf o 03'(2ﬁ as the 2-tr. representation of

(2) and of PQ (2) with a regular normal

2n+1
subgroup (RNS). Also extensions of PQS(S),
PSU, (W), PSULCH), PR (3) give PSUL(¥), PR.(3),

Fi22 and McL; the 2 first have infinitely many




extensions by oo, Fi22 has Fi23 and Fi2u.

.oiefo. is the diagram of a 3-trans-group.

020%0 is the extension of a lattice n x m. If one

-assumes that Alt(n)x Alt(n) is acting on that lattiee
tﬁen one gets. Alt(2n).

o2 is the eitension~of a‘triangular graph. If
one assumes thet_the'aut;<group-is Alt(n) one gets
2-1. Alt(n) or E;;z Alt(n) when'_n-vis even. :~2

n=3, % ‘and 6 ' give biplanes.

E

NOBORU -ITC : 3-DESIGNS WITH BLOCK RANK 3
' ' AUTOMORPHISM GROUPS.,

Ito has a plan to attack the followzng problem :
"classify 3 de51gns w1th 2 intersection numbers".
'The first step is to solve-the conjecture of C. Normap
concefniné Hadamafd designs affirmatively; - Ito'>
is maklng,progress about this and hop1ng that he

wi¥l complete it in the near future.
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DIETER JUNGNICKEL :.HJELMSLEVEBENEN MIT REGULARER
' " ABELSCHER KOLLINEATIONSGRUPPE.

Wir betrachten endliche proiektive Hieimslevebenen

' (PH-Ebenen, vgl. DEMBOWSKI ). Bisher ist flir
Parameter (t,r), wo t keine Potenz von r ist, nichts
iber die Existenz ﬁichttri&ialer Kollineationen
ﬂberhauﬁf”und‘fﬁr'Parameter (rn, r). nichts Uber

" die Existenz von regul&ren Kolllneatlonsgruppen-

i hekannt. Sei S das Spektrum aller (t, r),_fur
die;eine (t,,r) PH-Ebene mlt regul&rei abelscher

: KoIllneaflonsgruppe' = Z@N exlstlert, so daB
N jede Nachbarklasse €von Punkten bzw. Geraden) h
‘regular auf 51ch abblldet. er zelgen mlt
D1fferenzenmethoden.und dlrékfen Konstruktlonen:
(i) (qd", ey € 5 flir iede;Primzahlpotehi é;
(ii) Es seien q, r Primzahlpotenzen mit”:<r“’1 + 1)
(r+1) <qg+ 1< rn(r»+ﬂ$) und es sei ’fé, Q) € 83
dann‘ist_auqh  (srn, r) € S, insbegohdere'steté

(q?ﬂrn, r) € S. flr iede nat. Zahk k.

(iii) Es seien (t, r), (s, @)X €S mit. q : = t(r +-1)-1.

" Dann istr auch (st, r) € S.
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MICHAEL J. KALLAHER -: A SUFFICIENT CONDITION FOR
- * TRANSLATION PLANES.

Let O be a finite affine plane and G a

collineation group of q’ which is transitive on the

. . mEQR
affine lines through 6.

. : affine points of ¥ . ‘Let 6 be an affine point of -
o ‘ . . .
A block orbit of G, is an (affine) point orbit T of
Gé _such that TUfe} = U . m, where 2 is a set of

THEOREM: Let 6 be an affine point of &. If 6, ° S
» :_ has three block orbits, theh Q> is a translation plane'

- . and G > T, the group of translations of €.

The 'group -6 has rank (r,:
as a permutation group on the affine points of G and
s is the number of orbits of G on £_, the line at
infinity.

. THEOREM: If G has rank (r,s) with r + 1 < 25,

then Q%  is a translation plane and - G > T, ‘the group

of translations of (b .

DFG Deutsche . .
Forschungsgemeinschaft ©
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E. KOHLER : THE OBERWOLFACH PROBLEM

Some connections between the Oberswolfach problem
and LANGFORD-(SKOLEM-) sequences were exhibited.
These methods 'give some new solutions : OP(3, 8 k-2)
OP(3, uk, 48 (A€ ™). Also with the help of

finite geometries some other cases can be solved.

A paper containing the proof will appear in the-
vol. of the proceedings 6f the conference on geometric

algebra at Duisburg 1976.

RENU LASKAR : Finite Nets - P A

A ﬁinite'(kﬁn)-ngt is aVSystem of points, ines,
'togeﬁherAwith an=inéideﬁée”relation-subject to the cond-
- itions : i) 1lines ‘are parfitioﬁéd into k parallel
clésses;sﬁch that lines bglonging*tb different classes

have exactly one poini,invcommon, Each point is

incident with exactly ‘one line in each  class.
(ii) each line contains exactly n points. This
concept is due to.Bruck. ‘A generalization of Bruck-
nets is given ednsisting of points, lines, planes,

. togéther with an incidence relation. An affine 3-
space is such a 3-net. A construction is given which
is not an affine 3-space, but constructed from projective

and affine spaces.

Deutsche
Forschungsgemeinschaft ©




- - 19 -

J.H. van LINT : CODING AND DESIGNS

We present a number of results obtained recently
~ by members of the combinatorial theory seminars in

Eindhoven (T.H.E.) and Amsterdam (Math. Centre)..

‘I, Special Codes

da) A siﬁplé proof of Lloyd's Thebrém_uéing,Block's

“lemma (D. Cuethovid, J.H. vaﬁ Lint).

b)Y By a result of M. Deza and J.H. van Lint ‘an

-equidistant code .C with d = 2k which is nontrivial,

2-—4+-k +°2 words and’equality—ié-poésible iff

has <k
-a proj. piane of order k exists. For k=6 ;t'was
~ known that LC[.= 32 is possible. We prove : Theorem.
Ifk =6 then.‘ tel < 32, @.1. AHall»,._A'...J.EA.M._ Janssen,
A-W.J. Kolen, J.H. van Lint). o
c) If thé sﬁpégrtévof'the words of weight 3 in a single-.
.error;cqrrecting linear code  C form a Sfeiner Triple -
‘ 'System on n points ﬁe say that C 1is supported by
‘  STS(n). - The situétiqn for STS(7) was known. . We
prove Theorem: there is A_lin.'éode C- over Gf(d)
supportédfiby STS(g) iff-q # 2 (mod 3).
Theorem:’ fhere is a nonlinear c6dé C supported by
a STS(13) (L;M.H.ﬁ; Driessen, G.H.M. Frederix and

J.H. van Lint).

DFG Deutsche
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J.H. van LINT : BOUNDS ON CODES

The following results usually are related to the

linear programming bound

a) Theorem: The triply shortened Hamming code is

optimal (M. Best,_A.E; Brouwer).

b) Theorem: The best possible bound. obtainable.using

. a method 1like Rankin's is far larger than the Wax bound.

Conélusion; the Wax bound is false (M. Best).

c) The Johnson bound yields A(14,6,7) < 52.- Equality
would yield an intéresfing‘design which'is shown not to
exist, -i.e. A(14,6,7)< 52 (Math. Centre Seminar).

d) A(10,4,5) = 36. The corresponding code is

unique. It is a 3-design but this design'ié not

unique. (H.C.A. van TiIborg).

J.H. van LINT : " DESIGNS

ay Associaffve'Blbck‘DeEighs. We présent

definition and some elementary results obtained by
R. Rivest and the motivation.

Dif;'. ABD(k,w) is.a re'ctancuiar array with & = M
rows, k columns and entries from {0,1,¥} such that the
*'s form a 1-&esign with k-w ®*'s in a row and such

that for each possible 0,1 sequence of length k

there is a row of the array differing only in the

%*-positions.
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Theorems obtained by the group (Brouwer, van Ende
Boas, Schijver ) are

Th. 1: If ABD(K,w) exists, ¢ > 1 and ok and a w
afe integers, then ABD(ak, aw) exists.

e

Th. 2: If ABD(k,w) exists, (w > o) and k = kéz

"(k°>odd), then . ABD(k, w + k,) exists.

‘b)Y Steiner Triple Systems:

‘Th. 1: If v = 3 (mod 6), .v > $ then there is a pair

of Kirkman systems of order‘V‘With‘intérSection¢ (resp.

1 block.) " . ‘
Th. 2: If @3 1 or 3 (mod-6), §'1“12V +.7, T=a

partial triple system on v points, then there is a

- pair of STS(q) with intersection T (J.I. Hall and

J.T. Udding).

.c) STS(7): There are 35 triples on 7 péints. It is

kno&h,(éayley) that these do not form 5 SIS(?);sf

Theorem: There are 10 STS(7)'s such that they cover

' veach_tpiple'twice. (A.E. Brouwery.

R. METZ : NON HERMITIAN UNITALS IN 'PG(2,q%)

Using a construction method of Bdekénhout one

can’ show : .

For any. q > 2, there exists a non hermitian unital

in . P&(2,q%).

It can also be seen, that these unitals as designs

are non hermitian.
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U. OTT : Fahnentransitive Ebenen

Es wird Uber Beweise folgender Sdtze berichtet:
Satz Eine fahnentransitive Ebene’ gerader Ordnung
ist von Primzahlpotenzordhung, oder sie hat eine
scharf Fahnentransitive Automorphismengruppe.
Satz Fahnentransitive Ebenen ungerader Ordnung - °
sind von Pr1mzah1p0tenzordnung.

Satz Sei T eine prOJektlve Ebene der Ordnung

n und G eine Kollineationsgruppe derart, daB-’
jede Fahne von einer involutorischen Homologie
aus G fixiert wird. Dann liegt einer der .
folgenden Fille vor : ' '

I. - w ist desarguessch, G :_PSL(é,n).

II. G 13Bt ein Unital fest, und n ist eine -
Primzahlpotenz. Enth3lt G Keine. Baer- ..
Involutionen, dann ist w desarguessch und
es gilt 6 > PSU(3,n). ‘

IIT | G laBt ein Oval fest, @ > PSL(2,n). ™

' ist desarguessch. )

Iv. G‘lEBt eine Antifahne fest, G > SLi(Z,n).
7 ist desarguessch.

V. ¥ ist eine ﬁgrallgemeinente-Hughesebene

’ (einschiesslich des desarguesschen Falles),
- 6 > PSL (3,/n) bzw 6 > SL(3,7) fir n = 43.

VI. 6 I3Bt eine Gerade 2 fest, o ist

Translationsebene, und G enthdlt die
_ Translationsgruppe der Ebene.

VII. Dual zu VI;

DFG 2
Forschungsgemeinschaft
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J. ROHMEL : DIRECTED DESIGNS

Directed designs are introduced as an example of a
complete comb. system, i.e. (M, I, ¢), where.

M, L are orde‘r'e.d sets ( partial) ¢ : M »I

. stroneg monotone and. the propertles

‘.1l Given )C with ¢(X) i. Then #{YM(Y)

1, Y <X} = c. 'j H const for all X.: with ¢(X) i.

k, 'then‘ B

-2). leen X < 7, ¢(x> ='i,f o(Z) .

: #—{X[(ﬁ.('!)_ =3, X 5 Y <2Y= Cioy = const.

ijk
Then: the complete directed design is given by

M = {X'l')f {1, ..., 'j’},‘ »> {1, ..., v} . injekt T,

5= 1, vi, T = {1, cees v}
XELX 2 T, L., 3} + Ty vy v, YE{Y @ {1,....,1}

{1, ..., v} ] then

- X < Y é there exists a sfrongiy'nienotont '
c-{n;;,j}yih.w,i}ﬁﬁistAw
Incomplete structures are introduced as follows
(M, I, ¢, 'B)- 1s called :anomplete if B G Mg =
‘{X|¢(X'T k} "and for every X with ¢(X) = t there

are exactly N elements Y € B—wrth X <Y, .7

. Examples of 1ncomp1e1:e dlrected des1gns are

constructed, especially those with a point and block
transitive automorphism groups. For trlple
systems a binary relation is introduced and their

properties are investigated.

o




- 24 - . |

ALEXANDER ROSA :° NONTSOMORPHIC STEINER QUADRUPLE SYSTEMS

"Let N(v) and N*(v) denote the number of
nonisomorphic Steiner quadruple systems, and the
number Jf nonisomorphic automorphism-free Steiner
quadruple systems,of‘order v respectively.

A result of Lindner, E. Mendelsohn-and~myself on the

number of nonisomorphic 1-factorizations and nonisomorphic .

automorphism free 1-factorizations of the complete graph,
togéther with-a generalized direct product type
construction for Steiner quadruple systems is. used to

- show that for v = 4 or 8 (mod 12), N(v)+= [N (v)re]
as wvFe . Afor small values of v, the kjowledge of
all 1-factorizations of-the‘complgfevgfaph Kv yields

improved lower bounds on N(v).

J. SAXL ¢ PRIMITIVE’PERMUTATION’GROUPS'@F'SOMB
MORE SPECIAL 'DEGREES.

According to a theorem of N. Ito, transitive

permutation groups of degree p = 2q + 1 > 11 with
both »p andi q. primé numbers are either soluble

" or "almost" u-transitive. Using this, we prove
the: following

Theorem (P.M. Neumann & J.S.) Let G be primitive

of degree kp, where p = 2q + 1, p. and . q primes.

If k=2 then G is 7-transitive.’
If k = 3 then G is 10-transitive.

If k=4 then G 1is known.

Deutsche
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J.J. SEIDEL : SPHERICAL CODES AND DESIGNS.

Let X be a finite set of n points on the unit

sphere -in Eucliaegn space Rd.

X 1is a sbherical s-code, if its points have at most

s &istinct distances..

X is a spherical t-design, if its .k#h moments are
‘ . constants w.r.t. orthogonal trfm. of [Rd,: k=1,24..0,t.

Subjeqt of the talk : relations between h,dgs,t, and

examples of extreme configurations X.
Methods : discrete mathematics and special functions.

Reference : P. Delsarte, J.M. éoethals, J.J. Seidel,
Spherical4codes and designs, Geometriae Dedicata,

to apﬁeara

N.J.A. -si;om_m; : ~ BOUNDS FOR CODES -

Let - A(n,d)- be ‘the maximum number of bihéry
.’ ) vecfgrs of’ leng't;h n. such th;at any two vectors

. differ in a lean d élaeeé,Aand let A(n,d,ﬁ)'be
the maximum number of binary vectors Qf length vn,
.eacﬁ containihg w 1's, such that any two vectors
differ in at least & places. The purpose of this
talkwié-to announce a number of new vaiués and
bounds for A(n,d) and A(n,d,w); tables have been

constructed for n < 24 and 4 < 10.

This is a joint work with M.R. Best, A.E. Brouwer,

F.J. MacWilliams and A.M. Odlyzko.
[0 | o] e —— _ , » © @
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L. TEIRLINCK ¢ ON'LINEAR'SPACES‘IN‘WHICH'ALL PLANES
" ARE ATFINO-PROJECTIVE.

An affino-projective plane is a projective plane
from which a part of a line is deleted. An affino-
‘projective space is a-projective space from which a
part of a hyperplane is deleted. The dimension of a
linear space s is the smallest cardinal number n
for which there exists a set .of n + 1 points generating . '
S. If S is a linqar space of finite dimension in
which all plénes afe‘affino-proﬁective'énd if there-is
at least one plane of order > 4, then .S is an
affino-proiective'space; : We'also.de3cribe'ali
infinite diﬁensional linear spaces in which all planes
are affino—proﬁective'and in which there is at least

one plane of order ' > 4.

H.C.A. van TILBORG : UNIFORMLY PACKED CODES

An e-error correcting code ‘C in V(n,q), a

n-dim. vector space over GF(q) is called uniformly

packed iff

D ¥y, [d(x,C) = e = [{cEC| d(x,c)} = Al.
(ii) VEGV(n,;;) [A0x,0) 3e+1 = [{c€C} dlx,e)}]= ul.

Giving A and u the appropriate values shows that
uniformly packed codes contain the perfect, nearly
perfect and strongly uniformly packed codes. An .
interesfing property of u.p. codes is the fact that
the words of fixed weight form an e-design (if o€C).

For q=2, u=A+1 the words of fixed weight in the

Deutsche
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extended code form an (e+1)-design. Many infinite
sequences of u.p. codes are known, however we do

now know that u.p. codes with e > 4 do not exist.

. For e=3, q=2 and for e=1 or 2, q=2, ﬁ =A+1 we

have obtained a full classification.

J. TOTTEN : A CLASSIFICATION OF LINEAR SPACES BASED

ON QUADRANGLES.

"A linear space- L is a set of elements,’called

_p01nts,_togefher with distinguished subsets of
.vcardlnallty at least two, called llnes, such that every )

" pair of dlstlnct'p01nts is contained in a unlque llne.

A quadrangle Q. of L ‘is a set,of four poxnts any
three of which are non-colIlnear. A diagonal point

of Q in L is a p01nt p~€ L.V Q¢ such that any

_:llne 301n1ng p te a p01nt'of Q intersects Q in

"exactly two p01nts. CIearly Q can have at most

three dlagonal pornts.' Letv a(Q) denote the number

';of:dlagonal p01nts of>'Q. We 'shall say . that L is
'va linear space'of type: T, where"T"§{0,1,2,3}? if

:'{d(Q}IQ € E}. - ' The ‘type .of a linear space determines

a classification of the'class of all linear spaces into

16 subclasses corresponding to the—16 subsets of

“{0,1, 2, 3J We-now consider the s1mp1er classes..

Type ¢ and types {i}, i €{0,%,2,3} are Settled and
are not difficult,Aand'type {i,j), i # 3j€{0,1,2,3}

is discussed giving solutions for {0,3}, {2,3}, {1,3},

"{0,2} (partial only). The last three above are solved

only when every line has finite cardinality.

o
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MICHAEL WALKER : FINITE COLLINEATION GROUPS CONTAINING
SYMMETRIES OF GENERALIZED QUADRANGLES.

Let (K,L) be a generalized quadrangle and
G < Aut (Kk,£) a finite group of collineations of
(K,£). Assume G contains non-identity symmetries

and let - (K,Z) be the minimal substructure of (K,Z)

to contain all axes of axial symmetries in G.

Let G < Aut(K,£) be the collineation group of (K,E)
induced by G and denote the kernel of fhe representation
Gw» G by. k. If ,(E,Z) is a subquadrangle then :

Theorems z(G) = k and one of the following holds:

1) G contains a unique minimal normal subgroup M,

M is simple non-abelian and Ma é‘: Aut (M)

2) G

SL(2,2")1S, for n > 2.
3) 0,' (B) #1 and G "= g
2 ’ /0
2'(G)
Furthermore if case 2) occurs then (K,&) is isomorphic
to the symptotic geometry of a proiective space of

dimension 3 over a finite field of order q = 2™,
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RUDOLF WILLE :;WHAT CAN ONE DO WITH JOIN AND MEET
"IN FINITE GEOMETRIES?

The subspace lattice S(G) of allmost all finite
geometries G have the.properties that the greatest
element is the join of atoms and S(G) is simple.

For finite lattices with these properties it is shown
tﬁat every (n-ary) order-preserving map. can be described
by a lattice polynomial. This is a consequence of a
more general theoreﬁ which states that in a finite
lattice L every (n-ary) order-preserving map. can be
deScriﬁed by a lattice polynomial if and oﬁly‘if the
identity andAthé‘cpnstant map to © are the only jbin-

" preserving maps § : L+ L with § x < x for all x € L.

G.H. Dorber

(Westfield College, London)

o
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