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Gruppen und Geametrien

29.5. - 4.6. J977

Die Tagung "Gruppen und Geometrien" sfand in diesem Jahr unter der Leitung

von Prof. Dr. B. Fi~cher (Bielefeld), Prof. Dr. D.G. Higman (Ann Arbor)

. und Prof. Dr. H. Salzmann (Tübingen). Es haben 34 Mathematiker teil­

genommen, 24 großenteils umfangreiche Vorträge wurden gehalten.

Schwerpunkte der Tagung waren Einbettungsfragen von Gruppen 'in Automorphis­

mengruppen geometrischer und algebraischer Strukturen, k~binatorische Frige­

stellungen sowie Kennzeichnungen und Eigenschaften verschiedenartiger Gruppen

und Geometrien, insbesondere von endlichen Gruppen, "endlichen, "projektiven,

Translations- oder höher-d~ensionalen topologischen Ebenen und Graphen.

Neben den Vorträgen ergab sich insbesondere auch wegen der starken inter­

nationalen Beteiligung an dieser Tagung ein reger Gedankenaustausch.
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Vor tragsauszüge.

D. BETTEN: Einige Wirkungen und Geometrien auf'3~nnigfaltigkeiten

Es wurden di.e transitiven Hirlwngen von zusammenhängenden einfachen Lie­

Gruppen auf ~-Mannigfaltigkeitenaufgelistet und ~ugehörige Geometrien

angegeben.

F. BUEKENHOUT: Circular extensions of spherieal groups

e
Classical spheri~al Dynkin diagrams' are extended by strokes of type o---u .

The groups belonging to small ran~ diagrams are classified. The list of

examples includes J5 of the known sporadie groups.

B. FISCHER: A generating set of involutions tor the Ifmonsterll

There is a possibility that a finite simple group G exists, called

the "monster". Such a group contains a set d ij of involutions

for J ~ i $ 3 and ~ j ~ 5 such that the following relations hold:

Di <d ij , d r5 I J ~ 5 5, r + i> ~.W(D6)' and diS generates the center

of Di ; furthermore, o(dijdk1 ) ~ 3 and

<dij I j +5> ~ S5 xS5 XSS ·

Various subgroups of G generated by subsets of these invol~tions are

discussed.

F. FRITZ: A charaeterization of the Rudvalis group

The following theorem has been proved by O'Nan:

Theorem Let G be a simple group containing a 2-local subgroup M such

is elementary of order 2
6

and MLv c G2 (2) acts faithfully

is isomorphie to the Rudvalis simple group.

shown the following generalization:

G b.e a simple group containing a 2-1ocal subgroup M such

is elementary of order q6, q ~ Zf and M/V = G
2

(q): CM(V) V.
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The proof us.es a nwnher-theoretic ~rgu.ment of Zsigmondy, Goldscbmidt' s
. f .

theorem and the fact, that 5L(2 ,q), .q ~ ~, q -= 2 has no transitive

extension as penmutation group on q+J letters.

J.-M. GOETHALS: Pseudo-geametrie grap~ with"strongly regular subeonstituents

(This is a eontinuation of the lecture given by J.J. Seidel)

Pseudo-geametric gr~phs (R, K, T) are investigated in connection with the

Krein condition q~2 ~ 0, which reads (R - J) (K - 2 T) ~ (K - 2) (K - T)2.

In particular, we show that this condition has its consequences for Bose's

theorem on partial geometries, and that, for T a J, in case of equality

the graph is geometrie.

R.L. CRIESS, jr.: Finite Groups as Automorphisms of Lie Algebras

We give criteria for a· group to be a group of automorphisms of a.L~e algebra.
n

n .------ -- .
For KG-modules, A,B, let (A,B) = HOUXG(A, B), T A 1:1 A~: ••• @ A,

SnA = n-fold symmetrie tensors, AnA = n-fold alternating tensors ..

Th. Lei V be an absolutely irreducible KG-module. Assume I or 11:

I. dim(A 2
V, V) ~ 1, (A3

V, V>-.== O. 11. dim(A~, V).? 1, dim(S~, K).= I,

(sly, V) = 0, (A4V, K) == Q. Then a nonzero map in (A2V, V) makes V a

Lie algebra which is the direct sum of isomorphie simple subalgebras and

G 5 Aut(V).

Cor. AS ~ PSL(2, K) , char K +2, if the 3-dimensional representation

for A5 ean be written over K; G2 (3) ~ E6(~)

Cor. I H
2

(C
2

(3), q/.l) I - 0 (mod 3).

Prop. If dim(A 2L, L) = J, C, Gj ~ Aut L, G - G.1 in GL(L), then

G - Cl in Aut L.

Also, we descrihe a suhgroup of F4 (K) isomorphie to 33 • 5L(3, 3)

if char K +3 and a subgroup of ES (K) isomorphie to 53 . SL (3, 5)

(spl i.t) i.f char K +5. These (and poss ibly other subgroups of Chevalley

groups) are related to generalizations of Dempwolff decompositions of

Li.e algehras.
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H. HÄHL: Particular properties' of higher-dimensional locally compact

tranalation planes.

Let ~ he a locally compact.connected topological translation plane, and

denote by LcO.. the tran&lation axis. (Considered as a s.et of points, L
oo

is then homeomorphic to the n-sphere' Sn with n { {-1 ,2,4,8}.) Assume that

a group r of continuous collineations leaving L invariant has an
. -r hich· ho h· n-.J. orb1t 0 on L

m
W 1..& meomorp l..C to S .

Theorem J. If n E' {4,81, these assumptions imply that one of the following

statements holds:

(i) ey is the classical quaternion or Cayley plane respectively

(ii) ~ has Lenz type V

(iii) There is exactly one pair of di~tinct points which as a set is

invariant under ~very collineation.

By routine arguments theorem J can be derived trom

Theorem 2. lf n E {4,8}, and if there is a· collineation group L with the

properties specified above such that moreover E is 2-transitive on the

orbit lr, then ~ is the quaternion or Cayley plane respectively.

The proot of theor~m 2 uses the Tits classification of 2-transitive actions

of Lie groups. A sketch of proof was given for the case n· 8.

With these two theorems as important tools, all locally compact translation

planes with n = 4 (resp. n = 8) and a collineation group of topological

dimension at least 17 (resp. 38) have been determined explicitly. Some

instances of the role of theorem ] and 2 in this classification were

discussed.

In the ease n = 2, analogous theorems do ~ hold. This fact constitutes

one of tbe fundamental differences between tbe theories of lower dimensional ~
and of higher d~ensional translation planes.

M. HALL: Exceptional loeally affine geometries.

In this talk a geometry is understood to be a system of points and lines such

that every pair of dis.tinct points lies on an unique line. If every triangle

lies in an affine plane, then F. Buekenhout bas shown that if a line contains

4 or more points, then the entir~ geometry is an afIine space. But the author

has shown that there are geometries in whicn every triangle lies in an affine

9 point plane, which. are not affine spaces. These exceptional geometries
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can be des.crihed in at least tlllO different ways. For each. point x there

i.s an inyo1utory· col1ineation a which- fues .x and ...Dloves every other
.x ]

point. Also if .x +'1 tben: (axay> = j. T~ group . K.. = ~a..x > describes

the. geame.try G. Also the points of G can be treated as the elements

of a CommutatiYe. Moufang loop.

c. HERING: On col1ineation groups of translation planes of finite even order

The following result is proved (joint work with Chat Yin Ho):

Let V be a vector space of dimension..~ ..'~ m over a field IR

of ord~r 2a , where m is_ odd and a2 J. Let G be a groupef

linear transformations of (V, K) which leaves invariant a cangruence

K of V. Denote the group generatedby all 2-elements· in G by S.
If G does not contain any elatioD +I, then one of the following holds:

]) 5/0(5) ~E.
q

2) 5/0(5) ~ PSL(2, q) , where q == ±3(mod- 8).

3) S = 51 x 52 ' where SJ' 52 ~ S, 21 JS j
J > 2 and 52 is elementary abelian.

4) 5 is e1ementary abelian.

5) S 01 5L(2, 2b) for same b.

The main tool for the praof is the following

Lemma. Let B be a Baer involution in G. and H < CeS. Denote the repre­

sentation of H on Va by - and E = {c E elvp • V(C-J) = Vß} U {I}.

Assume that E ~H, H is generated by elatioDs of Va but H- does not

contain any elation +J; Then ii ~ Sz(8) or H ia solvable. This remai~s

true when we drop our assumption on the dimension of v.

D.G. ÜIGHAN: A virtual version of a theorem of Frame

Let F be the field 'of fractions of an int~gral domain R of character­

ist:ic 0, and let ~ he a finite dimensional associative algebra over F.

Fix an F-basis w..
J

, ••• ,wr of A with v.w.. CI Iao 0k.\L and assume that
= 1. J 1..J . k.

aijkE R. Let i. f+ i' . be a pennutation of {-l ,2, ••• t'r}

such that J' = 1,2" = 2.
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Assume t ha t (J ). a iJ k. = aJ ik = .s i j (i · e. ~ -= J)

v. +0 (so Y • .:: y. ,) (3) n :=r'.' v. +0, and (A)
1. 1. 1... i=J' 1..

(2) a ..
J

c·a.U. = o.. ,v.,
1.-J J. 1.J 1.

~ is separahle.

Qif

m
and we have Z; = L zsZ;s.

s=l
Assume there exists a subring S of the algebraic closure F of F such

that 5 n F = R and the absolutely irreducible represeritations of ~

can be written in 'S. Let Q nr fi v. I ~ z e2 The~:Q E Rand,
i=} 1. a=J a a

d2, dER. In case I a ijk = V j Vi,j,

-2 k .
Q can be replaced by Qo = n Q. Sueh results can be appll.ed to generic

algebras of systems of eonfigurations.

Then z;: ~ --+ F, Wi.~ 0u n is a virtual traee on ~ in the sense

that ~,y) = Z;Cxy) ia a synnnetrie nondegenerate bilinear fonn on ~.

1\ J
So A i.s a syumetric algebra wl..th dual basi.s wi " ~ wi ' , .J ~ i .s. r.

1.

If Z;J, ••• ,Z;m are the absolutely irredueible charaeters of ~,
es

Z;s (J) = es' then- 'we have orthogonality relations \ Z; (0.) Z; (w.) .;:: eS
l S 1. .t 1. st z

s
We ea!l Zs the virtual multiplicity of Z;s.

D.F. HOLT: On the loeal control of SchurJmultipliers

The following result will be proved in outline:

Theorem : Let C be a finite group, and P a Sylow p-subgroup of C

having nilpotency elass less than p/2. Then the Sylow p-subgroups of the

Schur multipliers of C and NC(P) are the same.

This can be regarded as a generalization of a result of Wielandt:

Let G, P be as above, where P is regular (this holds, in particular,

if cl(P) < p). Then the Sylow p-subgroups of GIG' and NC(P) / NG(P) ,

are the same.

x. HUBAUT: Strongly regular graphs having P9
n

(Q) as a transitive

automorphism groups

Known rank 3 graphs with an orthogonal group on given by

1) PO~(q) aeting on the points of a quadrie in PG(p-J~q)

2) +POJO(q) acting on the isotropie V4 of a quadric in PG (9,q)
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Exceptional repreaentations oeeur wita
+

3) PO;~(~) aeting on the points outside a quadric of PG(2n-J ,2)

4) PO~n(3) aet~ng on an orbit of points not on a quadric of PG(2n-J,3)

5) P02n+
J

(3) aeting on one of the two blocks of points no,t on a quadrie.

Ä strongly regular graphmay be obtained in the following way:

Vertices are hyperbolic (resp. elliptic) sections of a quadric in PG(2n,q),
. . ~

adjacency is tangeney. P02n+](q) aets on this graph as a rank 2 for

q oM, or ~2 ,~or q even, permutation group. This result has been

obtained with. R. Hetz •

.C. LEFEVRE-PERCSy': Hermitian cooies and unitals in desarguesian projeetive­

planes

Characterization problems about uni.tary groups are.related to the study of

unitals, a coneept generalizing tbe notion of hermitian conic.

The class of known unitals embedded· [U is a unital (embedded) in a projective

1 P ( 2) f d 2 1..~ U . f 3 1 .- f P ( 2) hp ane 2 q . 0 or er q , 1.5 a set 0 q + p01nts 0 2 q suc

that each secant line meets U in- q + 1 points'] in a projective p.la~e is

not very large; in a desarguesian plane, the only examples are the unitals

of BUEKENHOUT-METZ, whieh extend the class of hermitian conies.

We give geometrie eharaeterizations of these unitals and of the hermitian

conics.
2Theorem J. Let U be a uni tal in a desarguesian projective plane P2(q )

of order q2 and let I be same tangent to U.

If all Baer sublines of P2(q2) having a point on I intersect U in

exactly 0, J, 2 er q + J points, then U is a unital of Buekenheut-Metz.

Theorem 2. Let U be a unital in a desarguesian projective plane P2(q2)

of order q2. If all secant line to U intersect U in a Baer subline, then

U is a hermixian eonic.
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s. HORTON: On the largeat Fischer group.

A proof ~s. giyen of the exiatence and llniq~ene&~ of the tripie cover

of .F24-~ :' by using i.ts. 783 dimens.ional representation. B)'" passing to

characteristic J it was shown that there is a subgroup properly containing
2half the stabiliaer of an octad 'cf transpositions. Ibis group, D5(2),

has 3 orbits on the transposition of F24
1

• As it ~ontains A-l 2 as a

·subgroup, wbich. has anot~er 2 normalizing it in F24~ , it is possible to

find convenient names for the transpositions, leading to a system of

, generators and relations for F24 • Furthermore, in terms. cf them, one can ~

find generators for the Held group," thereby prövi~g its containment in ~

F24 ' and giving an independent exis'tence proof. Although the Brauer trick

can be used to prove that they generate a proper subgroup, it is necessary

toexhibit a set of 20~8 transpositions (not in the group) on which they

act, in order to identify it. However, this can be done fairly elegantly.

Finally, generators for the subgroup 37 • 07(3), and 'the de~.omposition

of the 783 representation over several subgroups, were given.

H. PER.CSY: Finite Minkowski planes in which every circle-symnetry

·is an automorphism

The known finite Minkowski planes are:

(1) the planes Mn(GF(q» associated to a field GF(q) (and isomorphie to

the geometry of a ruled quadric in PG(3,q»:

(2) the planes Mn(N(q» assoeiated to a regular nearfie1d'N(q) of

odd square order.

A common useful definition of both classes of planes is given and their

full automorphism group is determined.

Our main result is the fol1owing charaeterization of these planes:

Theorem: Let M be a finite Minkowski plane. M is isomorphie to Mn(GF(q»

or Hn(N(q») if and only if, .for every circ1e c, there exists a non

identical autamorphism fixing c pointwise.

P. PLAIJMANN: Minimal local1y eompact semigroups and ring:)

Following an idea of Po11ik and Re.dei (Publ. Math.. Dehreeen ~. (J 959».

Karl Strambach.and I determined all loca1ly compaet semigroups resp. rings,
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wbich satisfy t~ propert~ that eyery closed proper suhs~igroups (subrings)

is contained in a subgroup Csubfield).

R. RINK: Homamorphisms of translation planes.

Let q be a priJUe power. Then there exists an infinite translation plane

R such that every translation plane of order q is a homomorphic image

of R.

H. SALZMANN: 8-dimensional Planes

Let " be a compact 8-dimensional topological projective plane and l:1

a connected closed subgroup of the autOIDorphism group of ~, taken with

the compact open topology. Assume d~ ~ ~ 18. Then" ~ is a Lie group.

If, moreover, ~ is semi-simple, the~ A is actually simple, and 1:1 is

either the full collineation group of the arguesian plane ~ over the

quaterniöns, or ~~ PU(3, H,r), the ellipti~ or hyperbolic motion

group of-~. In both eases, ~ is also arguesian, and the action of 1:1

ia equivalent to the classieal one.

J.J. SEIDEL: Strongly regular graphs with strongly regular subconstituents

Margaret Smith considered the problem of permutation groups whose rank and

subrank is 3. The pr~sent work (jointly with P.J. Cameron and J.-M. Gothals)

generalizes her results to strongly regular graphs satisfying the loeal

condition that the subconstituents with respeet to same vertex are strongly

regular.

In addition, the global significance of this eondition is deseribed in

terms of spherical 3-designs, and the vanishing of a Krein parameter.

B. STELLMACHER: On groups having a strongly 3-embedded subgroup

A subgroup

if R +G,

a of a finite group G is said to be strongly J-embedded

31 lai and 3 + IR n Hg t f or g ~ G ..... H...

Same special cases of the following problem have been discussed:
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Problem. C1as.sifr all finite groups G. with.. the fo11ow.~llg

properti.ea:

(~) G is of characteristic - 2 - tne,

(h) Sylo~ -3 - s~bgroups of G are not cyclie,

(e) G contains a strong1y 3-embedded s~hgroup R,

(d) 3( [O(H)) r .

F .G. TIMMESFELD: On the extraspecial problem

Let . G b~ a finite simple group, z an involution of G and ass~e

F*(C (z» is extraspeeial. It was discu'ssed, why it is .interesting to

characteriz.e groups with this property. 'Further,' a theorem was

discussed, which should give the final characterization of these groups •.

That LS the problem was reduced to the problem of solving several

specified centralizer problems~

A. WAGNER: Finite reflection groups

Let G h PGL(V ,F) , (GI < co, G is itreducible on V and G is

generated by reflections. (A reflection is an element which may be written

as diag(-J,J,J, ••• ,l». Denote ihe characteristic of F by p.

For" F c cl: this problem wassolved by Mitche11 (1914). Using other methods

Coxeter (1934) and Witt (t941) gave treatments of the ease F I: lR.

Denote by R the subgroup of G generated by all reflections which havep ecentre in P. Then for some P the group R acts irredueibly on P.
p

Now Mitehell (1 9J J) determined all finite irreducible groups of a plane,

when p +'2. A ease by ease diseussion of the different R that mayp
occur then leads to adetermination of G for any F with p +2.

AB an applieation one may determine the subgroups of PGLS(q). Besides

the above one needs the classification theorem for simple groups contain­

ing no elementary abelian group of order 8.
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D. WALES: Linear Groups over the complex numbers generated ~y

bireflections aud applications.

Finite qua~ipri.mitiYe linear .8roups over the camplex numbers containing

a matrix witaan eigenspace of codimension 2 have heen deteomined by the

author and \tl.C. Huffman. The most difficult case involving a matrix of

order two was discussed as weIl as applications to linear groups of small

degree. Linear groups containing a matrix of order 2 were classified by

showing any two bad a product or order J,2,3,4 or 5 and if 4 the square

was in 02(G) .or conjugate to the original involution. Such groups have

been determined by Aschbacher, Fischer, and T~esfeld. The classification

of such groups has led to the determination of complex linear groups of

degree 8 and 9. Linear groups of smaller degree bad been previously

determined. This determination was instrumental in all the proofs.

B. WEISFEILER: On the isomorphi~ problem for graphs

The problem is to find an algorithm for fast identification of finite

graphs. The process of stabilization of graphs was described which in an

invariant manner in ~n4 steps constructs for any graph r with n

vertices a coherent configuration of D.G. Higman, say A(r).

To do this we use technica11y more convenient not ion of a graph as a

matrix whose entries are partial1y ordered· independent variables. With every

A(f) there is associated ~n algebra whose properties were studied in detail

by D.G. Higman in Geom.Dedic., ]975. This provides us with algebraic invar­

iants. However they are not sufficient .to distinguish graphs.

So we use stabi1izations of depth 1 (when we fix the graph at some vertices).

For same graphs which are stable of depth ] we are ahle to prove that they

have a large automorphism group.

Theorem. Let X be a graph which coincides with its stabilization.Then X

decamposes into block form, X = (X .. ).
1J

Let us take the block X
J

] and let V
J

be the set of indices such that

X
JJ

occupies all positions (i, j) with i, j E V
J

• Suppose next

is stahle of depth.J w. r. to V
J

and that a fixation of every

VJ leads to a graph.with n2 variables. Then Aut X is of order

and acts transitivel~ on each Vi' where Vi. is constructed for

V] for XJJ ­

This permits one to construct an algorithm of graph canonization. Same mod';'

ifications and difficulties were described. The material is from Lecture nates

in Math. 558, edited by me •.

B.Baumann (Bielefeld)                                   
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