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This year's Finite Geometries conference was conducted under
the direction of F. Buekenhout (Bruxelles), D. R. Hughes (London),
and H. Luneburg (Kaiserslautern). The topics covered in the
formal lectures embraced many different aspects of finite (and
indeed infinite) geometries, and its relationship to other
branches of mathematics. In particular, there were relationships
with group theory, combinatorics, number theory, coding theory,
valuation theory, graph theory, and lattices in both senses of
the word.

It is appropriate to mention here the special session of
"Diagrams”, for which a brief report follows later. Diagrams,
as espoused by F. Buekenhout, provide a framework within which
to study various classes of geometries. They are inspired by
J. Tits' theory of Buildings, and it turns out that most (perhaps
all) of the sporadié simple groups can be viewed as automorphism
groups of geometries belonging to a diagram which is very similar

to a Dynkin diagram.
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Abstracts .

Lynn Batten: On embedding closure spaces with exchange property -
and certain 'partition' conditions, in (generalized)

projective space of the same dimension.

et D be a closure space with exchange property and such
that ¢,D and all elements of D are closed. By an m-flat,
we shall mean an m-dimensional closed set.

Let ¥ be a family of flats of D and consider the fonoumg.

conditions on 3J:

1. Any two elements of F are in a common (m+l)-flat,
and are themselves m-flats.

2. Every point is on an element of ¥.

With respect to these two conditions and weakened versions of
them, we discuss known results and possible results in connection
with embedding D in a (generalized) projective space of the -

same dimension as D.

Henry Beker: A Construction Method For Point Divisible Desiggg

A point division of a 1l-design is a partition of the points
into classes P),...,P; such that the number of blocks through .
two points depends only on their point classes, and 1s denoted
by Ayg (1< 1, < d) and further that i,, =2 for all 1.

The purpose of this talk is to introduce a recursive construc-
tion method for point divisible 1l-designs. Under certailn condi-
tions this method also ylelds many infinite families of 2-designs,
some of which contain strong tactical decompositions. For instance,

the following theorem is proved:



: .m.: For any k € N there exists a SW,-resolution over 2z[1l/(k+1)!].

UFG

If there exists a 2 - (m, %53, B23) Hadamard design with m the
order of an affine plane, then there exists a 2 - (l}mz(t-'y),
m(2mt - 2my + t - 2y), (m + 1)(mt-my + t-2v)) design whenever
there exists a 2 - (4(t - v), t, v) symmetric design of which
there are infinitely many.

Thomas Beth: On_t-resolutions.

Def: Let G be an abelian group, k € N, nk a set, ak nGg=29¢,
_ _ X
|9yl = k. Let X =Gua@a,. A partition (Bg)geg ©F (k+l) into

Steiner systems S(k,k+1,|X|) 1s called a Schreiber-Wilson-x-
resolution over G if

G =
(1) KeB,n (x+1) implies B 0.

(11) By =B, + g for all g € G.

Known examples are the standard 1l-factorization of K2n and
the 2-resolutions given by Schreiber and Wilson.

Thm.: For k = 3 there exists a unique SW5-resolution over z[ /4]

Thp.: Any SH3-resolution over GF(p) 1s obtained by taking the

unique SW_.-resolution over Z[1/4!] mod p.

3
Lor.: There is no Swj—resolution over any finite group.

Deutsche
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Albrecht Beutelspacher: Blocking sets in finite projective spaces.

A t-blocking set in PG(d,q) with d > t+l 1is a set B
of points such that no t-dimensional subspace is contained in
B and every (d-t)-dimensional subspace contains a point of B.
Examples of t-blocking sets are obtained in the following way:
Let U be a (t-2)-dimensional subspace, E a plane with
UNE-=g¢g, and E* a Baer subplane of E. Then the set C(U,E*) ®
consists of all points incident with a line RS, where R is a
point of U and S a point of E*. The sets C(U,E*) ére in
fact t-blocking sets. Moreover, it holds

Theorem. Let B be a t-blocking set in PG(d,q) with d > t+l.
Then
IB} > qt+...+l + qt-l Ja-

Equality holds if and only if B is of the form C(U,E*).
This Theorem can be used to obtain bounds for the cardinality
of maximal partial t-spreads in finite projective spaces.

F. Buekenhout: Sporadic geometries.

We discuss the action of the Janko group J3 on the cosets .
of PSL2(16)-2. The maximal cliques for the orbital of valency
85 have size 6 and behave as lines: any pair of points is on
at most one line. Some elements of order 3 fix a set of 36
points each of which is on two pointwise fixed lines and there
are 12 such lines, giving rise to a (non-thick) generalized
quadrangle. The points, lines and quadrangles determine a geometry
belonging to the diagram @ € o

.

Deutsche
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P.J. Cameron: Antiflag Transitive Collineation Groups.

An antiflag in PG(n-1,q) 4is a non-incident point-hyperplane
pair. In joint work with W.M. Kantor, all collinéation groups
transitive on antiflags are determined. This includes the solu-
tion of the Hall-Wagner problem (determination of 2-transitive
collineation groups) and the completion of Perin's result on

. rank 3 subgroups of I‘Sp(n,q). Similar methods can be used to
determine subgroups of classical groups transitive on pairs of

’ non-perpendicular (isotropic or singular) points. In the lecture,

the exceptional examples (related to triality), were discussed,

the main ideas of the proof outlined, and some corollaries men-

tioned.

Frank De Clerck: Partial geometries with the diagonal axiom.

Suppose S = (P,B,I) is a finite partial geometry satisfying
the diagonal axiom (D).

(p): 1r X ILIX,, Xy # X5, ¥y ILdy,, X; ~ ¥4, for 1,5 € (1,2}
then Yy~ 95

. These partial geometries are closely related to rank three groups
and are investigated by several authors. The dual of (D) 1is the
well-known axiom of Pasch. Let. P be the set of all points of
PG(n,q) which are not contained in a fixed PG(n-2,q)(n>3); let
B be the set of all lines of PG(n,q) which do not have a point
in common with PG(n-2,q); finally let I be the natural incidence
relation. Then S = (P,B,I) is a partial geometry which satisfies
the axiom of Pasch. This well-known dual net is denoted by Hg.

Deutsche
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Theorem. The partial geometry S = (P,B,I) with parameters N
s,t,a with a #1, t + 1, s + 1 1is isomorphic to an Hg if

and only 1if

(1) S satisfies (D)

(11) S is regular

(1ii) 28 > 'Yu - 73 + '72 + Y-2, where ¥y = ‘g .

Lorollary. Iet S be a dual net of order s + 1 and deficlency
t-s+1{(0). If S satisfies (D) then S is isomorphic
to a partial geometry Hg (qg=5 and t+ 1= g1 (n> 3)).

Ingrid Debroey: Semi Partial Geometries with the Diagonalaxiom

A semi partial geometry S = (P,B,I) 1is said to fulfil the
diagonalaxiom if and only if for any element (x,y,z,u) € P the

following implication holds:

XAY, X~Y, zILX’y, u.ILx’y, 2~X, z2~¥, U~X and U~y = 2z~u, with L

Y

the line of S which 1s incident with x and y.

First of all we will give some introductory theorems on semi .
partial geometries with the diagonalaiiom. Then we will come to
some interesting characterization theorems on semi partial geome-
tries with the diagonalaxiom using some recent results of J.A.
Thas and F. De Clerck on partial geometries with the axiom of
Pasch which is the dual of the diagonalaxiom.

DFG Deutsche
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M. Dehon: Ranks of some incidence matrices.

Let S be a 2-covering in whicﬁ every block has exactly 3
| points and let p be a prime mumber. The rank modulo p of S
(denoted by RKp(S)) is defined as the rank in GF(p) of an
incidence matrix of S. If |S|{ = v > 3 we have the following
l result:
@ meoren. Ir p £ 3, then
| v - log, [(p-1)(p =)+ R (s) < v

If p =3, then

v-long—lgnks(s),{v—l

R.H.F. Denniston: Some biplanes.

A Survey is given of the problem of constructing biplanes,

(symmetric designs for which A = 2). In particular, all but
two of the points of a fixed block may be identified with the
marks of a Galois field, all linear mappings belng supposed to

. act as automorphisms. In the case Kk = 11, three biplanes of
which two are known, arise in this way. A process of "derivation”,
which leads from one of the known biplanes to the other, can be
repeated, to give a fourth biplane for which k = 11.

DFG Deutsche
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Leroy J. Dickey: Existence of Symmetric Designs.

brc (A,N) is defined to be the number of pairs (A,N) that
satisfy the Bruck-Ryser Chowla condition for the exlistence of a

symmetric 2-(v,k,A) design with k = n + A.

|
Values of brec (A,N) are known for A | bre (*’lou)
1<%<29 and N = 10% 1| 6988
In the case A = 1, there are 1280 2 2117
values of n g 104 that are prime 3 2620
powers (projective planes known) and 4 2009
5708 values that are not. 5 1581
Other tests have been applied, 6 1472
including some multiplier tests and 7 1125
an automorphism test discovered by 8 576
Hughes, against the possibility that 9 1658
the design has a cyclice Singer group. 10 835

M. Dugas: A remark on generalized André-planes over local fields.

We will show, that the generalized André-planes over local '

fields constructed by R. Rink in "Eine Klasse unendlicher verall-
gemeinerter André-Ebenen", Geo. Ded. 6(1977), 55-80, Satz 6.3

(= Typ I - planes) and Satz 6.6 (= Typ II - planes) can be re-
presented as projective limits of finite H(Jelmslev)-planes of
level n, as defined by B. Artmann: "Existenz und projektive
Limiten von Hjelmslev-Ebenen n-ter Stufe”, Attl del Convegno di
Geometria Combinatoria e sue Applicazioni, Perugia (1971), 27-41.

Deutsche :
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let T be a plane of Typ I or Typ II and 7 = lim Hn’ with
~-n

Hn an H-plane of level n. (H-planes of level 1 are usual pro-
Jective planes). If N is of Typ I, the full collineation group
of Hl is inherited from collineations of Tn. If T is of Typ
II, this is not true. All planes of Typ II can be represented

as limits of different projective systems of H-planes. (The

H)'s are non-isomorphic).

Michael J. Ganley: Difference sets and Projective planes.

In a paper of Dembowski and Piper, in 1968, it was shown
that if a finite projective plane 1N of order n admits a
quasiregular collineation group T, of order > %(n2 + n+l),
then one of 8 possibilities must occur. In the first of these
cases, the group T acts transitively and regularly on T, and

it is well-known that this situation is equivalent to T con-

taining a perfect difference set.

We extend this idea in order to obtain some information about
thé remaining 7 cases. w1th Just one exception, we show that
each of these other cases corresponds to the existence of a particu-
lar type of difference set in the group T'. Furthermore, if the
group T 1is abelian, then, again with one exception, the plane
T mst admit a polarity. Using this fact, together with the
exlstence of the difference set, we can obtain many interesting
results concerning abelian collineation groups of finite pro-

Jective planes.

Forschungsgemeinschaft . © @
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J.-M. Goethals: Spherical designs (the group case) .

Spherical t-designs were introduced in [1] as a setting for B
various combinatorial structures. In the present lecture we
consider finite groups G acting by orthogonal transformations
on the unit sphere Q@ in real Euclidean space, having the property
that every G-orbit in 0 is a t-design. We show that a group
G has this property if and only if there are no ‘G-invariant
harmonic polynomials of degree 1,2,...,t. Furthermore, the .

representations of such a group on the harmonic spaces Harm(i)
necessarily are real irreducible for 1 = 1,2,...,['%t] . This
latter condition is also sufficient for even t. '

(1. R. Delsarte, J.-M. Goethals, J.J. Seidel, "Spherical
codes and designs," Geometric Dedicata 6 (1977), 363-388.

William Haemers: A_generalization of the "Higman-Sims techniqu M

Let A be a complex hermitian matrix of size n, partitioned

into block matrices:

All oo Alm
a- |l : ®

Ay --- Amn

such that all diagonal blocks are square. Let bij be the aver-
age row sum of Ai.j' Let xl oo An and My Dee2 (T be the
eigenvalues of A and B = (bi;j) respectively, then

(1) Ag2u3 22 e 1K1

(it) if u; € (A4, A ;.49 for all 1 then all Aij's have

constant row and column sum.

Deutsche
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This generalizes the result: "1 2 Bi 2 kn’ which is usually
used under the name Higman-Sims technique. Result (i) gives rise
to several inequalities concerning substructures of combinatorial
structures, such as cocliques in graphs, subdesigns in designs,
etc. Because of (ii) it is then clear what happens in the case

of equality.

‘ J.W.P. Hirschfeld: Quadrics.

Let Q, be a non-singular quadric in PG(n,q). Then, in
canonical form, Q’n is one of the following:

2
for n even, Pn = V(xo + X1X2 +teooet Xn_lxn)
for n odd, Hn = v(xoxl +ooot xn-lxn)
Ep = V(£(xgsX)) + XpX5 +eeet Xp X)),

f irreducible. Thus any quadric can be written "n-r—lQr’

where lld is a subspace of dimension_ d, and is the set of

points on the joins of nn—r-l to the points of a Qr in a

M, skew to T _. ..

. The character of M . ,Q. = 2(dimension of a generator)
- (dimension of singular space) - (dimension of ambient

space) + 2 =0, 1, 2, as Q=E, P, H.

Properties of the generators of Qn were described and the

mumber N(m,t,v;n,w) of sections 1T Q (of character v)

m-t-1
of Q (of character w) was also given.

DFG Deutsche
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Daniel Hughes: Dually Extended Geometries.

A structure associated with the diagram

c =)

e °°° o

o 1 2 n-1 n n+l

will be called a dually extended geometry (DEG). Jointly with
PFrancis Buekenhout, we have shown: a finite DEG with n > 2 ‘

is one of (1) a trivial (n+2) - (n+3,m+2,1), (2) the complement
of a PG(n+l,2), (3) a "dually‘affined geometry” of dimension
n+2 over GF(2). In addition for n =2 it is shown that a
finite DEG 1is one of the three examples above, or is the unique
geometry with 100 points and blocks, block size 22, assoclated
with the Higman-Sims group (and the proof yields a very elemen-
tary demonstration of the existence of the group), a possible
2-(78,22,6) of a very speclal kind, or some possible examples
associated with the existence of a projective plane of order 10.

For n=1 a DEG is of course a semi-~biplane.

D. Jungnickel: On an assertion of Dembowski.

In his "Finite Geometries", Dembowski asserted that the class

of uniform projective Hjelmslev planes whose image plane has
order q and the class of symmetric divisible partial desighs on
two associate.classes with parameters v =Db = qa(q2+q+1),
k=r=qletl), s = o, t = o

coincide. One part of this result is immediate from Kleinfeld's

+q+1,A =q and 3; =1

Deutsche
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well-known counting lemma on finite H-planes. Regarding the
converse, we exhibit a counter-example for q = 2 and prove the

validity of Dembowski's assertion for'all gq 2> 3.

Reference: D. Jungnickel, On an assertion of Dembowski, J. Geom.,

to appear.

William M. Kantor: Some characters in finite geometry.

Most of the proof was given for the determination of all
2-transitive permutation representations of PSL(n,q), n> 4.
The corresponding result for primitive rank 3 representations
of PSL(n,q) was also stated. The rank 4 case remains open.

However, if PSL(n,q) has a primitive rank r permutation
representation not equivalent to its representation on subspaces

of a given dimension, then n< 4r and q < rz((hr)!)z.

J. H. van Lint: QOvals in projective designs.

Let & be a symmetric (v,k,A) design with A > 1. An arc
S 1is a set of points, no three on a block of #. If S has a
tangent, then |S| < (k+A-1)/A, (I), and if not, then
Is| = (k+a)/2, (II). If equality holds in one of these then we

call S an gyal. In the second case k-A must be even.

Forschungsgemeinschaft
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Theorem 1l: 1In Case II the exterior blocks and points not on S
are the points and blocks of a ¢2-design.

Theorem 2: If £ and its complement ¢’ have arcs of size 3,

then these are the ovals, and £ or &’ is a Hadamard design.

Theorem 3: In Case I, k-A even, the |S| tangents have a set
of A points in common. Furthermore, (k-1)|a(a-1). .

Theorem 4: In Case II the rows of the incidence matrix of the
design generate a code C for which C* has min. wt. > (k#\)/A.
Equality holds only for ovals.

Theorem 5: In case II if k = O(4), 2 = 2(4) and the ovals form
a 2-design, then ¢ is 2-(7,4,2).

D. Livingstone: On Some Properties of the Mopnster.

A report was given on the progress of work undertaken with
B. Fischer and with M. Thorne of Birmingham, and with Herr Gabrich
of Bielefeld, towards determining the characters of Fischer's
"Monster group" and of some of its subgroups. Ninety-one of the
characters have now been determined, and most of the others have ’
been distinguished. Soﬁe description of the subgroups used, and
of computational methods was given.

DFG Deutsche
Forschungsgemeinschaft
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Heinz Lineburg: SGaloisfelder.

Es sei s eine primitivé n-te Einheitswurzel und p sei eine Prim-
zahl, die nicht in n aufgeht. Ferner sei Z der Ring der ganzen »

Zahlen. Ist r die Ordnung von p modulo n und ist P ein maximales.
Ideal von ZXEXEX Z[{s], so ist K = 2(s]/P ein endlicher Korper

mit pr Elementen und s + P ist eine primitive n-te Einheitswur-
zel von K.

Diesen Satz kann man nach dem Vorgang von F. Levi (Comp. Math. 1,
303-304 (1933)) benutzen, um die Irreduzibilitdt der Kreisteilungs-—
polynome zu beweisen. Indem man mit p und r beginnt und n = pr -1
setzt, erhdlt man fiir alle p und r einen endlichen Korper mit pr
Elementen, von dessen multiplikativer Gruppe man von vorneherein
weiB, daB sie zyklisch ist. SchlieBlich folgt auch noch das Kor-
rollar: Ist K ein Teilkorper von C, der alle Einheitswurzeln ent-
hdlt, ist A der Ring alle in K enthaltenen ganzen algebraischen
Zahlen und ist P ein maximales Ideal von A, welches die Primzahl

p enthdlt, so ist A/P der algebraische AbschluB von GF(p) .

E. Mendelsohn: Perpendicular AIrrays.

Perpendicular arrays are a natural generalization of
orthogonal arrays. Their existence, as with orthogonal arrays,
is linked to the existence of finite geometries. However, some
additional conditions are necessary, as these conditions probably
give a possible interpretation to "positive slope" applicable

to a finite geometry.

Forschungsgemeinschaft © @
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Arnold Neumaier: Affine Planes and Tuple Systems.

The following Theorems are proved:

(1) If a projective plane of order n has an elation of even

order d then n 4is divisible by 2d, or n = 2.

(2) If G 1is a collineation group of a finite affine plane

such that the stabilizer of every infinite point i con-
tains only perspectivies with centre i then one of the

following holds:

(1) G has odd order and acts semiregular and faith-
fully on the infinite points,

(11) G consists of elations with centre i, and

finite axis,

(ii1) G contains a normal abelian subgroup of index
2 of type (i),

case (i1ii) occurs only for planes of even order.

Result (1) implies well-known results of Hughes and Hall/

Paige.

The proofs use two new coordinatization methods by means of
homogeneous tuple systems (2-HTS) and strong balanced tuple
systems (2-SBTS).

Deutsche
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Udo Ott: Flag transitive planes of even order.

We outline the main steps of the proof of the following

theorem:

Theorem: A flag transitive plane of even order is desarguesian
or its automorphism group is sharply flag transitive.

R. Rink: Homomorphisms of special nearfield planes.

A special nearfield is a Dickson nearfield obtained from an
unramified extension of local fields.

Theorem; Let N be a special nearfield which is not a field,
and let OU be the plane coordinatized by N. If §:CLe CC

is a homomorphism with the property that the two distinguished
points on 1 have distinct images under &, then OL* " 1s finite
and uniquely determined by the structure of N.

M.A. Ronan: Generalized Hexagons.

The ocutline of a proof of a geometric characterization of
Moufang generalized hexagons was given. Specifically, if p 1s
a point, one defines p* = (points not opposite pjJ, and if S
is a set of points, S* = n (s*|seSj. Now for two points x and

y which are neither opposite nor collinear one defines

DFG Deutsche
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<X,¥> = {x,ys**. It is easily shown that <x,y> contains at
most one point on each line through 2z, where 2z 1is the unique
point collinear with both x and Y. If <x,y> contains exactly
one point on each line through z, then <x,y> is said to be an
Adeal line.

Theorem: All such sets <x,y> are ideal lines if and only if

the generalized hexagon is Moufang. In particular, in the finite .
cases all <x,y> are ideal lines if and only if the generalized

hexagon is associated with one of the groups G.z(q) or BDu(Q)‘

N.J.A. Sloane: Codes over GF(#4) and Complex latitices.

Self-dual codes over GF(4) (self-dual in the hermitian
sense) are interesting for many reasons, for example, because
they may be used to construct complex lattices, or Z[w]-modules,
in (:n Extremal self-dual codes have the greatest possible
minimmm distance, namely 2[{n/6] + 2. There are only finitely
many extremal self-dual codes. The known ones were briefly

described. One of the most important of these is the code eq, .

which plays the same role over GF(4) as the Golay codes do

over GF(2) and GPF(3). This code leads to a complex lattice

in € and hence to the real lattice K;, in B° which is the
densest known lattice packing in that dimension. The last part
of the talk described the recent emumeration made by J. H. Conway,

V. Pless, and the author of the self-dual codes over GF(4) of

o®
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length 16. There are 55 1inequivalent codes, of which 24 are
decomposable and 31 1ndecomposab1e, Four are extremal.

Alan P. Sprague: d-nets.

We discussed incidence structures, all of whose planes are
nets. A d-pnet is a connected semilinear incidence structure
n  such that (1) every plane of m is a net, (2) the inter-
section of two subspaces is connected, (3) two planes in a 3-
space neﬁer have exactly one point in common, (4) d 1is the
dimension of m. Theorem: Let 3 < d < . An incidence struc-
ture W is a d-net if and only if for some skew field F,.some
vector space V >over F, and some subspace W of codimension
d, n is isomorphic to (sd,sd_l,:) where S, is the set of
j-dimensional subspaces of V whose intersection with W is

the zero vector (i = d,d-1). d-nets may also be characterized

B
by the design 0——0—O0—— ... ——O0——0 (here o—Ee—o

means net).

D.E. Taylor: Distance regular graphs.

Let T be a connected graph of diameter d and let Fi(a)
denote the set of vertices at distance i from a. Suppose that
for p € Ty(a) the number by = IT{41(e) nTy(B)] and ‘
cy = |ri_1(a) n !‘1(6)! depend only on i; I' 1is then called a
distance regular graph. Set k; = |r1(a)|. There are inequalities
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and Kk K for
b1+1 £ bi’ cy £ Cy41’ Sy £ bj for i+ jgd i £ 3
i Jjg d-1. If Kl = kz, then T 1is either a circuit, a double
cover of a complete graph (viz. a regular 2-graph) or else d = 2.
We also have Ky £ b1 + bi + Cyq ” 1 and if kl = 2bl + cz-l,

then T 1s the icosahedron or a line graph.

Luc Teirlinck: Projective and affine factors in triple systems. ‘

We construct a projective space, in the broad sense, P(w) on
the set of all subspaces of order w of an S(r3;2,3,v)S. We .
define a linear space A(w) on the set of all non-isolated
elements of P(w). Any connected component of A(w) is the set
of all hyperplanes of a projective factor of order 2 or an affine
factor of order 3 of S. We give conditions on w and v,

which imply the connectivity of P(w) or A(w) respectively.

Henk van Tilborg: Quasi Cyclic Codes.

The connection between convolutional codes and quasi cyclic
codes was shown. Examples were given of quasi cyclic codes with
small constraint length ((22,11) Golay, (30,15) short. Q.R.).
Further on we shall show that any Reed Solomon code is quasi
cyclic.

Finally, Quasi Cyclic codes of a certain type will be shown

42,7,19
80,8,37

96,8,46;
(112,8,54

to yield new codes with high minimum distance. e.g., §3§,7,16§
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Scott Vanstone: Asymptotic Properties of Iocally Euclidean Designs .

An (r,l)-design D 1is a collection of points and lines
together with an incidence relation such that every pair of
distinct points determine a unique line and every point is
incident with precisely r 1lines. D 1is called non-trivial

. if all the points do not lie on one line. D is said to be
locally Euclidean at a line ¢ if D can be embedded in an

D containing exactly r points. If D 1s locally Euclidean
at every block, then D is locally Euclidean. It is shown that,
under certain conditions, this local property of a design is
global and implies that D is embeddable in a finite projective

plane of order r - 1.

(r,1) design D’ such that ¢ is embedded in a line 2’ of

Richard Weiss: Symmetric Graphs.

‘ For each finite Chevalley group G with an automorphism o
} inducing an involution on its Dynkin diagram and for each pair
. of conjugate classes a and B of maximal parabolic subgroups

exchanged by o, let rG,a,B be the undirected graph with ver-
tex set a U P and edge set ((x,y) | x ea, y €B, XN Y
parabolicj. Let ¢ ©be the family of all such graphs rG,a,ﬁ'
For each d € N, let f(d) be the largest value of INA(x)I
over all rG,a,ﬁ in ¢ of valency d where A = aut(G) and
x € o 1is arbitrary (setting f£(d) = 1 if there aren't any

r e g of valency d). We discuss the following:
G,a,B,
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Conjecture: Let T = (V,E) be an arbitrary finite undirected
connected graph, x € V arbitrary. Let A = aut(I) and suppose ’
that Av is transitive and that Ax acts primitively on the

set of neighbors of x. Then |Ax| < max {d!(d-1)!, £(d)j where

d denotes the valency of T.

Special Session on Diagrams ' ‘

An informal session lasting 1% hours, on Buekenhout diagrams,
was held on Friday morning. The session was directed by D.R. Hughes, and
the purpose was to exchange information and ideas. Amongst those taking
part, W.M. Kantor expressed his belief that one should consider diagrams
which involve o;l-‘—'—o rather than ‘o———o , and asked specifically

what could be said about geometries belonging to the following diagrams:

o L s 0, O Lo o—2 —0 and o——I‘—o—L—o—-polar space-o0.
A. Neumaier pointed out that the diagram a< gives rise to 0L0=o,
. K P
K K K .
and to o = - '2~ , where o———o0 is arbitrary, and
2
K

: 2o.¢” A3
also gave a specific example of 2}}1 and 2 , both related
2 c 3

to the group PSU(3,3) ¥ GZ(Z)'. D.G. Higman gave an infinite family of .
examples of oio—i—o , by taking points, hyperbolic lines, and
planes of the generalized quadrangle associated with the group Cz(k)

(Psp(4,k) in classical notation).

Mark A. Ronan
University of Illinois at Chicago
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