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Th1s year's Finite Geometries conference was conducted under

the directlon cf F. Buekenhout (Bruxelles), D. R. Hughes (Lenden),

and H. Luneburg (Kaiserslautern). The topics covered in the

formal lectures embraced many different aspects cf flnite (and

indeed infinite) geometries, and its relationship to other

branches cf mathematics. In particular, there were relationships

wlth group theory, combinaterics, number theory, coding theory,

valuation theory, graph theory, and lattices in both senses cf

the ward.

It 18 apprepriate to mention here the special session cf

nDlagrams u , for whlch abrief report fellows later. Dlagrams,

as espoused by F. Buekenhout, provide a framework withln which

to study various classes cf geometrles. They are insplred by

J. Tits' theory cf Buildings, and it turns out that most (perhaps

all) of the sporadle simple graups can be viewed as automorphism

groups of geometries belonging to a diagram whlch 1s very slm1lar

to a Dynkin dlagram.
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On embedd1ng closure spaces with exchange property ~

and certaln 'partition' ccnd~tlons. in (generallzed)
proJectlve space cf the same dimension.

Let D be a closure space with exchange property and such

that .,D and all elements of D are closed. By an m-flat,

we shall mean an m-dlmensional closed set.

Let 3 be a fam1ly of flats of D and conslder the fOllOWi1

conditlons on :J :

1. Any two elements of " are in a commoD (m+l)-fl.at,

and are themselves ~tlats.

2 • Every point 18 on an element of :J •

Wlth respect to these two condltlons and weakened verslons of

them, we diseuss known resu1ts and posslble results in connection

with embedding D 1n a (generalized) proJective space of the

same dJJDenslon as D.

Henry Beker: A Construction Metbod For Point D1.v1.s1ble Designs

A point division of al-design 18 a part~tlon of tbe po~ts

into classes PI' ••• ,Pd such that tbe l'lUIDber of blocks through •

two po~ts depends on1y on their po~t classes, and 18 denoted

by l
iJ

, (1 ~ 1., j ~ d) and :further that 1 11 =). tor all 1..

The purpose of thls talk 1s to 1ntroduce a reeursive construc­

tion method tor point divisible I-designs. Under certaln condl­

tlons thls method also ylelds many 1nf~te tam111es of 2-deslgns,

same of which c:ontain strong tactlc:al decompositlons. For instance,

the tollow~ theorem i8 proved:
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Ir there exists a 2 - (m, ~, m43) . Hadamard design wlth m the

order of an affine plane, then there exists a 2 - (4m2 (t-y),

m(~mt - 2MY + t - 2~), (m + 1) (mt-my + t-2~» design whenever

there ex1sts a 2 - (4(t - y), t, y) symmetrie de~lgn of whlch

there are inf:1nitely many •

•Thomas Beth: On t-resolutlons •

G be an abellan group, k E N, 0k a set, 0k n G = ~,

Let X = G U 0k. Apartition (Bg)geG of (k~l) into

SteiDer systems S(k,k+l,lxl) 1s called a Schre1ber-W11soo-k-

resolutlop over G 1f

(1) implles I: x
xeK

o.

(i~) Bg = Bo + g for all g e G.

Known examples are the standard I-factorlzatlon cf K2n and

the 2-resolutions glven by Schreiber and Wl1son •

• :.tb.!!t.:

:.tbJD,. :

~.:

.kQr. :

Par any k E N there exlsts a Swk-resolut1on over Z[l/(k+l)~].

FOr k = 3 there exists a unique sW3-resolutlon over z[1I4t]

~ SW,-resolution over GF(p) 18 obta1ned by taklng the

unique Sw3-resolution over Z[]/4t] mod p.

Tbere ~s na Sw
3
-resolutlon over any finite graupe
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Albrecht Beutelspacher: Blocking sets in finite projective spaces.

cons.1sts of all points Incident with a line RB" where R 18 a

point cf U and. S a point of E* • The sets C(U , E* ) are in

fact t-b1oc~ng sets. Moreover" It holds

A t-blocklng set InPG(d,q) wlth d ~ t+l 18 a set B

or points such that no t-dlmenslonal subspace 18 contalned in

B and every (d-t)-d1menslonal subspace contalns a point cf B.

Examples of t-blocking sets are obtained in the following way:

Let U be a (t-2)-dlmenslonal subspace, E a plane with

a Baer subplane cf E. Then the set C(U,E*) •
Theorem. Let B be a t-blocklng set in PG(d,q) w1th d 2 t+l.

Then

Equal1ty holds ir and only Ir B 18 or the torm C(U,E*).

This Theorem can be used to obtain bounds tor the cardinality

of maximal partial t-spreads ~ finite projectlve spaces.

F. Bueltenhout: Sporadle geometrles.

We discuss the action of the Janko group J} on the cosets •

of PS~(16).2. The maximal cllques for the orbital cr valency

85 have a1ze 6 and behave as lines: any pair cr points 18 on

at most one line. Some elements cf order 3 fix a set of 36

points each cf whlch 18 on two pointwlse fixed lines and there

are 12 such lines" glvlng rise to a (non-thlck) general1zed

quadrangle. The points, lines and quadrangles determine a geometry

belonging to the dlagram Ea===:DO_-=-c--00 •

                                   
                                                                                                       ©



- 5 -

P.J. Cameron: Antirlag Transitive Collineation Graups.

An antlflag in PG(n-l,q) is a non-incident point-hyperplane

pair. In joint werk wlth W.M. Kantor, all celllneatlon graups

transitive on antlflags are determined. This includes the solu­

tion of the Hall-Wagner problem (determination cf 2-transltive

co111neation graups) and the completion of Perln's result on

• rank 3 subgroups cf rsp(n,q). Sim11ar methode can be used to

determine subgroups ef classical groups transitive on pairs of

no~perpendlcular (isotropie or singular) points. In the lecture,

the exceptional examp1es (related to triality), were discussed,

the main Ideas cf the preef outlined, and same corollaries men-

tloned.

Frank De Clerck: Partial geometrles wlth the diagonal axiom.

SUppose S = (P,B,l) 18 a finite partial geometry satlsfying

the diagonal axiom (D) •

(D): If x1ILIx2 , Xl ~ x2 ' Yl 1LiY2' Xi ~ Yi' for i,j E (1,2J

then Yl ~ Y2 •

These partial geometries are clesely related to rank three graupe

and are investlgated by several authors. The dual cf (D) 18 the

well-known axiom cf Pasch. Let P be the set cf all points cf

PG(n,q) which are not contained in a fixed PG(n-2.q)(~3}; let

B be the set cf allIines of PG(n,q) which do not have a point

in common with PG(n-2,q); finally let I be the natural inc1dence

relation. Then S = (P,B,I) is a partial geometry whlch satisf1es

the axiom of Pasch. Thls well-known dual net 18 denoted by HO.
q
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Theorem. The partial geometry S = (P,B,I) w1th parameters

s,t,a with a ~ 1, t + 1, s + 1 18 isomorphie to an ~ lr

and only if

(1)

(li)

(111)

S satisfies (D)

S ls regular

28 > y4 _ ~3 + ~2 + ~-2, where y = ~ .
a

Corollary. Let s be a dual net cf order s + 1 and def1e1ency

t - s + 1 (> 0). If S satlsfies (D) then S 1s isomorphie

to a partial geometry HO {q = s and t + 1 = 8
n- 1 (n2 3».q

lngrid Debroey: Sem! Partial Geometrles with the Diagonalaxiom

A semi partial geometry, S = (P,B.I) i8 aald to fulfl1 the
4diagonalaxlom If and on1y 1r for any element (x,y,z,u)·€ P the

following 1mpllcatlon holds:

xJy, x,.y, ztLX,y' utLX,y' z...x, z-y, u..-x and Ulwy .. z..-u, with

the line of S whlch 1s Incldent wlth x and y.

First af all we will glve some introductory theorems on seml •

partial geometries wlth the diaganalaxlom. Then we wl1l come to

same interestlng characterlzatlon theorems on sem! partial geome­

tries with the dlagona1axlom us1ng seme recent results cf J.A.

Thas aod F. De Clerck on partial geometrles with the axiom ef

Pasch whlch 18 the dual of the diagena1axlom.
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M. Dehon: Ranks of" some incidence matrices.

Let S be a 2-covering in which every block has exactly 3

points and let p be a pr:lme number. The rank modulo p of S

(denoted by ~(S» 1s defined as the rank in GF(p) of an

incidence matrix of S. Ir Isl = v ~ 3 we have the following

result:

• Theorem. Ir p 1= 3, then

v - 1~( (p-1)(p v21 + 1) + 1] ~ ~(s) ~ v

If P = 3, then

v - log} v-I ~ ~ (S) ~ v-I

R.H.F. Dennistan: Some biplanes.

A Survey 18 glven of the problem of constructing blplanes,

(symmetrie designs for which ). = 2). In particular, all but

two of the points of a fixed block may be 1dentified wlth the

marks ar a Galois fleId, all linear mapp~ being supposed to

aet as automorphisms • In the ease k = 11, three b1.planes of

whlch two are known, arlse in this way. A process of "derivation",

which leadS fram one of the knoWn blplanes to the other, can be

repeated, to give a fourth blplane for whleh K = 11.
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41 brc (l, 10 )

1 6988

2 2117

3 2620

4 2009

5 1581

6 1472

7 1125

8 576

9 1658

10 835
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Leroy J. Dickey: Existence of Symmetrie Designs.

brc (~,N) 18 defined to be the number of pairs (l,N) that

satlsty the Bruck-Ryser Chowla condltion for the exlstence cf a

symmetrie 2-(v,k,1) design wlth k = n + ~.

Values of brc (l,N) are known for

1 ~ 1 ~ 299 snd N = 10
4 •

In the esse 1 = 1, there are 1280

values of n~ 104 that are prime

powers (proJective planes known) and

5708 values that are not.

Other tests have been applied,

including some multiplier tests and

an automorphlsm test discovered by

Hughes, against the possibility that

the design has a cycllce Singer graupe

M. Dugas: Aremark on generallzed Andre-planes over loeal f1elds.

~

We will show, that the generallzed Andre-planes over leeal ~

f1elds constructed by R. Rink. in IIEine Klasse unendlicher verall­

gemeinerter Andre-Ebenen", Geo. Ded. 6(1977), 55-80, Satz 6.3

(= Typ I - planes) and Satz 6.6 (= Typ 11 - planes) can be re-

presented aa projective limits cf finite H(Jelmslev)-planes cf

level n, as defined by B. Artmann: "Existenz und projektive

Limiten von HJelmslev-Ebenen n-ter Stufe 11 , Atti deI Convegno di

Geometria COmbinatoria e eue App1icazloni, Perugla (1971), 27-41.
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Let n be a plane cf Typ I er Typ 11 and TI 11m H I with
.-n n

•

•

Hn an H-plane ef level n. (H-planes cf level 1 are usual pre­

Jective planes). Ir TI 15 ef Typ I, the tull col11neaticn group

cf BI 18 Inherlted from celllneaticns ef TI. Ir TI 18 cf Typ

11, thls 18 not true. All planes or Typ 11 can be represented

as limits cf different project1ve systems cf H-planes. (The

, Hl's are non-isomorphie) •

Michael J. Ganley: D1fference sets and Projective planes.

In a paper of Dembowski and Piper, in 1968, 1t was shown

that 1r a finite prejective plane TI of order n admits a

quaslregular ccllineation group r, cf order > ~(n2 + n+l),

then one of 8 poss1bl1ities must oeeur. In the first of these

cases, the group r aets transltlvely and regularlyon TI, and

it 18 well-known ~hat thls situation ls equivalent to r eon­

talning aperfeet dirference set.

We extend thls idea J.n order to obtaln some information about

the remaln1ng 7 eases. Wlth just one exceptlon, we show that

each or these other eases eorresponds to the exlstenee er a partlcu­

lar type cf dlfference set in the group r. Furthermore, if the

group r 18 abellan, then, again wlth one exeeption, the plane

TI must admit a polarlty. Using thls faet, together wlth the

existence cf the difference set, we can obtain many lnterestlng

results eencerning abelian collineation groups of finite pre­

jectlve planes.
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J.-M. Goethals: Spherical designs (the group ease).

Spherlcal t-designs were introdueed in [1] as a setting for

various combinatorial structures. In the present lecture we

consider finite groups G acting by orthogonal transformations

on the unit sphere n in real Eucl1dean spaee, having the property

that every G-orbit in n 1s at-design. We show that a group

G has this property if and only if there are no G-invarlant

harmonie polynomia1s of degree l,2, ••• , t . Furthermore , the •

representatlons of such a group on the harmonie spaces Harm(l)

neeessarily are real irreduclble for 1 = 1,2, ••• ,[ii]. This

latter condltlon is also sufficient for even t.

[1]. R. Delsarte, J.-M. Goethals, J.J. Seidel, IISpherieal

codes and designs," Geometrie Dedleata.6 (1977), 363-388.

Wl111am Haemers: A genera1izatlon of the "H1gman-Slms teehnigue. n

Let A be a complex herm1.tian matrix cf a1ze n, partltloned

into block matrices:

All ••• Alm

A •

Aml ••• Amn

such that all d.1agona1 blocks are square. Let b
1J

be the aver­

age row sum of A:J.je Let 1 1 ~e. e~ l n and a.&l~•••~ f.l m be the

eigenvalues of A and B = (biJ ) respectlvely, then

(11) If ~i E (11 , An_m+1 J for all 1 then all A1j 'S have

eonstant row and column SUDl.
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This generalizes the result: Al 2 ßi 2 An' which 1s usually

used under the name Higman-Sims technique. Result (1) gives rise

to several inequalities concerning substructures cf combinatorlal

structures, such as cecliques in graphs, subdes1gns in designs,

etc. Because or (11) it 1s then elear what happens in the ease

cf equality •

J.W.P. Hirschfeld: Quadrlcs.

Let ~ be a non-singular quadrlc in PG(n,q). Then, in

canonical form, ~ is one of the following:

for n even,

for n odd,

2
Pn = V(Xo + x1x2 +•••+ Xn_1Xn )

Hn = v(xoxi + •••+ Xn_1Xn)

En = V{f(xO'X1 ) + x2x 3 + •••+ Xn_1Xn ),

•

f irreduclble. Thus any quadric can be written ITn-r-1Qr'

where ITd 1s a subspace cf dimension d, aod 15 the set cf

points on the joins cf ITn- r - 1 to the points cf a Qr in a

TI r skew to Tln- r - 1 •

The character cf Tl lQ = 2(dlmension cf a generator)n-r- r
- (dimension cf singular space) - (dimension cf amhient

space) + 2 = 0, 1, 2, as Q = E, P, H.

Properties cf the generators of ~ were described and the

number N(m,t,v;n,w) cf sectlons n o. (of character v)m-t-l '""t

of ~ (of character w) was also given.
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Daniel Hughes: Dually Extended Geometries.

A structure associated wlth the dlagram

c

012 n-l n. n+1

will be called a dually extended geometry (DEG). Jointly wlth

Franc1s Buekenhout, we have shown: a finite DEG with n > 2 •

18 one cf (1) a trivial (n+2) - (n+3,n+2,1), (2) the complement

of a PG{n+l,2), (3) a IIdually aftined geometryll cf dimension

n+2 over GF(2). In addition for n = 2 it 18 shown that a

t~te DEG 1s one of the three examples above, or 18 the unique

geometry with 100 points and blocks, block a1ze 22, assoclated

wlth the Higman-Sims group (and the proof ylelds a very elemen­

tary demonstration ef the exlstence of the group), a pessible

2-(78,22,6) of a very ·special kind, or seme possible examples

associated wlth the ex1stence ef a project1ve plane of order 10.

For n = 1 a DEG i8 of course a·semi-blplane.

D. Jungnickel: On an assertion of Dembowski. •In his IIFinite Geemetries ll
, Dembowski asserted that the elass

of ~form proJectlve H3elmslev planes whose image plane.has

order q and the class of symmetrie divisible partial designs on

two &Ssoclate.classes wlth parameters v = b q2(q2+q+l),
2 2

k = r = q(q+l), s = q , t = q + q + 1, Al = q and ).2 = I

co1nclde. One part cf this result 1s immediate fram Klelnfeld's

                                   
                                                                                                       ©



•

•

- 13 -

well-known counting lemma on finite H-pLanes. Regarding the

converse, we exhibit a counter-examp1e for q = 2 and preve the

valldity cf Demhowski's assertion for'al1 q 2 3.

Reference: D. Jungnickel, On an assertion cf Dembowski, J. Geom.,

to appear •

Wllliam M. Kantor: Same characters in finite geometry.

MOst of the proof was given for the determination cf all

2-transltlve permutation representatlons of PSL(n,q), n~ 4.

The correspondlng result for primitive rank 3 representations

of PSL(n,q) was also stated. The rank 4 case remains open.

However, if PSL(n,q) has a primitive rank r permutation

representatlon not equivalent to Its representation on subspaces

of a glven dimension, then n~ 4r and q< r 2«4r)t)2.

J. H. van Lint: Oyals in project1ye designs •

Let t be asymmetrie (V,k,A) design with A > 1. An are

S 15 a set of points, Da three on a block cf ~. If S has a

tangent, then lsl ~ (K+A-l)/l, (I), and if not, then

181 = (k+l)/l, (11). Ir equality holds in one of these then we

cal1 S an ~. In the second ease k-Ä must be even.
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Theorem 1: In Case 11 the exterior blocks and points not on S

are the points and blocks cf a 2-design.

Theorem 2: 11' t and Its complement t'

then these are the ovals, and t or ~'

have ares cf aize 3,

is a Hadamard design.

Theorem 3: In Case I, k-l even, the lsl tangents have a set

cf A points:in common. Furthermore, (k-1) 11 (1-1) • •

Theorem 4: In Case 11 tbe rows cf the incidence matrix 01' the

design generate a code C ror which C..L has min. wt. ~ (k+l )/1 •

Equality ho1ds on1y for ovals.

Theorem 5: In case 11 if

a 2-design, then ~ is

k E 0(4), 1 E 2(4)

2-(7,4,2).

·and the ovals form

D. Livingstone: On Seme Propertles of the Monster.

Areport was glven on the progress of work undertaken wlth

B. Fischer and wlth M. Thorne of Birmingbam, and with Berr Gabrich

cf Bielefeld, towards dete~ the characters 01' Fischer's

flMonster group" and of some of 1ts subgroups. Nlnety-one cf' the

characters have now been determined. and most of the others have •

been dlstinguished. Some descrlptlon of the subgroups used, and

of eomputatlona1 methods was glven.
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Heinz Lüneburg: Galolsfe1der •

Es sei s eine primitive n-te Einheitswurzel und p sei eine Prim­

zahl, die nicht in n aufgeht. Ferner sei Z der Ring cer ganzen •

Zahlen. Ist r die Ordnung von p modulo n und ist P ein maximales

Ideal von ~xtx Z[sl, so ist K = Z[s]/p ein en~licher Körper

mit pr Elementen und s + P ist eine primitive n-te Einheitswur­

zel von K.

Diesen Satz kann man nach dem Vorgang von F. Levi (Camp. Math. 1:,

303-304 (1933» benutzen, um die Irreduzibilität der Kreisteilungs­

polynome zu beweisen. Indem man mit p und r beginnt und n = pr ­

setzt, erhält man für alle p und r einen endlichen Körper mit pr
Elementen, von dessen multiplikativer Gruppe man von vorneherein

weiB, daß sie zyklisch ist. Schließlich folgt auch noch nas Kor­

rollar: Ist Kein Teilkörper von C, der alle Einheitswurzeln ent­

hält, ist A der Ring alle in K enthaltenen ganzen algebraischen

Zahlen und istP ein maximaleQ Ideal von A, welches die Primzahl

p enthält, so ist A!P rler algebraische Abschluß" von GF("p).

E. Mendelsohn: Perpendlcular Arrays.

Perpend1cular arrays are a natural generalization cf

orthogonal arrays. Their existence, aa with orthogonal arrays,

1s I1nked to the existence of finite geometries. However, same

additional conditlons are necessary, as these conditions probably

give a.posslble interpretation to "positive slope" appllcable

to a finite geometry.

--._-------------------------
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Arnold Neumaier: Affine Planes anO Tuple Systems.

The following Theorems are proved:

(1) Ir a project1ve plane of order n has an ela~ion of even

order d then n 18 divisible by 2d, or n = 2.

(2) Ir G 18 a col11neation group of a finite affine plane

such that the stabilizer cf every infinite poi~t 1 con­

tains only perspectivles wlth centre 1 then one of the

follow1ng holds:

(1) G has odd order and aets semiregular and faith­

fully on the infinite points,

(11) G consists cf elatlons wlth centre 1
0

and

finite axis,

(ii1) G contains anormal abellan subgroup af index

2 of type (1),

ease (111) occurs only for planes cf even order.

Result (1) 1mp11es well-known results cf Hughes and Hall!

Faige.

The proofs use two new coordinatizatlon methode by means of

homogeneous tuple systems (2-HTS) and strang balanced tuple

systems (2-SBTS).

•
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Udo Ott: Flas transitive planes cf eyen order.

We outllne the maln steps of the proof of the following

theorem:

Theorem: A flag transitive plane of even order 18 desargueslan

or Its automorphism group 18 sharply flag transitive.

R. R~: Homomorphisma pf speCial nearfield planes.

A special nearfleld 18 a Dlckson neartleld obtalned trom an

unr~fled extension cf local flelds.

Tbeorem; Let N be a special nearfleld whlch i8 not a f1eld,

and let cx.. be the plane coordlnatued by N. *Ir I: cx... .. CL

18 a homomorphlsm wlth the property that the two dlstlnguished

points on 1•
have dlstinct images under *I, then CA. i8 finite

and uniquely determined by the structure cf N.

M.A. Ronan: General1zed Hexagons.

The outl1ne of a proof cf a geometrie characterization cf

Moufang generalized hexagons was glven. SpecIflcally, If p 18

a point, one deflnes po&. (points not opposite P J, and If S

18 a set of points, so&. = n (S.&.18€S J • Now for two points x and

y whlch are nelther opposite nor collinear one defines

                                   
                                                                                                       ©



- 18 -

<x,y) = (X,YJ~~. It 18 easily shown that <X,y) conta1ns at

most one point on each line through z, where z 15 the unique

point col11near wlth both x and y. Ir <x,y> contains exactly

one point on each line through z, then <x,y> 1s said to be an

Theorem: All such sets <x,y> are ideal lines Ir and only ~f

the general1zed hexagon 18 Moufang. In particular, in the finite

eases all <x,y> are ideal lines 1f and only ir the genera11zed

hexagon 18 associated wlth one of the groups G
2

(q) or 3D4{q).

N.J.A. Sloane: Codes oyer GF(4) and Complex tatt1ces.

SeIt-dual codes over GF(4) (self-dual in the hermitian

sense) are interesting tor many reasons, for example, beeause

they may be used to construct complex latt1ces, or Z[w]-modules,

in tfl. Extrema1 sel.f-dual codes have the greatest posslble

minimum dlstance, namely 2[n/6] + 2. There are on1y tin1tely

•

many extremal sell-dual codes. The known ones were brlefly

described. One of the most important of these 1s the code e6' e
whlch plays the same rale over GF(4) as the Golay codes da

over GF(2) and GF(3). Th1s code leads to a complex latt1ce

1n eP and hence to the real latt1ce K12 1n mr2 which 1s the

densest known lattice packing in that dimension. The last part

of the talk described the recent enumeration made by J. H. Conway,

v. Pless, and the author or the seit-dual codes over GF(4) of
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1ength 16. There are 55 inequlvalent codes, of which 24 are

decomposab1e and 31 :1ndecomposable. Four are extremal.

Alan P. Sprague: d-nets •

We discussed 1ncidence structures, all of whose planes are

_ nets. A ~ is a connected semil.inear incidence structure

n such that (1) every plane cf n ~s a net, (2) the inter­

sect10n of two subspaces 18 connected, (3) two planes in a 3­

spaee never have exactly one point in common, (4) d 18 the

dimension of TT. Theorem: Let 3 ~ d < CD. An 1ncldenee struc­

ture n is a d-net If' and only if for same skew f'leld F,. seme

vector space V ever F, and seme subspaee W cf eodlmenslon

d, n 1s isomorphie to (Sd,Sd_l'~) where Si 18 the set cf

1-d~lona1 subspaces of V whose intersection wlth W 18

the zero vector (1 = d,d-l). d-nets may also be characterized

B
by the design 0--0--0--

means net).

D.E. Taylor: .Dlstance regular graphs.

--0---=-0 (h~re
B
~o

Let r be a connected graph of diameter d and let ri(a)

denote the set cf vertlces at d1stance 1 tram a. Suppose that

tor ß € ri(a) tbe number b i = \ri+l.(a) n ri(ß)1 and

Ci = \ri_l.(a) n ri(ß>I depend onl.y on ij ristben cal.led a

distance regular grapb. Set k i = Iri (a) I. Tbere are inequal.ities
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b1+l ~ b1 , Ci ~ c1+1 , ci ~ b j for i + j ~ d and k i So Kj for

i ~ J ~ d-l. Ir k1 = kz, then ~ 18 e1ther a circuit, a double

cover of a complete graph (viz. a regular 2-graph) pr else d = 2.

We also have k 1 ~ b l + b i + c 1+1 - 1 and if kl = 2b1 + c 2-1,

then r 1s the leosahedron or a 11ne graph.

!Ale Telrllnck: J?rQh:ct1Jle aod affine t:a.ctQxa in triple llyste!!1S. e
We construct a projective space, in the broad sense, p{w) on

the set of all subspaces of order W of an S(A;2,3,v)S. We

deflne a linear space A(w) on the set of all non-isolated

elements of P(w). Any connected component of A(w) 1s the set

cr all hyperplanes or a projective factor of order 2 or an affine

facter cf order 3 ef S. We give conditlons on wand v,

which imply the cennect1v1ty cf P{w) er A(w) respectively.

Henk van Tl1borg: Quasi Cyclic Codes.

The connection between convolutional codes and quasi cycllc

codes was shown. Examples were glven of quasi cyclic codes with

small constraint length ((22,11) Golay, (30,15) short. Q.R.).

Further on we shall show that any Reed Solomon code 1s quasi

cycllc.

Finally, Quasi Cyc11c codes of a certain type will be shown

to yield new codes wlth high minimum distance. e •g ., ~ 35 , 7, 16 ~
42,7,19
80,8,37

(96,8,46)
(112,8,54)
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Scott Vanstone: Asymptotic Propert1es pf Locally Euc11dean Designs_

An (r,l)-design D is a collection cf points and lines

together with an 1ncldence relation such that every pair of

dist1nct points determine a unique line and every point 18

1ncident wlth precisely r lines. D 18 called non-trivial

~ lf all the points do not lle on one llne. D 16 sald to be

locally Euclldean at a line ~ ir D ean be embedded in an

(r,l) design D' such that t 18 embedded in a line t' of

rt conta1n1ng exactly r points. If D 18 locally Euclidean

at every block, then D 18 locally Euclidean. It 18 shown that,

under certain condltlons, thls local property of a design i8

global and implles that D 18 embeddable in a finite projective

plane of order r - 1.

R1chard Weiss: ßYmmetrl,c Graphe.

For each finite Chevalley group G w1th an automorph1sm a

Inducing an involution on its Dynkin dlagram and for each pair

of conjugate classes a and ß cf maximal parabolic subgroups

exchanged by a, let r be the undirected graph with ver-G,a,ß
tex set a U ß and edge set (x,y), x € a, y € ß, X n y

parabo11cJ- Let ~ be the family of all such graphs rG,a,ß­

For each d € N, let f(d) be the largest value of lNA(X),

over all r in ~ of valency d where A = aut(G) and
G,a,ß

x € a 18 arb1trary (setting r(d) = 1 ir there aren't any

r € ~ of valency d). We diseuse the following:
G,a,ß, ~
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Conjecture: Let r = (V,E) be C1U arbitrary finite und1rected

connected graph, x E V arbitrary. Let A aut(r) and suppose

that AV i8 transitive and that Ax acts primitivelyon the

s~t cf nelghbors of x. Then lAxl ~ max (d!(d-l)t, f(d)J where

d denotes the valency cf r.

Special Session on Diagrams

An informal session lasting 1% bourst on Buekenhout diagrams t

was held on Friday morning. The session was directed by D.R. Hughes, and

the purpose was to exchange information and ideas. Amongst those taking

part, W.M. Kantor expressed his belief that one should consider diagrams

which involve
··L·

0-0 rather than .~ , and asked specifically

what could be said about geometries belonging to the fol1owing diagrams:

o L 0 0~ and ~polar space-o.

A.Ne~ pointed out that the diagram ~ gives rise to 0 K

and K to 0 K x===n 0 , where 02--0 is arbitrary, and
2 2

K

"

, both relatedandalso gave a specific example of 2./1
3

~3
to the group PSU(3,3) ~ G

2
(2)'. D.G. Higman gave an infinite family of

examples of ~,by taking points, hyperbolic lines, and

planes of the generalized quadrangle associated with the group C2 (k)

(Psp(4,k) in classical notation).

Marlt A. Ronan
Universlty of Il11no1s at Ch1cago
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