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The image reconstruction from projection has independently

arisen in a large. number of scientific fields. The problem

of findi~g the distribution of radionuclides indicating the

physiological functioning of t~e -numan body, the dynamic'

behaviour of the beating h~art of-a-patient,the internal

structure of the solar corona,·the defect of. material in

nondestructive testing have in.common the same mathematical

foundation, the Radon trans form. The aim of the conference

was to discuss t:he state of the art in the relevant parts

ofpure and app1ied math~matics and to show on the one hand

to the e~geneers the progress in the theory and on the other

hand to the mathematicians the actual problems in the appli­

cations. The meeting started with a review on tomography and

related topics of Nobel laureate for medicine 1979, Prof.

A. M. Cormack. The further lectures were: mathematical analy­

sis of the Radon transform, reconstruction from limited data,

reqularization and optimization methods for ill-posed problems

and applications in a variety of fields.

It would have been impossible to bring together this group

of specialists without the financial support of the Mathema­

tisches Forschungsinstitut. The excellent facilities created

a stimulating atmosphere which was appreciated by all the

participants.
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T. BETH:

A Fini't'e' Ve"rs'i'on" 'cf 'the' 'Radon Transfönn - Based "on Finit'e

Ge"ome"tri"e's' 'an'd" Err'ör"-Cör"re'c't'in'g Codes

Discrete Radon-Transform measurements can be considered as

vectors in the image of the linear mapping induced by the

incidence matrices of suitable finite affine planes. The

theory of error-correcting codes provides methods to "in­

vert" this mapping by the maximum-likelihood-decodinq

procedure. Results on geometrie codes prove that the (non­

invertible) check-positions in the case of CT-pictures can

be chosen to represent the known attenuation coefficient

of surrounding material (e. g. water) and thus be neglected.

Fast decoding algorithrns can be provided.

A. BJöRCK:

Computation"al" "comp'lexity of first kind integral equations

in two" d"ime"ns"i'öns

For the numerical solution of Fredho~m integral equations of

the first kind some regularization technique must be used.

Suppose that discretization gives the system of linear equations

Kf = g, where K is an N x N matrix. Then we can either use a

Tikhonov regularization and solve the system (KT K+p2 I )f = KTg

by same direct methode Alternatively an iterative regularization

e. g. the Landweber iteration f k+ 1 = fk+akT(g-Kfk ) can be used.

In two dimensions the direct method is in general computationally

feasible only for a rather coarse grid, say n = N1/2 < 30. ~
However, in many important applications (including CT) the

kernel of the integral equation has properties, which can be

used to reduce the computational complexity (both number,of

arithmetic operations and storage) for the direct and iterative

approach. We give complexity results for the cases when the ker-

nel is product separable and/or cf convolution type. In the

latter case the'matrix K will be a block Toeplitz matrix where

the blocks also have Toeplitz structure. We mention arecent

algorithm by which such systems can be solved in O(NlogNlogN)

arithmetic operations.
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Y. CENSOR:

Intervals in Linear and Nonlinear Problems of Image Reconstruction

In the °series expansion" approach to image reconstruction the

mathematical formulation takes the form of a system of equations

f. (x) = P4' i = 1,2, ••• ,m, where f. : lRn - m, XEmn . The Jacobian
~ - ~ 1-

matrix of this system is generally huge, sparse, and lacks structure

in its sparsity pattern. The inevitable'inconsistency of the system

and the fact that it' describes the real problem only approximat~ly

sugqest its replacement by a system of intervals
" .

P, - Ei ~ fi(~) ~ Pi + Ei' i = 1,2, .•• ,m. An approximate solutionto the

image reconstruction problem~ is found by either aiming at an arbitrary

point that solves the intervals system (feasibility problem) or by

solving an optimdzation problem over the interval constraints. We

describe a method for the nonlinear feasibility problem that arises

in Emission Computerized Tomography and another 'family of iterative

algorithms for interval convex programming for the case of linear

interval inequalities that arise from Transmission CT.

A. M. CORMACK:

Early TO!llOqr'aphY' ·"and' Re'l"at'e'd' Top'i'cs

A personal account of the author's co~nection with CT in two phases.

The first started in the Groote Sch~ur Hospital, Cape Town in 1956

and continued in a desulto,ry fashion until the publication of two

papers in '63 and '64 which attracted almost no attention. "The se­

cond phase st~ted around 1971 with the "discoveryn of the work of

Radon, Cramer and Wald, Bracewell and others and, of course, HOuns­

field and the EMI-soanner. Developments using agencies other than

X-rays (e.g_ ultrasound and nuclear magnetic resonance) were dis­

cussed briefly. The use of protons in CT was discussed in more de­

tail and comparisons of X-ray and proton scans of organs were pre­

sented.

A. M.CORMACK AND E. T. QUINTO:

ARadon Tr"ans'form 'on "Sph"e"r"e's" 'through 'the "Ori"gi'n" "iOn "Rn

On C (Rn) we invert the Radon trans form that maps a function to

its mean values on spheres containing the origin. Our inversion

formula imp1ies that if fEe (Rn), and its trans form is zero on

                                   
                                                                                                       ©



- 4 -

spheres inside a disc centered at 0, then f ist zero inside

that disc. We give functions fEe (Rn) whose transforms are

identically zero and we, give a necessary condition for a

function to be the transform of a rapidly decreasing function.

We show that every entire function is the trans form ef areal

analytic function. These results can be applied to solutions

to the Darboux differential equation.

A. R. DAVIES:

Mathema"t'i'c'al "a·s'pe·c't·s' 'o'i' 'e'l·e·c't'rön'-'de'n"s'i·ty 're'cÖn's't'rü'c't'i'on' 'in

crysta'l"l'ography 'from X-ray diffraction data

The electron-density function p(~), ~EV c m3 , within an unit

cell of a crystal is defined by a Fourier series whose coefficients

F(~), ~ Et 3 , are in general complex. In X-ray diffraction experi­

ments only the moduli IF(h) I can be measured, while the phases are
- 3

lost; same phases can usually be estimated on a sub-set ~ c ~ by

direct (computational) or ether rnethods. In many biophysical si­

tuations, however, ~ is small and these directly determined phases

when included in the series for p(~) yield only low-resolution

maps. This paper describes a self-convolution method on the Fourier

lattice ~3 which can be used to extend phase information into

~3,1P, and hence to improve resolution. Certain features of this

method should prove of direct interest to workers in CT. These

include (i) imposing real-space non-negativity constraints while

working in Fourier space; (ii) .an iterative method for minimizi~g

very large non linear least-squares functionals by an alternating

plane block-diagonal approximation to the full Gauß-Newton normal

equations; (iiil using a 3-parameter continuation method to faCi1e

tate convergence of nonlinear least-squares fitting.

u. ECKHARDT:

Semi-infinite systems of inequalities in CT

A iterative method was presented for solving semi-infinite systems

of linear inequalities. This method has the properties of converging

linearly and using only column information in each iteration step.

Moreover, it gives an indication whether the problem under consi­

deration has a solution or not. Numerical experiments showed that
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its convergence behaviour i8 similar to the method of Agmon

so it seems weIl suited for applications in computerized torno­

, qraphy.

T. ELFVING:

Methods for entropy maximization with application to image

reconstruction

In ~aqe reconstruction the relation between the object, f(x),

and the measured projection data, b, is given by b = Rf, where R

is the Radon transforrn. It is known that a finite number of

projections do not uniquely determine the object. To select a

unique.solution one can adopt some optimization criterion:

max h(f) such that b = Rf. In the discrete case the object f

1s sampled over ·a rectangular grid and the operator R is a

matrix, typically both large and sparse. The entropy is, for

the discrate case, defined as E filn f i , and can, under cer­

tain assumptions, be interpreted as the most likely solution.

We will in this talk survey methods for computing the maximum

entropy solution of Rf = b, with special attention on their

efficiency for large problems.

H.; W. ENGL:

Behaviour of solutions,.,of linear equations under perturbations

of the- oPe'r'a'tor wh'ich' "do n'o't prese'rve' the' 'rank

Let X be a Banach space, Lh a parameterized family of cornpact

perturbations ~f the identity, fhER(Lh ). We assume that for

sufficiently small h~O, dirn N(~) = n, but tha~ dirn N(Lo ) may

be ~n. The problem we consider i8 to give reasonable sufficient

conditions which ensure the convergence of solutions of ~x=fh

to solutions of Lox=fo . We assume that Lh~Lo,fh+fo as h·O and

that the Riesz index of La equals one; let P be the projector

onto N(Lo ) parallel to R(Lo ). Then, if there exist an operator

R:N(Lo)+N(Lo ) with dirn N(R)Sn and functions v1,~ .• ,v4 such that

1~-Lolf:;v1(h)+v2(h), IfPlnlN(L )-v1(h)RII~v3(h), IIPfh [f;:;;;V4 (h)

with v 2/v1+0, v 3/v1+0, while V~/V1 rernains bounded as h+O, then
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there exists an n-dimensional linear submanifold of the solu­

tion set of Lox=fo all elements of which ~re limits of solutions

of LhX=fh under.h-+O.
We indicate how this result could be applied to sensitivity

analysis of underdetermined systems of nearly linearly dependent

linear equations as they might arise in image reconstruction

problems.

R. GORENFLQ:

On' 'th"e "c"o'n"t'i'nui'ty' 'o'f' 'th'e" C'o'n's"t'r'a'i'n'e'd' "J;is'e'Üd'o'-'i"nve'r'se

Let U be an E-space*), Z = mm (with m E~) strictly normed,

AEL(U,Z), Sell closed and convex. Then T := A(S) is convex, and

S bounded =) T closed. For T being closed let PT be the metric

projector Z -+ T. For ZET the norm-minimal UES with Au = Z dces

exist uniquely, we write ü =: A~ Z. For T closed we set
+ + +AS a := AS PTa for all aEZ. We call AS the "S-constrained pseudo-

inverse" •

Ma'in" 'r'e's'ul'ts: T is a polyhedron => A; : Z -+ S is continuous. Else

A~ restricted to the intrinsic core of T is continuous.

Special attention is paid to the case of U being a Hilbert space.

Applications to constrained interpolation and fitting problems

and to numerical treatment of first kind integral equations are

discussed.

Acknowledgment: The results have been obtained in cooperation

with Martin Hilpert (Freie Universität Berlin) •

*) See R. "B~ Holmes: A course on optimization and best approxi-

mation Springer-Verlag Berlin etc. 1972: Areal Banach space U is 4It
an E-space if it is reflexive, strictly normed, and

F. A. GRUNBAUM:

Rec'onstruction wi th arb'i'tr'ary' d'i'r"e'c't'i'on's':' 'dimens'iöns 'two and three

The convolution algorithm introduced in [I] is discussed with

special emphasis on the relation between the angular range of the

projections and the "quality" of the reconstruction.
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The same method can be extended to the three dimensional case

for reconstruction of a function from the integrals on all

the planes normal to an arbitrary set of directions in space.

The theory developed in [I] can be properly modified to give

abound on the reconstruction error for an arbitrary choice

of directions in space. Different choices of directions are

considered from this point of view.

The three dimensional problem is relevant in Nuclear Magnetic

Resonance.

[I] M. E. Davison and F. A. Grünbaum Convolution a~gorithms

for arbitrary projection angles. IEEE TNS NS-26 April 1979

2670-2673

J. HEJTMANEK:

Re"C'o'n"s'tru'ct'i'Ön 'o'f' De'n"s"i"ty· FUh'c't'i'o'n-s' "f'r'oili Ra"d'i'o'g'r'aph's as an

Inve'r's'e" Prob'lem 'i-n' ·th·e· 'SC'ät-t'e'r'i'n'g' The'Ön'- 'o'f "th'e' L'io'e'ar Trans­

port Operator

Scattering theory of the linear transport operator was initiated

by J. Hejtmanek (1975) and further developed by B. Simon (1975)

and J. Voigt (1976). A survey about this theory can be found in

the book: M. Reed, B. Simon, Modern Methods in Mathematical

Physics, vol. 3 (Scattering theory), 1979. The linear trans-

port equation, which describes the time behavior of the photon

density function in tissues for the CTmodel, is a simple version

of the neutron transport equation, which was the foeus of much

mathematical work during the last 30 years for reactor engineers

~ and neutron physicists. It is proved that the Heisenberg operator

is a multip1ication operator, and that it is a one-to-one mapping

from the positive cone L:(R2XS1 ) onto itself. The inverse problem

can be so1ved by the inverse Radon transformation formu1a.

G. T. HERMAN:

Computed Tomography provides us with values (CT numbers) assigned

to volume elements (voxels) which are abutting parallele-pipeds
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filling a portion of three-dimensional space. Organs can be

di~tinguished from their immediate surrounding if the CT

numbers of voxels just inside the organ are different from

those of adjacent voxels just outside the organ. The boun­

dary between the organ and its surrounding is then reprensen­

table by a set of faces separating pairs of voxels.

In this paper we give a set of definitions for an appropriate

three-dimensional discrete topology and prove some basic results.

One of these yields a powerful representation of organ surfaces

by a directed graph of special properties, which in its turn

allows us to detect organ surfaces in multilayered computed

tomograms in a computationally efficient way.

A. HERTLE:

•
On 'th'e probl'em 'of we'l'l'-p'o's'edn'e's's' 'cf' 'inve'rt'in'g the' Radon Trans'form

We consider the ~adon transform (R.t.) as an operator R from

L 1 (]Rn) to L' (Sn-,x lR) and start by the assertion that the problem

of inverting the R.t. cannot be well-posed on L1 : There exists a

sequence (fk ) in L', all f k being radial and having support in

n-'the unit ball, and (Rfk ) converges to 0 uniformlyon S xlR,

'but (fk ) converges at no point and not even weakly in L'. Under

this aspect we now study the problem in two directions

1) What further conditions must be imposed on the convergence

of the Radon transforms (Rfk ) to enforce uniform convergence

on the back transform space (fk )?

2) How can the R.t. be extended (from functions to measures),

such that its inverse becomes continuous'under a natural topo-

logy (on measures)? •

Concerning question 1) we show:

R- 1 fram R(wn-
O
') to L~ is continuaus, i. e. uniform convergence0), 0

of (Rfk ) in (n-') derivatives implies uniform convergence of (fk ).

Concerning question·2), we extend (injectively) via the identity

Rf(x,p) ~ ~~ f f(y)dy the R.t. of L'-functions to finite
oPx·y<p

measures M( lRn ). Now the R. t. is a continuous operator R from

M( ]Rn) to M(Sn-l x lR). We proove:

The inverse R.t. of measures R-':R(M( mn » ... M( mn)is continuous

under the vague topology on measures.
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Finally, we discuss some consequences on the range of the R.t.

f 1 f . .First the range of the R.t. ° L - unct10ns 1St not closed. Next,

we note a, Ll-phenomenon of the R.t.: Singular measures, as

ö(r-l), are mapped on L'-functions (or even on Ck-functions).

So the back transform of a "nice" function rnay be highly singular.

At last a characterization of the product rneasures on sn-lx ~

contained in the range of R shows that there are not "too many"

measures.in the range. Thus, in spite of (f
k

) may converge (vagualy)

to a measure when (Rfk ) converges uniformly, this would not occur

·very often n •

A. K. LOUIS:

Approximation o'f the 'Radon' "'trans'form 'from Sampies in Limited Range

In order to reduce scanning time modern X-ray scanners provide

projections only in a restricted range [O,~] with ~ < n. We con­

sider the reconstruction of densities from p+l cornplete projec­

tions in [O,~]. An extrapolation procedure is given to achieve

approximations gp of the data in the missing range, in order to

apply the fast reconstruction algorithms. The number of operations

of this procedure is a polynomial of total degree three in the

number of the data. It is shown t~at L2-error of the approximated

picture is of order p-a if the original belongs to the Sobolev

space H~. The validity of the error estirnate is investigated by

numerical results. 3D-pictures of reconstructions are 9iven and

artefacts are analyzed by discussing the null space of the Radon

transform for finitely many angles.

• P. LUX:

Redun-d'ancy 'i'n '3'6'0°, 'di'r'e'c't' 'f'an" b'e"am 'r'ec'Ön's't'ructi'on

Redundancy in 360
0 direct fan beam reconstruction gives the possi­

bility of reconstructing images with less information. For parallel

ray geometries 1800 reconstructions are standard techniques.

The problems, arising with fan beam algorithm, using only apart

of the information, either in the measured projections or in angular

positions, are discussed.

The paper will include background presentation of theoretical results,
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main steps of mathematical derivation and demonstration of

results using the algorithm for the reconstruction of mathe­

matical phantoms and measured information.

R. B. MARR:

On 't\.to' 'appr'oa'che's' 't'o' '3D' 'r'e'c'o'n's't'ruc't'i'On' 'i'n' NMR 'z'eü'g'm:a't'Ogra'phy

In'nuclear magnetic resonance (n.m.r.) zeugmatography, the

primary data pertains to integrals of the unknown, nuclear

spin density f (X, Y, Z) over 'p'l'a"nes instead of 'I'i"nes in R3 . Two

nriatural" approaches to reconstructing f from such data are: 4It
(1) By numerical implementation of the inverse Radon transform

in three dimensions (the' 'di'r"e"ct approach), and (2) by application,

in two successive stages, of existing well-known algorithms for

inverti~g the two-dimensional Radon transform (the" two-"stage

approach). These two approaches are discussed and compared, both

from a theoretical startpoint and, thraugh computer results obtained

with real as weIl as simulated n.m.r. data. For the cases studied

to date the twa methods appear to produce qualitatively similar

results.

A. NAPARSTEK:

Continuous and discret image reconst"ruction formul'as for fan-beam

da"ta with minimal"ity condi"tiöns

In this paper we present mathematical results on image reconstruc­

tion from fan-beam projections in which the data set is either mi­

nimal or nnearly minimal 11 • We present the analogue for divergent .-

, beams of the Radon Inversion formula for parallel beams over 1800
,.,

and discuss its derivation. We also give a discrete implementation

of this inversion integral and demonstrate its practical limita­

tions. We then show how the previous approach can be modified to

obtain new inversion integrals, and from these suitable numerical

implementations which da not have the practical limitations re­

ferred to earlier.
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M. Z. NASHED:

Continuous Analogues of Iterative Methods of Cimmino and

Kaczmarz for Integral Equations of the First Kind and Their

Moment Discretizations

Kaczmarz's method and variants thereof have been used effective­

ly in the numerical resolution of linear algebraic equations

arising from tomography and other areas of reconstruction from

projections. The method is applied to the system of equations

arising from full discretization. In con~rast, Cimmino's method

which has universal convergence properties similar (in theory)

to Kaczmarz's method, is not as widely advocated in practice.

In this talk, we will present continuous analogues of the itera­

tive methods of Cimmino and Kaczmarz for integral equations of

the first kind and the integral equation of image reconst~uction,

subject te appropriate c?nstraints. These analogues are studied

in particular in the framework of moment discretization (rather

than full discretization) of the integral equations. Same pre­

-liminary results on convergence properties will be given.

F. NATTERER:

The Attenuated Radon Transforrn

In (single photon) emission tomography one has to solve the

integral equation
+00

(R~f) (s,w) = J f(x)e-(MlJ) (x,w) dt = g(s,w)

for both the activity distribution fex) and the attenuation

distribution lJ(x). Here, x = sw + tw~, w = (ces ~, sin ~),
~

w = (-sin ~, cos ~).

It is shown that MlJ can be determined to some extent from the

co~siste~cy conditions in the range of RlJ. More precisely,

(MlJ) (x,w) is determined up to an additive constant on

supp(f) xs 1 for f a finite linear combination of Dirac mea­

sures.
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M. OPPEL:

Besides Radon's paper (1917) there is a theorem of Cramer-Wold

(1936) which is connected to computerized tomography. Starting

fram this and results of Reugi and Gilbert (1952) on the num­

ber of necessary projections the problem of reconstruction of

a measure from its projection measures is discussed more generally.

Under appropriate conditions the following assertion holds: If

"n and II are Borel measures on X, <t> i5 a set of rnappings q>: X -.. Y •
. -1

and II is determined uniquely by (1l0q> : q>E<t» then "n converges
-1 -1weakly to II iff vn0q> converges weakly . to llOq> for every

~E~. In more special cases those sets <t> are described and proce­

dures for reconstruction of p fram (poq>-1 : q>E<t» are indicated.

L. R. OUDIN:

The Radon Transform in R2 • The distributions used for elemination

of an additive noise

The Radon Transform R(f) of a continuous function f with compact

support is reminded. Next, the transform R(T) of a temperate

distributio~ is expressed. Choosing distributions of r~pid descent,

a generalization of the properties found for classical Radon images

of square .inteqrable functions with compact support is evidenced.

Namely two distributions are used in order to find the analytical

correspondence between the circular harmonics of a function fand

their respective images by R. The use of distributions gives rise

to four classes of applications: ~

1) Restitution ofcircular harmonics from Radon image; its advanta~.

2) Compatibility canditions upon circular harmonics

3) . Algarithmic processes for elimination of an additive noise

4) Convolution between distributions. Applications.

At last, a Table of systematic Radon Transforms is built.
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T. M. PETERS:

Resolution improvement to C.T. systems using aperture function

correction

Most C.T. systems, in order to maximize photon capture utilize

detectors whose size tends to limit the attainable resolution

of the system. This paper demonstrates the relationships between

the aperture function, sampling and the resolution in the recon­

structed image, and shows that by judicious application of Wiener

filtering techniques, significant improvement in resolution may

be ~ttained. Practical demonstrations using a positron emission

tomoqraphy system are presented.

E.-P. RUHRNSCHOPF:

Nonlinearity and Inhomogenity Effects due to the Exponential

Attenuation of Radiation

Ein CT-Meßsystem liefert nur eine 'exponentiell verschmierte

Radon-Transformierte' der gesuchten Funktion ~:

- -R ( )(1) Rll-= - log fell .,n dW(n).

In dieser Form lassen sich verschiedene Effekte beschreiben,

wenn man die Verteilung W z. B. als Detektorempfindlichkeits­

profil, als Energiespektrum oder als statistische Verteilung

von Mikrostrukturen interpretiert. Aus (1) folgt die fundamen­

tale ~ngleichung

(2) Rll ~ Rll = f Rl.l dW.

Abschätzungen für den Nichtlinearitätsfehler, Korrekturverfah­

ren etwa für die Strahlaufhärtung sowie Bildbeispiele über typi­

sche Phänomene bei der Bildrekonstruktion werden gegeben.

Uber die Nichtlinearität hinaus führt die Berücksichtigung der

Zufallsnatur der Strahlungsschwächung und Meßwertgewinnung z~

einem inhomogenen stochastischen Prozeß mit typischen Auswir­

kungen auf die Rauschtextur des rekonstruierten Bildes.

H. SCHOMBERG:

Solved and unsolved problems in nonlinear object recons"truction

fram projections

Scanninq a patient's cross-section with an X-ray CT-machine is
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mathematically modelied by the Radon trans form, and recon-

structi~g it amounts to numerically inverting the Radon trans-

form. If, however, projections are taken by means of ultrasound

waves or electric currents (instead of X-rays), then the appropriate

mathematical models become certain nonlinear variations of the Ra­

don transform, or, alternatively, fldirect fl problems for certain

partial differential equations. The reconstruction then amounts

to findi~g an acceptable solution of the respective, nonlinear

ninverse~ problems. Some results (positive as weIl as negative)

on the uniqueness of the reconstructions in case of ideal data

are reported. Also, numerical methods for practically computing ~
a solution are presented, along with numerical test results. Due

to Fermat's principle the situation in ultrasound CT is still

man~geable, whereas in electrical CT pessimism is appropriate.

G. SCHWIERZ:

. Samp"l-i-n"g- "-" "a"n"d Di·s"c·re't'i'z"a·t"iÖn· "-' Pr"obl'erns 'i'n' X-ray CT

Sampling- a~d discretization - problems are of great signifi­

cance for the im~ge reconstruction by means of digital compu­

ters.

By the aid of a fundamental theorem of communication theory,-

the so called sampli~g theorem, the question of how fine the

discretization should be chosen, can be answered. It is shown,

that due to the finite number of measurernents the filtering

process caused by the limited width and he~gth of the detectorele­

ments is a necessity for the reconstruction of a clear and un­

di~turbed image. Furthermore, if the measurementsystem fullfills ...

the Nyquist condition, it can be shown, that by suitable choice ~

of the discrete kernel and the adequate interpolation of fil-

tered data before backprojection, the discrete convolution per­

farms exactly the filtering process, which is demanded by theory.

D. C. SOLMON:

St"abili-ty "and" cO'n"s'i's"t"ency Condit"ion"s 'for th'e divergent ~eam

and parallel Bearn X-ray Transforms

Let Pef(x) = J f(x+t0)dt, Da f(0) = f f(a+t0)dt, 0ESn - 1 ,XEe~,aERn,
o

                                   
                                                                                                       ©



- 15 -

be the parallel beam and divergent beam X-ray transforrns

respectively. For a finite set of directions (61 , .•. ,em)

or sources (a" ... ,am), let P = (Ps,'···' Pern) and let

D = (D , ••• D ). The operators P and D are studied as maps
a, am

between appropriate Hilbert spaces. Sufficient conditions that P

and D have closed range (and hence a continuous generalized in­

verse) ·are given. Also, consisteney eonditions are given for the

r~ge of these operators.

w. SWINDELL:

An Analog Implementation of the Inverse Radon Transform

I have deseribed an (ineoherent) optical analog computer that

performs the filtered back projeetion reconstruction method to

clinically derived X-ray transmission data. Data are reeorded

on photo graphie film in sinogramformat with high spatial re­

solution. The film also serves to take the logorithm of the

X-ray intensity as required by the algorithm. The hardware uses

optical convolution methods to effect the algorithm and the out­

put image is displayed on a CRT in special display format. Our

system has a high detective quantum efficiency of about 70 %

and we now obtain image reconstruction that are equivalent in­

spatial, density resolution elose to those obtained with cornme~­

cial digital scanners like the digital systems. We are limited

only by photon countery statistics.

o. J. TRETIAK:

A Mod'e"l"för' Optimal" Re'cön"st"ru·c·t'iön

The problem of inverting the R~don trans form frem discrete

data is considered as the approximate evaluation of a linear

functional whose domain is a bounded subset of a linear space.

A penalty function is defined which evaluates both random and

systematic errors, and the optimal reconstructional is obtained

as the argument of a min-max problem. Several simplifications

are developed for this extremal problem, and the method is applied

to find optimal reconstruction kernels for same problems with

noise and/er missing data.
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w. WAGNER:

Reconstructians fram incomplete scan data

The quality of CT-pictures is limited by the applied patient

dose. To reduce dose, the collection of scan data should be

restricted to that regionwhich is of medical interest (partial

scan data). However, because data be10nging to ray paths outside

the region are then missing, usual reconstruction algorithms

produce severe picture distoritions. Recently, a method has

been introduced which compensates for this (e. g. W. Wagner,

IEEE Trans. Nucl. Sc., NS 26, 79, 2866 and R. M. Lewitt, Med.

Phys. Val. 6, 79, 412). Its basic 'idea is to combine artificial

data, which satisfy some phy~ical constraints and fit the slice

outline, with the partial data before starting the reconstruc­

tion. An improved version of this method is now described. Images

which were reconstructed from real patient scans (skull, lung

and abdomen), including one scan of outstandingly high spatial

resolution, are presented.

G. WAHBA:

Regularization," ero's'S' Cal'idation an'd" 'the Landweber 1terat'ion

For Large L'in'e"a'r 'SY's't'ems

Consider the linear system znx1 = Knxpfpx1+enx1' where the subscripts

indicate dimensions. Let Snxn be a rank n matrix and Qpxp be
strictly positive definite. A regularized estimate fA of f is

the minimizer' of Ils(z-Kf)11 2 + Af'O-1 f and is given by
., 1/2 - - 1- - 1 2 '1 (S.z., u ') 1/2

fl\ Q (K'K+AI)- K'z 2 (1+A/d. )-, ] 0 v.
j=1 ] d j ]

1/2 -where K SKQ !z = Sz, and the Uj,Vj , are the left and right

eigenvectors of K corresponding to the 1 non zero eigenvalues

d 1 , ••• ,d1 . Assuming that Ee = 0, EeS'Se = 0
21, then the gene­

ralized cross validation (GCV) estimate of A is the minimizer

V(A)

~I SZ-Skf11
2

1 R. 1
( 1-- 2 1+A7d . 2 )

n j =1 ]
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The calculation of the GCV estimate of A is out of the question

for large n,p. Consider the generalized Landweber iteration

fk ~k-1 + ßQK'SI (SZ-SKfk - 1 ).

Letting fk = Q-l/2 f k, this can be rewritten

fk (I-ßK 1 K)fk - 1 + BK';
and it is known that

-k R, 2 k 1" (z, u . )
f = L (1- ( 1- Bd. ) -) ] v .

j=l J d j J

provided B < 2/d1
2 , hence

k R, 2 k 1 (Sz,u.) 1/2
f = I (1- ( 1-Bd. ) - ) ] Q v .•

j=l J d j J

Thus the darnping factor (1+A/d. 2 )-1 in the regularized estirnateJ .
is replaced by the darnping factor (1-(1-ßd. 2 )k-') in the gene-

ralized Landweber k th iterate. The pair (k~ß) play the role of

the regularization parameter A in damping out "high frequencies".

The new result is that the GCV estirnate of (k,B), which shares

the optimality properties of GCV estimates, is the minimizer of

V(k,ß)

•
A search for~the minirnizing k for several choices of ß is thus fea­

sible for fairly n and p. Similar results apply to the cornpressed

Landweber iteration.

Berichterstatter: A. Louis
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