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Fastringe und Fastkorper

13.4. bis 19.4.1980

‘ Die Vortrége und Diskussionen dieser Tagung behandelten
vielfdltige Themen aus der Theorie der Fastringe und Fast-
korper. Folgende Themenkreise seien genannt:

- Distributiv erzeugte Fastringe und Verallgemeinerungen.

- Pastringe von Polynomen und formalen Potenzreihen.

- Spezielle Fragen der Pastkorpertheorie (Konstruktion
von FK, Dicksonsche FK mit Primzahlrang, Galoistheorie).

- Fastringe von Gruppenabbildungen und Fastringe stetiger
Funktionen. )

- Planare Fastringe, Steinersche Neoringe, Beziehungen zur
Geometrie. )

Die Leitung hatte G. Betsch (Tiibingen). -

Gleichzeitig mit dieser Tagung fand im Mathematischen
Forschungsinstitut Oberwolfach eine Tagung iiber "Finite
Geometries" statt (vgl. Tagungsbericht 17/1980). Es gab
‘ sehr anregende Diskussionen zwischen Geometern und Fastring-
‘ Theoretikern. Die Programme der beiden Tagungen wurden zeit-
‘ lich so aufeinander abgestimmt, daB die Teilnehmer auch
einen erheblichen Teil der Vortrédge der jeweils anderen
Tagung mithoren konnten.
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Vortragsausziige

H. E. BELL:

On Algebraic and Periodic Near-rings.

For rings R, a theorem of Chacron asserts the equivalence

of “the following properties:

(A) R is periodic - that is, for each x € R, there exist
distinct positive integers m, n for which M o= xM.,

(B) R is algebraic - that is, for each x€R, there is a

polynomial p(x) with integer coefficients, and an
integer n 21, such that x" = xn+1p(x).
Property (B) has several possible extensions to near-rings,
and I conjecture that none of these imply (A). However, with
some additional commutativity hypotheses on N, certain
variants of (B) do imply (A), as the following theorems

indicate.

Theorem 1. Let N be a d.g. near-fing such that for each

X € N, there exists an integer n=1 and an element p(x) of
the subnear-ring generated by x, for which ek =.xnp(x).

If the nilpotent elements of N are multiplicatively central,
then N is periodic and commutative.

Theorem 2. Let N be a near-ring with 1. Suppose that for each

X, yeiﬁthere exists an element p(x) which is a sum of.
positive powers of x and negatives of such, for which
xy = yxp(x). Then ¥ is periodic, and (i, +) is abelian.

G. BETSCH:

Some results on near-rings of group mappings.

Let (', +) be a (not necessarily commutative) group,! # {O},
and let G be a group of automorphisms of ', written as_left
operators of I". Ve may assign to the pair (G, ") two near-
rings of group mappings:
I. The right near-ring L{G) distributively generated by G
and acting on I" from the left;
I1. The left near-ring ¥ ) consisting of all mappings

Forschungsgemeinschaft ' © @
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n:l—s Yy —¢n with the properties
i) On = 0, ii) (g ¥)n = g(y n) for &ll ge G and allyel.
Mg(r) acts on I from the right.
We confine our study mainly to M:= MG(f').
Assume there exists an element ye/‘ such that yM = r,
Then the following results hold:
1. The semigroup of all distributive elements of M coincides
with Homg (r,r = HomL(G)(r' ry.
2. Let N be a subnear-ring of M, and define G:= AutN" and
N:= M—(f') Obviously, G€ G £Aut/® and N& N &M,
Now, if N is dense in M with respect to Jacobson's finite
topology, then G = G and consequently N = M.

J. R. CLAY:

Tactical configurations having p affine planes sharing a

pencil of lines.

A non-trivial group Q of fixed point free automorphisms of
a finite group (N, +) is all one needs to apply G. Ferrero's
method of constructing a planar near-ring (N, +, .).

{Na +b)0#a, a, be N} then (1i,83, €) is always
a tactlcal conflguratlon. H. Karzel noticed that{' {1. -1!
acting on (Z,, +) in this way actually produces a tactical
configuration (Zg,ﬂ. €) with three substructures (Zg’zi’ €),
i =1,2,3, each of which is an affine plane, and any two
sharing 29/3Z9 as a pencil of lines,
Actually if (N, +) = (Zp2, +), p an odd prime, then the units
U(Z;2 ) has a subgroup of order p-1 which defines a @ ,
fixed point free, and of order p-1. The corresponding planar
near-ring (N, +, .) gives a tactical configuration (N, 8, €)
and each ¥; = 2,2/pi 2 V {Naj + kp + (i-1)]1$36p, 0 2k=p-1f

makes (Zp2, Z&, €) an affine plane. Also, i # t implies
:{i n zt = Zp2/pr2 .

Note: Elements of 8 of the form Na are:
~pr2 , Na1, Naz, ooy Nap .
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C. FERRERO COTTI:

Near-rings with involutions, planar near-rings, and near=

rings with particular ideals.

1. An involution j on & near-ring (n.r.) N is an auto-
morphism of N' such that 32 =i and j(xy) = j(y)i(x).
The involutions of & n.r. N are studied and constructed,
using the canonical homomorphisms N f—é»N/A(N){

The theory also uses m-homomorphisms of Jordan and of Lie
and the center (anticenter) of N,

2. Pilz asked for an example of a planar near-ring with a
non-planar homomorphic image. We obtain the desired example.
Typical auxiliary results:

- = Every proper homomorphic image of a finite planar n.r.

is planar.
- Every proper homomorphic image of a planar ring is planar.
~ Let N be a planar n.r. and I one of its broper ideals.
The n.r. N' = N/I is planar iff there are no elements
xeAj(N)\I such that ax = bx + i, where a Z b and i€ I.

3. We study the n.r. in which every proper ideal is maximal.
In the non-trivial cases, such a n.r. admits at most two
proper ideals. A simple n.r. in which the proper right ideals
are maximal has at most two proper right ideals.

For n.r. in which every proper ideal is prime, a typical
result is: Let each proper ideal of the n.r. N be prime.
Then N has exactly two minimal ideals iff N is a semiprime
non-prime n.r. - Another interesting result from the works
of Ferrero-Cotti, Suppa, Pellegrini, G. Rinaldi, F. Rinsaldi,
is the following

Theorem. Let N be a zero-synmetric n.r. and let each proper
ideal of N be prime. Then either the set of the ideals of N
is totally ordered with respect to inclusion or N admits
exactly two minimal ideals I, J; the set of the other ideals
of N is totally ordered with respect to inclusion.

Deutsche
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G. FERRERO:

Steiner neo-fields.

A Steiner neo-field (SNF) is a structure (N; +, .) such that
1) (N; +) is & loop with zero O and the identities a+a = 0,
a+b = b+a, a+(a+b) = b; 2) (N\{0}; .) is a group, and

Oa = a0 = 0; 3) the product is (one-sided) distributive with
respect to the sum.

The SNF are useful in studying Steiner triple systems.

The following problems are of interest in geometry: To obtain
the SNF with given additive loops, or given multiplicative
groups, or given automorphisms. The second problem is diffi-
cult because there are a lot of SNF having the same multi-
plicative group: for example, a certain construction yields

2 2
2k +(6k+1)%-1 SNF with the same multiplicative group C%k+1 .

Any finite nilpotent group G # C9 is the multiplicative
group of @& SNF iff it has order 6k+1 or 6k+3.

An ebelian divisible group is the multiplicative group of a
SNF iff it is without torsion two. Another typical result
from the works of Perrero-Gallina-Scapellato is the following
Theorem. Let ¥ be the set of the prime numbers p = 6k+1;

let G be a T -group, and let the order of each element of G
be a prime power. Let § € Aut G be a group of odd order.
Then there exists a SNF N whose multiplicative group is
isomorphic to G and with a group of automorphisms which
operate as & on N:{0}, and moreover, which admits as sub-
neo-fields each union of ‘a multiplicative subgroup and {Oi.

Y. FONG:

A theorem on strictly semi-perfect near-ring modules.

Let N be a zero-symmetric near-ring. Here we define a
(strictly) semiperfect near-ring N-module M by the following
two properties: (1) M is projective and (2) every factor
module of M has a (strictly) projective cover. By applying
the result of A. Oswald (Ph. D. Thesis, Theorem 3.1,
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p. 32, 1973) we obtain a similar result which states: If U
is a submodule of a strictly semi-perfect near-ring module
M then there exists a submodule P of M such that P is a
strictly projective cover of M/U and a submodule V of ‘M
with (i) M= V@ P with V€U and (ii) PNU is a strictly
small submodule of P and hence of M. The last statement in
(ii) guarantees the following theorem: If M is strictly
semi-perfect then M/J(M) is semi-simple. Here J(M) is the
radical of M. ‘

D. GRUGER:

Bemerkungen zur Galoistheorie in Quaternionen-Fastkdrpern.

Es sei QK(+,.) der Quaternionen-Korper iiber dem kommutativen
Kﬁrper K und ¢ ein gekoppelter Homomorphismus von QK(+,.)
mit kommutativer Dickson-Gruppe [, , die nur innere Auto-
morphismen enthalte. Eine vorgenommene Charakterisierung von ¢
ermdglicht Aussagen iber das Verhalten von Automorphismen
und Teilfastkorpern des abgeleiteten "Quaternionen-Fast-
korpers" Q;(+,.) = QK(+,0). Man erh#lt schlieBlich:
K istgaloissch in QK(+,0)~¢=$'r; liegt in einer Kleinschen
’ Vierergruppe.
Die unterschiedliche Gestalt von ¢ in den Fdllen K =R und
K = @ bewirkt, daB der reelle Quaternionen-Kérper hierfiir
keine interessanten Beispiele liefert, wohingegen mit dem
rationalen Quaternionen-Korper ein solches konstruiert
werden kann, in welchem eine "galoissche Beziehung" zwischen

Untergruppen der Galois-Gruppe und Teilfastkdrpern nicht
besteht.

R. D. HOFER:

Maximal left ideals in near-rings of continuous functions.

Let (G,+) be a (not necessarily abelian) topological group
and let ’ﬂéG) be the (right) near-ring, under pointwise
induced addition and composition, of all continuous selfmaps

Deutsche
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of G which leave the identity element (denoted by 0) of G
fixed. For £ € M, (G) let 27 (£) {x€6 : x # 0 and f(x) = of
and for any nonzero p€G let M {f e ﬂ,(G) : f(p) = of.

If G is discrete, Marjory Johnson [Maximal right ideals

of transformation near-rings, J. Austral. Math. Soc.19(1975),
410 - 412] showed that a left ideal ¥ is maximal iff either

M = M_ for some nonzero p, or is maximal among the ideals I
for which Z*(f)/\Z*(g) is infinite for every f, g €I.
Theorem. Suppose G is a compact,first countable, O-dimensional,
Hausdorff group. (I).If M is a maximal left ideal in 7,(G)
then {Z*(f) : fen} is an ultrafilter. (II).If & is an
ultrafilter of sets of the form % (f), then

{£ € 7,(6) : 2°(£)e A} is a meximal left ideal in %,(6).

H. KARZEL:

On the construction of near-fields.

The first examples of proper near-fields (which were finite)
were given by L.E. Dickson at the beginning of this century.
H. Zassenhaus determined all finite near-fields in 1936. In
1940 Kalscheuer constructed continuous near-fields. The
concepts "Dickson near-field" and "coupling map" were defined
in 1964. With the exception of seven finite near-fields all
known examples of near-fields are Dickson. The Dickson near-
fields were then studied by F. Pokropp who constructed many
classes of Dickson near-fields, by W. Kerby in connection
with ordering, by H. Wefelscheid in connection with valuation .
theory and topology, by J. Misfeld in connection with topo-~
logical normal near-fields. A general theory of near-fields,
mainly Dickson near-fields was developed By H. Wdhling, who
gave many new construction methods for coupling maps and
hence for Dickson near-fields. An interesting task is now

to find methods which enable us to construct near-fields
which are non Dickson. In the simplest case where the near-
field F is of dimension 2 over its kernel K we have to

find two functions f, g: K° —> K which satisfy some

o
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functional equations. For the finite case this was done
partielly with the help of a computer. Now it would be of
interest to get solutions for K = 4&.

H. KAUTSCHITSCH:

Bear-rings of formal power series.

Let R be & commutative rlng with 1dent1ty. By R[[x]] we denote
the ring of formal power series in one indeterminate - -over R
The set R+[[xj] of formal power series of positive order is . ‘
a subring of R[Lx]] » in which the substitution feg is always
defined. (R+[lﬂ], +,0) is a zero-symmetric near-ring, in
general not commutative. Therefore, we consider first per-
mutable power series (fog = gof) and commutative subsemi-
groups of (R [x]],e). If R is a field of characteristic O,

a complete answer can be given. Then near-ring ideals and
their connections to the ring- and composition ideals

(i.e. ideals of the TO-algebra (R _[ixl)#+,.,0)) were considered.
If R is & field F, then all near-ring ideals are composition
ideals iff char(F) # 2. All near-ring ideals I are of the
form I = xkl-‘[[x]] , k21, so that all homomorphic images of
the power series near-ring are polynomial near-rings. In
this case (char(F) # 2) the left ideals are exactly the ring
ideals. (F [ix]], +,) fulfills the ACC, but does not fulfill
the DCC on ideals, and hence, by a theorem of Betsch, the
near-ring of formal power series cannot be completely redu-
cible.- Some of these results may be extended to the case,
that R is noetherian. Finally, all D-ideals (i.e. ideals of .
the N-group (R+[];t]], +y «30,'), where ' denotes the formal
derivation) were determined for R a field and R =2 .

W. KERBY:

Embeddability of k-transitive groups in (k+1)-transitive
groups.

If H is a sharply k-transitive group, the question arises
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as to the number, if any, of (k+1)-transitive groups G with
the property that the stabilizers Ga are isomorphic as per-
mutation groups to H. If k 23, then the only sharply (k+1)-
transitive groups are Sym(k+1), Alt(k+3), M,; and M;, and
we have unique embedding in the above sense. If k = 1 and
there is at least one group G with Ga o~ H, then in general
there are several non isomorphic such groups and we do not
always have unique embedding. If k = 2 no examples are
known to the author where the embedding is not unique. The
only method presently known to the author of constructing
sharply 3-transitive groups leads to groups G such that

the stabilizer G ,b of two distinct points contains a

‘commutative subgroup A with [G :AJ = 2" or infinite.

Deutsche

One has the following
Theorem. If H is a sharply 2-transitive group, which is

embeddable into a sharply 3-transitive group G constructable

by the method mentioned above and [Ga b:A] is finite, then

i ’
there does not exist another such group G not isomorphic
to G, such that Ea = H.

R. LOCKHART:

The Addition of Endomorphisms and Defeult Properties.

The algebra of endomorphisms for certain structures is
considered. In fields one has matrix algebras and one loses
invertibility, although there is & complete characterisation
of the invertible elements via determinants. In near-fields
(or more generally, near-rings with identity hosted by
abelian groups) one loses associativity in the matrix
algebra. We give a determination of the associativity sub-
group for this case.

We discuss Frohlich's non-abelian homological algebra, which
is based upon the notion of a distributively generated near-
ring. Two criticisms of his approach are made and from them,
we come to the definition of a pseudo-homomorphism as a
mapping from a group to itself which is a homomorphism

Forschungsgemeinschaft
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modulo the commutator subgroup. The set of all pseudo-
endomorphisms forms a near-ring under the usual operations;

and we advance this as & structure upon which to base a non-

abelian homological algebra which would generalise the work
of Frohlich. Various connections with standard homological
algebra are indicated, and we conjecture that the distribu-
tively generated near-ring of endomorphisms of a group is
dense in the near-ring of pseudo-endomorphisms in a topology
which generalises the finite topology of Jacobson. Near-rings
which have the property of pseudo-distributivity, which is
characteristic of pseudo-endomorphisms, are named Frohlich
near-rings, by us. We suggest these as a useful generali-
sation of distributively generated near-rings.

C. G. LYONS:

Reduction theorems for endomorphism near-rings.

Let G be a group, E(G) be the endomorphism near-ring of G,
and -Soc(G) be the socle of G which is the sum of the minimal
fully invariant subgroups of G provided such subgroups exist.
It is the aim of this paper to study the structure of E(G).
However, the results are stated and proved for the more
general D.G.near-ring (R,S) with Inn(G) <€ S €End(G). Soc(G)
is the sum of the minimal (R,S)-subgroups of G and it is

. assumed to exist. We seek to describe R/N and N where N is
the annihilator of the R-series G > Soc(G) 9{0}. Soc(G) is
the direct sum of A and B, each of which is a direct sum pf
minimal summands which are abelian and perfect, respectively.
We consider GN projected onto the summands of Soc(G) and get
partial descriptions of N. In particular, if H is a perfect
minimal summand_of B and {g1,g2,...,gn} is any finite set
of elements from distinct cosets of the centralizer of H
in G, then the condition giNirH'# {0} for 1214 n implies
that N has a transitive-type property on H. The minimal
abelian summand case is less tractable in the general case.

Deutsche
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However, when R satisfies the DCCR the abglian case is
strengthened and the summand B of Soc(G) is shown to be
finite.

S. J. MAHMOOD:

Subdirect decomposition of d.g. near-rings.

A subdirect product of d.g. near-rings is defined to be a
d.g. near-ring (R,S), isomorphic. to a sub-d.g. near-ring of
(T,U), where {p,: (T,U) —> (TA,U,)}“Ais the product,

such that I&KR'S) is an epimorphism for each le A . The
restriction of maps to the generating semigroups gives &
subdirect decomposition of semigroups, which can be trivial.
But for every non-trivial subdirect decomposition of semi-
groups, there exists a non-trivial d.g. subdirect decompo-
sition. Even though a d.g. near-ring is not an algebra,
Birkhoff's result about subdirect decomposition of algebras
is shown to be true in this case.

If (R,$) is a d.g. subdirect product of {(T),U)): ACA&‘,
then, using a result of category theory, and a result on
upper faithful d.g. near-rings, it is proved that the upper
faithful d.g. near-ring (R,S) is a d.g. subdirect product

of the upper faithful d.g. near-rings {(T;,U;): Aézﬁl.
Finally, for every d.g. subdirect decomposition of a faith-
ful d.g. near-ring with each factor faithful, which is possible
in view of the previous result, a subdirect decomposition in
the category of groups is obtained.

C. J. MAXSON:

Recent Results on Centralizer Near-rings.

Let V be a group and S a semigroup of endomorphisms of V
which includes the zero endomorphism. Under function
addition and composition, tﬁe set

C(s;v) = {t:v—>v |l t¢ = £, VG es}

is a near-ring, called the centralizer near-ring determined

by S and V. For the work in this investigation all algebraic
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structures are finite, further, all neer-rings are zero-
symmetric and with identity. A semisimple near-ring

N = N.I ® ... @Nt is strong iff each simple summand Ni is
either a non-ring or a field. A semigroup S of endomorphisms
of V is fixed point free iff i)/'}KeI‘« = {o} ;

ii) Ker« = Kero*= ... V qu; iii) For «,fB €S, if
there exists ve¢ V such that «(v) = B(v) # 0, then «= 3 .
Using these concepts a Wielandt-Betsch type structure theorem

for strong semisimple near-rings is obtained.

and a fixed point free semigroup S of endomorphisms of V such
that N& £ (S;V).

This result leads to a study of C(S;V) where S is a completely
regular inverse semigroup of eﬁdohorphisms. In this situation,
those £(S;V) that are semisimple are characterized in terms

of S and V.

Jd. D. P. MELDRUM:
Free near-rings.

We extend the results of Frohlich on free d.g. near-rings
to zero-symmetric left near-rings. From now on near-ring
will mean zero-symmetric left near-ring. Starting with a
set X we construct a free additive group on a set of symbols

- which can be completely described. A multiplication is defined

on the free group F thus obtained. This makes F a near-ring,

the free near-ring on X, possessing all the appropriate

universal properties. By a modification of this construction .
the free product of two near-rings can be defined. Ve also

define similarly the free R-module on a set X and the free
R-module product of two R-modules, for a given near-ring R.

In these two cases we get free sums of copies of (R,+) coming
in. Finally we use these results to define a group near-ring
R(G) for a given near-ring R and a given multiplicative
group G. This group near-ring is shown to have the property
that all representations of G as a group of R-automorphisms
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of an R-module M are in 1-1 correspondence with represen-
tations of R(G) on M which map G into the group of auto-
morphisms of M.

R. MLITZ:

Radical properties of near-rings which are not defined by

ideals.

Radicals of near-rings and, more generally, of _Qj-groups may
' arise in a natural way from properties which do not yield
ideals. Thus, consider a variety V of_Q-groups and & binary
relation & on V satisfying some supplementary conditions
(chosen such that in the case of zero-symmetric near-rings
each of the relations "L is a subnear-ring, a (normal) H-sub-
group, a (normal) invariant N-subgroup, a left ideal, a right
ideal, an ideal in N" is a special case of "L<& N"). Define
a & ~radical on V to be a general radical (in the sense of
universal algebra) satisfying the supplementary condition
that an element of V is redical-free iff it does not contain
radical < -subgroups # {Of.Characterizations of the radical
and the radical-free classes are indicated. It turns out
that every G €V contains a (unique) maximal & -subgroup RG
which is radical. RG is a lower bound for the radical; it is
equal to the radical iff it is an ideal. '

W. B. MULLER:

' Formal differentiation and formal integration in composition

rings.

A composition ring (R,+,.,*) is an algebra, where (R,+,.)

is a ring, (R,+,*) is a right near-ring, and

(x.y)*z = (x*z).(y*z) for all x,y,z € R.

A formal differentiation of R is defined as a mapping D:R — R

which satisfies (1) D(f+g) = D(f) + D(g)
(2) D(f.g) = D(f).g + £.D(g) (V1,g€R)
(3)  D(f*g) = (D(f)*g).D(g).

DFG Deutsche
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All formal differentiations are determined in

A[x1, the polynomial ring in x over a commutative ring A with 1,
A(x), the ring of quotients of A[x],

A Hx]], the ring of formal power series over A, and

A" , the full function ring over A.

For near-rings (N,+,*) all mappings D:N —> N which fulfill

(3) are determined.

A formal integration of R is defined as a mapping I:R —> R

which satisfies
I(f) + I(g) .

(i) I(f+g)

(ii) I(a.f) a.I(f) , where a is a constant (a*0 = a),
(iii)  I(I(f).g) = I(f).I(g) - I(f.1(g)),

(iv)  I((£*I(g)).g) = I(£)*1(g), for all f,g € R,
A1l formal integrations in A[x], A(x), A ﬁxﬂ , and Y are

determined.

A, OSWALD:

Right ideals in near-rings of group mappings.

Let G be a group and S* be a group of fixed point free
automorphisms of G. Let S = S*u{o} where o is the zero
endomorphism of G. Then with pointwise addition and mapping
composition as addition and multiplication, respectively,
the set Mg(G) = {£:6 —>G | (y)f = (yf)a , yeG,xes}

is a left near-ring. Let R be the set of right ideals and

R the set of normal right subgroups of My(G).

We can partition G into subsets of the form a'b and

the number of such disjoint subsets is denoted by [ G: S*I .
A set {x,} consisting of one x, from each different J’S*
excludlng OS is called a basis for G over S .

A group G is non-normal relative to b if, for some yE G,

¢ #N(ys) = {peclns ps’ - g ys’y.

Theorem.1f IG S | is finite and G is non-normal relative to
s* then R = :

This generalised'part of a result of M. J. Johnson.

Deutsche R
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G. PILZ:

Polynomial near-rings.

Given any algebra G out of some variety U of 2-groups,

one can form thx], the algebra of all polynomials in x over
¢ inVU. Roughly spoken, Gulx] consists of "everything which
can be built up by Gu{xf using the operations and laws of Y ".
If the group part of G is written additively, G (x] is a near-
ring w.r.t. addition and substitution. Concerning the struc-
ture of this near-ring, one can see that all near-ring
radicals are contained in {pe Gv[x]lVgeG: peg € R(G){
where R(G) is the radical of G (i.e. the intersection of all
max1ma1 ideals of G). If'ey is the variety of all groups,

G [x]=: G[x] is a "generalized distributively generated
near-ring" (g.d.g.n.r.), which means that G [x] is additively
generated by constant and distributive elements. D.g. near-
rings and abstract affine near-rings are other examples.

For finite g.d.g.nsr.'s N with identity (NO not a ring),

N is primitive iff N is simple iff N £ M(G) or N = MO(G),
where G is finite, non-abelian and invariantly simple and
¥(G) = (GG,+,O). Every near-ring can be embedded into some
Gv[xj, but not always into some G[x]. Every abstract affine
near-ring is isomorphic to & polynomial near-ring in the
variety of (ring-)modules. Also, lex] plays a very useful
role in determining generated ideals in[)-groups.

S. D. SCOTT:

Tame near-rings.

Tame near-rings are those that have a unitary faithful N-group
in which every N-subgroup is a submodule. If V is such an
N-group then for v and w in V and &« in N there exists ﬁ in N
such that (v +w)a - vee=wf,

Examples may be found by taking semigroups of endomorphisms

of a group that contain all inner automorphisms. The near-
ring generated by such endomorphisms provides an example.

hlso zero-symmetric polynomial maps over an Ml-group are

o
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a further example. In both these cases the ﬂ in the above
expression can be chosen independently of w. Such N-groups

are called compatible and a refinement of this notion gives
2-tame near-rings (and N-groups). A primitive 2-tame near-
ring on V is either & ring or dense in MO(V). Also minimal
condition for right ideals gives all possible chain conditions.
In the case of I(V), minimal condition yields finiteness.
Questions concerning maximal condition for I(V) arise. In

the case where V is a simple group it seems likely that the
introduction of a topology on V gives V finite. Indeed this .
topology carries over to type 2 N-groups.

Y.-S. SO:

Deutsche
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Near-rings of polynomials over groups.

If G is & group then the polynomials in x over G are of the
form g, + 2;X + g + Z,X + ... + z2,X + g, (gie(}, z,€2 ).
The set G[x] of all polynomials over G forms a near-ring
w.r.t. addition and substitution. The zero-symmetric part
Go[x] turns out to be a distributively generated near-ring.
In studying homomorphisms, one sees that a group homomorphism

from G to H can be extended to & near-ring homomorphism from
G[x] to H[x] in a natural way. Conversely, under a certain
condition (which is weaker than the one used in the case of
universal algebra), all near-ring homomorphisms from Grx] to
H[x] arise in this way. In order to get results on the radical
J2 of G[x] , we have to know enough strictly maximal left
ideals. We present some classes of these. In this way we _ .
obtain {p = B2 X+ ... +2 X+g € G[x]l Vee G:. pege€ f3 (G.) A
jizi =0 } as an upper bound for the near-ring radical of
G[x] (where 'B(G) is Baer's group radical of G). A lower
bound is given by the ideal generated by B(G). In the
variety of abelian groups A, the corresponding polynomial
near-ring is abstract affine, havinglg(A) as radicals

(Jo = J1 = Jz). ’

o0&
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H. WAHLING:

Dickson near-fields with prime rank.

1) Let (F,+,.) be a skew-field, ¢a coupling map on (F,+,.),
(F,+,0) the ¢-derivation of (F,+,.), Kp the kernel, Zp the
centre of (F, +,°), -{xéFl'f.‘— 1{, y the fixed field
of P {([ IaeF } and C the centre of (F,+,.).

I1f fF:KFJ = p is a prime and KF = ZF’ then the following is
valid:

*
. (A) If « is commutative, then KF = P.' and - with V:F* -—>Pr

the norm of F/P,, - there exists an epimorphism T from
( v(F" )yo) onto f'f such that ¢ = TeV and T(xP) =
for. all kGKF o

(B) If « is not commutative and if one turns - if necessary -
from - to the dual of -, then Ky = P,, is a maximal commu-
tative subfield of (F,+,.) with

*
F=Uy+Kp , C =Uyn Ky, [KF:C] =p and
. ff—>F : *
=i, 3 : (uevu k€K, ).
Puk = x {x sk Txk ¢ F

2) (A) Let (F,+,.) be a field, "< Aut (F,+,.) f1n1te with

fixed subfield P, v the norm of F/P and T: v(F') = I an

epimorphism. Then ¢ =TeV  is a coupling mep on (Fy+,.)

with K = P = Py and e =0 ; and Ky = 2 if and only if
v(xF By - 1 for a1l keP” .

(B) Let (F,+,.) be a skew-field with centre C # F and

*
U, X' < (F',.) with P* = UK' end UAK'cC. Then

' ¢ :{F —> Aut (F,+,.) (weU, kek')

UFG

uk ——)ik

is a coupling map on (F,+,.). If K = K'w{0} is a maximal
commutative subfield of (F,+,.), then PY =K = Kp = 25 .

Deutsche
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H. WEFELSCHEID:

Sharply 3-transitive groups which possess a PSL(2, X) as a

Zassenhaus-transitive subgroup.

A permutation group (H, M) is called a ZT-group (Zassenhaus-

transitive) iff the group H operates 2-transitively on M
and M, \ # {ia} , Ma’b,c = {ia} for different-a, b, c € M.
A subgroup H€G of a permutation group (G, M) is called a
ZT-subgroup of G iff (H, M) is Zassenhaus-transitive. One
can show that the set of all ZT-subgroups of a sharply
3-transitive group forms a lattice. In all known examples
this lattice has a smallest element which is a PSL(2, K).
In a certain sense a sharply 3-transitive group (G, M) which
possesses a PSL(2, K) as a 2T-subgroup is determined by the
following fact: :
Theorem: Let (G, M) be a sharply 3-transitive group which
satisfies the following conditions:

(1) G, p contains an involution.

(ii) There exists a ZT~subgroup HLG which is isomorphic

as a permutation group to some PSL(2, X)
- (i.e. (H, M) = (PSL(2, K), K) ).
Then the group (G, M) is isomorphic as a permutation group
to a group consisting of elements of the form & and /3 ,
which are constructed in the following way:
On the field K there exists a mapping
JK — Aut (K,+,.)
.{a >a? .
such that F:= (K, +, o) with aeb:= a-a,(b) is a near-field.
X —> X:= K v{wo}
A:4x —>a + mox (a, m&€K, m # 0)
@®» —P © '

K —K

x —>a + &(b + mex) (a, b, m€K, m # 0)
P: -n%ob—s »

o—> a ,

Deutsche
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do  js the inverse of m with respect to (o) and
G(z):= 2”1 (inverse with respect to (.)).
Remark: The condition (i) says: char F # 2.

where m~

H. J. WEINERT:

Structures of right quotients.

In this paper, we sketch a very convenient way to deal with
rings, near-rings, semirings, ... of quotients, reducing all
tedious considerations to results on semigroups. For this
purpose, we call any algebra (S,+,.) with two binary opera-
tions such.that (S,.) is & semigroup a "structure".
Definition. (T,+,.) is called a structure of right quotients
of a structure (S,+,.) with respect to a subsemigroup (Z:.)
of (S,.) iff (T,.) is a semigroup of right quotients of
(8,.) werot. (5,.).

Facts on semigroups of right quotients (briefly s.r.q.)

A s.r.q. T of S w.r.t. Z is defined to be a semigroup
containing S and an identity 1 such that each xeZ has an
inverse '€t ana T = {a«fﬂaé s, ueZ} . Such a s.r.q. T
exists iff (i) each X € & is cancellable in S and
(ii) aZNn«S # 4 holds for all ae€s, &€ X .
(Ore Asano-Condition). In this case, T is uniquely determined
by S and Z , up to S-isomorphisms, and we write T = Qr(S,Zf).
Using Greek and Roman letters as above, calculations in T
are given by
(1) aa™ = b/3“<===> 9 x, Z : &ax =/33 and ax = bz
(17) &=> Vu, v: «u=£Bv => au = bv

(2) ael-‘-blb" = (at)(ﬁ‘t‘)'1 for any &t = bT by (ii).
For a short proof of all this (based on the equivalence of te
right sides of (1) and (1')) and more results on s.r.q. see
H.J.Weinert, On the extension of partial orders on semi-
groups of right quotients, Trans. Amer. Math. Soc. 142 (1969),
345 - 353, Here we only need that a finite number of elements
ao’, bfi", ... can be written with the same denominator,
according to '

o
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(3) e '= (ex)(PE )" =cyg”'  for any wx =A% by (ii)
bp = BENPEIT = ayp”

The basic statement on structures of right gquotients.
Let the structure (S,+,.) be right distributive (briefly r.d.)
and consider any s.r.q. (T,.) = Qr(S,ZF). Then there exists
exactly one extension + on T of + on S such that
(Ty+,.) 1is also r.d., given by
(4) ax”! +b/'£';'1 = (a_xa»bZ)(/Zpg)'1 for any ox =,SZ.
By (3), it is enough to prove this statement using equivalent
(4) ey lragTl=(cra)yp”
Moreover, the proof of the following statements becomes
trivial by (4'): - ,
Corollary 1. For (S,+,.) and (T,+,.) as above, if (S,+) is
commutative, or associative, or (left) cancellative, or a
group - the same property holds for (T, +). If (S,+,.) dis’
left distributive, so is (T,+,.).
Only if the existence of some special elements is involved,
one has to go back to (4); for instance, we have
Corollary 2. If (S,+) has a neutral element o, and if
02 = o, then (T,+) has a neutral element O (which is
equal to 0/3'1, for eachﬂ), and conversely.

H. J. WEINERT:

Cancellativity in generalized fing structures.

As a far-reaching generalizaéion of (associative) rings we
consider any algebra (S,+,.) with two binary operations
such that (S,.) is a semigroup. Denote by < [R] the
set of all left [right] cancellable elements of (S,.) ,
by o the neutral element of (S,+), and write S’ = 8N {o}
meaning s* = s'if (S,+) has no neutral element.
To avoid trivial rubs, assume |S] 22. Then the following
ring-like
Definitlon (s, +,.) is multlplicatlvely left cancellative

iff s'e€X
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is justified by the
Theorem S*g'z' is equivalent to one of the following cases:
®) S has no neutral element, and (S,.) is left cancellative.
| ) S has a neutral element o, and (S,.) is left
| cancellative.
y) S has a neutral element o, So = oS5 = o, and (S*,.) is
| a semigroup which is left cancellative.
In this context, "left" and >4 may be replaced by "right"
and R , by "two-sided" and ¥n & , and by "mixed" and JuR
i ' Moreover, S“S Zv ® implies s'e X or SSe R .
‘ As a matter of fact, all these statements are valid dealing
| only with a semigroup (S,.) .and one special element o€ S,
| being exceptional for whatever reason. (cf. H.d.Weinert, On
i left, right, and two-sided cancellable elements in semi-
‘ groups, Semigroup Forum 16 (1978), 97 - 103).
| For semirings (S,+,.), the 9 classes (o, ), («,R),
{ (o, Zn&), (B, £), veo y (§,ZnR) are mutually distinct
| and not empty. For right distributive near-rings one only
has the 3 cases (B, R), (y,R), and (§.,%) =(y,7R),
hence a left cancellative r.d. near-ring is also right~
1 cancellative and zero symmetric.
! Similarly, we justify the following ring-like
| Definition A left or right distributive semi- near-rlng
| (S,+,.) is called a semi-near-field iff (S go)
is a group.
Theorem. For any semi-near-ring (S,+,.), the following
statements are equivalent:
. a) (S’,.) is a group. .
b) Therg exists en element ej €S *such that for all .
a €S one has eja = 2 and a a = e for some & € S.
c) For all a, beS* there are x, y€ S such that
=b and ya = b.
In the non-tr1v1al case with a zero (which is hard to prove),
ia in S and a , X, ¥y may be chosen in S . Moreover,
|S| 23 implies Sé€ (¥ ,ZnR), which is not true in general
for the 10 semi-near-fields S of order 2.

DFG Deutsche
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H. WIELANDT:

Die Anfidnge der Theorie der Fastringe.

Die Grundtatsachen der Strukturtheorie bis zum Analogon

des Satzes von Wedderburn iiber einfache Ringe sind zwei-

mal verdffentlicht worden: (1) durch den Vortragenden,
ausgehend von Fittings "Endomorphismenbereichen" nicht-
abelscher Gruppen, auf der Gruppentagung in Hamburg 1937
(ein Auszug ohne Beweise erschien in Deutsche Math. 3),

(2) durch D. W. Blackett in seiner bei E. Artin entstandenen
Dissertation (Princeton University 1950). Da Artin zu den
Veranstaltern der Hamburger Tagung gehtrt hatte, stellt sich
die Frage nach einem mdglichen Zusammenhang. ’

Ein Briefwechsel im Juni 1980 mit Zassenhaus, der in
Hamburg Artins Assistent gewesen war, und mit Blackett
hat ergeben: Artin war 1937 iiber den Inhalt des Vortrags
unterrichtet, hatte aber 1950 offenbar keine Erinnerung
mehr daran; Blackett hat das ihm von Artin vorgeschlagene
Thema "Endliche Fastkorper" selbstdndig abgewandelt.

R. ZEAMER:

Some Near Ring Extensions of R.

Let R(S) = s’gs IRS , where S is an arbitrary set and
IRS:={rs' relR} . Define a norm Il: r(s) — R vy

fwii= int ({2 g | w= Z(r;s)81 , g6 R(S) }).

Using Van Kampen diagrams it is shown that d(u,v):= [u - v/
defines a distance function on R(S) with respect to which
R(S) becomes a topological group. Moreover, any monoid on
s° extends to a multiplication on R(S) which makes R(S) a
near-ring d.g. by L}ms and topolocical with respect to d.
A completion JR(S) 2R(S) is then constructed in which
all Cauchy sequences whose elements are of bounded length,
converge. The before mentioned near rings on R(S) all
extend to topologically d.g. near rings on R®(S).

Forschungsgemeinschaft
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Using this fact it is then shown that the endomorphisms
of R(S) as an R-module are continuous and all extensions of
maps ¢ : S —>R(S) such that the lengths of the p(s)
are bounded. :
a < x(s), R(S), or R(S) is called a full ideal

(K€ R subring) iff (R is an ideal with respect to every
monoid on S°. For S infinite, full ideals and subgroups
invariant with respect to R, on K-endos of R(S), R{S), or
K(S) respectively, are the same.

. A variety V& 2z(S) (Z(S) the free group on S) is called
regular if v € V, (%)v € 2(8) ==> (%)v € V.,

The closed full ideals of [R(S) are partitioned into a

disjoint union of sublattices, {IV} V a regular variety ’

where Iv:={al & closed full ideal of R(S), & n Z(s) = Vf.

Each IV has a minimal element, VQ(S). The elements of the
lower central series are shown to be regular yielding a
descending sequence of full closed ideals of R{S7,
{DnIQ285§L121 . {Dn} n>1 the lower central series.

This shows there are plenty of complete topologically d.g.
near rings extending R.

J. L. ZEMMER:

Affine Transformations on a Total Near-Ring.

A (left) near-ring N is called a total near-ring if it is

a subnear-ring of a (left) near-field K and has the property
. that /3€K implies either ﬁeN or [3-16 N. This paper

is concerned with the affine transformations 2—) <%+ /3

where o # 0, 3 € N, a total near-ring. These transformations

form a semigroup under composition. It is clear that this

semigroup can be embedded in a sharply doubly transitive

group of permutations acting on an appropriate set (i. e. a

near-field containing the given total near-ring). The two

main results of this paper are

DFG Deutsche -
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(1) necessary conditions that a transformation semigroup be
embedable in a sharply doubly transitive group of permutations
and (2) necessary and sufficient conditions that a transfor-
mation semigroup be isomorphic to the semigroup of affine
transformations on a total near-ring.

Berichterstatter: G. Betsch
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