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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g B b e r ich t 16/1980

Fastringe und Fastkörper

13.4. bis 19.4.1980

Die Vorträge und Diskussionen dieser Tagung behandelten

vielfältige Themen aUB der Theorie der Fastringe und Fast­

körper. Folgende Themenkreise seien genannt:

- Distributiv erzeugte Fastringe und Verallgemeinerungen.

- Faetringe von Polynomen und formalen Potenzreihen.

- Spezielle Fragen der Fastkörpertheorie (Konstruktion

von FK, Dicksonsche FK mit Primzahlrang, Galoistheorie).

- Fastringe von Gruppenabbildungen und Fastringe stetiger

Funktionen.

- Planare Fastringe, Steinersche Neoringe, Beziehungen zur

Geometrie.

Die Leitung hatte G. Betsch (Tübingen). -

Gleichzeitig mit dieser Tagung fand im Mathematischen

Forschungsinstitut Oberwolfach eine Tagung über "Finite

Geometries" statt (vgl. Tagungsbericht 17/1980). Es gab

sehr anregende Diskussionen zwischen Geometern und Fastring­

Theoretikern. Die Programme der beiden Tagungen wurden zeit­

lich BO aufeinander abgestimmt, daß die Teilnehmer auch

einen erheblichen Teil der Vorträge der jeweils anderen

Tagung mithören konnten.
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Vortragsauszüge

H. E. BELL:

On Algebraic and Periodic Near-rings.

For rings H, a theorem cf Chacron asserts the equivalence

. of-the following properties:

(A) R 1s -periodie - that 1s, for each x ~ R, there exist

distinct positive integers m, TI for which xm = xn •

(B) R is algebraic - that is, for each x~ R, there is a

polynomial p(x) with lnteger coefficients, and an
integer n %1, such that xn = xn +

1 p(x).
Property (B) has seve~al possible extensions to near-rings,

and I conjecture that none of these imply (A). However, with

some additional commutativity hypotheses on N, certain

variants of (B) da imply (A), as the following theorems

indicate.

Theorem 1. Let N be a d.g. near-ring such that for each

x ~ N, there exi'sts an integer n ~ 1 and an element p( x) of

the subnear-ring generated by x, for which xn
= ~xnp(x).

If the nilpotent elements cf N are multip~icatively central,

then N is periodic and commutative.

Theorem 2. Let N be a near-ring with 1. Suppose that for each

x, yeN there exists an element p(x) which 1s a surn of.

positive powers cf x and negatives of such, for which

xy = yxp(x). Then n i8 periodic, and (;J, +) i8 abelian.

G. BETSCH':

Same results on near-rings of group mappings.

Let (r, +) be a (not necessarily comrnutative) group, r f. tot,
and let G be a group of automorphisms ofr, written as.left

operators cf r. ~e may assiffn to the pair (G, P) twc near­

rings of group mappings:

I. The right neer-ring lJ(G) distributively generated by G

and acting on r from the left;

11. The left near-ring mG( P) con8isting of all mappings
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n: r ---+ r: t ~tn with the properties

i) On = 0, ii) (g i)n g( 1 n) for all ge G and allr~r•

.r;;i
G

( r) acts on r from the right.

We confine our study mainly to M: = MG ( r ).
Assume there exi sts an element r ~ r such tha t 1 TJi = r .
Then the following results hold:

1. The semigroup of all distributive elements of M eoincides

wi th HeIDG( r , r) = HornL( G) ( r , (') .
2. Let N be a subnear-ring ef M, and define G:= AutNf" and

N:= Mc;(r). Obviously, G~G~Aut(' and N4N4 M•

Now, if N is dense in M with respect to Jacobson's finite

topology, then G = G and eonsequently N = M.

J. R. CLAY:

Taetieal configurations having p affine planes sharing a

peneil of lines.

A non-trivial group ~ of fixed point free automorphisms cf

a finite group (Nt +) i8 all one needs to apply G. Ferrero's

method of con~tructing B planar near-ring (N, +, .). If
ß={NB+bJOla, a, biNI, then (N,ß,c!) isalways

a taetieal configuration. Ii. Karzel notieed that f = i 1 t -11
aeting on (Z9' +) in this way aetually produees a tactieal

configuration (29 , B, ~) wi th three substruetures (Zo' l . , ~ ),
.:; 1

i = 1,2,3, each of which is an affine plane, and any two

aharing Zg/3Zg as a peneil of lines.

Actually if (N, +) = (Z 2, +), P an odd prime, then the units
• p , ~

U(Z p2 ) has a 8ubgroup of order p-1 which defines a ~ ,

fixed point free, and of order p-1. The eorresponding planar

near-ring (N, +, .) gives a tactical eonfiguration (N, a3 , E )

and each ~. := Z 2/pZ 2 V {Na. + kp + Ci-1 )/1 .:f'j & p, 0 ~k~ p-1J
1 P p J

makes (Z 2, ';(. t €. ) an affine plane. Also, i I t implies
p 1

;(i fl :! t = Zp2/pZp 2 •

Note: Elements of ~ of the form Na are: .

. pZ
p

2 , Na
1

, Na2 , ••• , Nap •
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C. FERRERO COTTI:

Neer-rings with involutions,planar near-rings, and near~

rings with particular ideals.

1. An involution j on a near-ring (n.r.) N is an auto­

morphism of N+ such that j2 = i and j(xy) = j(y)j(x).·
The involutions cf a n.r. N are studied and constructed,

using the canonical homomorphisms N~ N/A(N).'

The theory also uses m-homomorphisms of Jordan and of Lie

and the center (anticenter) of N.

2. Pilz asked for an example of a planar near-ring with a

non-plansr homomorphic image. We obtain the desired example.

Typical auxiliary results:

Every prope~ homomorphic image of a finite planar n.r.

is planar.

Every proper homomorphic image of a plansr ring is planar.

- Let N be a planar n.r. and I one of its proper ideals.

The n.r. NI = Nil is planar iff there are po elements

x~Aj(N)'I suchthat aX=bx+i,whereatb andiEI.

3. We study the n.r. in which every proper ideal is maximal.

In the non-trivial eases, such a n.r. admits at most two

proper ideals. ~ simple TI.r. in which the proper right ideals

are maximal has, at most two proper right ideals.

For n.r. in which every proper ideal is prime, a typieal

result is: Let eaeh proper ideal cf the n.r. N be prime.

Then N ha~ exaetly twa minimal ideals iff N is a semiprime

non-prime n.r. - Another interesting result fram the works

of Ferrero-Cotti, Suppa, Pellegrini, G. Rinaldi, F. Rinaldi,

18 the follo~ing

Theorem. Let N be a zero-symmetrie n.r. and let each proper

ideal of N be prime. Then either the set of the ideals of N

is totally ordered with respect to inelusion or N admits

exactly two minimal ideals l, J; the set of the other ideals

cf N i8 totally ordered with respeet to inclusion.
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G. FERRERO:

Steiner neo-fields.

ASteiner neo-field (SNF) is a structure (N; +, .) such tnat
1) (N; +) i8 a loop with zero 0 and the identities a+a = 0,

a+b = b+a, a+(a+b) = b; 2) (N,{ol; .) 1s a group, and
Oa = aO = 0; 3) the product is (one-sided) distributive with

respect to the eum.
The SNF are useful in studying Steiner tripIe systems.

The following problems are of interest in geometry: Ta obtain
the SNF with given additive loaps, or given multiplieative

graups, or given automorphiems. ~he second problem 18 diffi­
cult because there are a lot of SNF having the same multi­
plicative group: for example, a certain eonstruetion yields
22·

2k +(6k+1) -1 SNF with the same mult1plicative group C~k+1 •

Any finite nilpotent group G I Cg 18 the multiplicat1ve
groupof a SNF iff it haB order 6k+1 or6k+3.
An abelian divisible group i8 the multiplicative group of a
SNF iff it is without torsion two. Another typical result
from the works of Ferrero-Gallina-Scapellato i8 the following
Theorem. Let Tbe the set cf the prime numbers p = 6k+ 1 ;
let G be a T-g~oup, and let the order of each element of G
be a prime power. Let i ~ Aut G be a group of odd order.
Then there exiets a SNF N whose multiplicative group 16

isomorphie to G and with a group of automorphi8m~ which

operate ae i on N'iOI, and moreover, whieh admits as sub­
neo-fields each union of-a multiplicative subgroup and {oj.

Y. FONG:

A theorem on Btrictly semi-perfeet nesr-ring modules.

Let N be a zero-symmetrie nesr-ring. Bere we define a

(strictly) semiperfect near-ring N-module M by the following
two properties: (1) M 18 projective and (2) every factor
module of M haB a (etrictly) projective cover. By applying

the result of A. Oswald (Ph. D. Thesis, Theorem 3.1,
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p. 32, 1973) we obtain a similar result which states: If U

i8 a submodule of a strictly semi-perfect near-ring module

M then there exists a submodule P of M auch that P is a

strictly projective cover of M/U and a submodule V of'~

with (i) M = V Cl> P with V~U and (ii) Pllll i8 a strictly

amall submodule of P and hence of M. The last statement in

(ii) guarantees the following theorem: If M is strictly

semi-p~rfect then M/J(M) i8 semi-simple. Here J(M) is the

radical of M.

D. GRÖGER:

Bemerkungen zur Galoistheorie in Quaternionen-Fastkörpern.

Es sei QK(+'.) der Quaternionen-Körper über dem kommutativen

~örper K und ~ ein gekoppelter Homomorphismus von QK(+'.)
mit kommutativer Dickson-Gruppe ~ , die n~r innere Auto­

morphismen enthalte. Eine vorgenommene Charakterieierung von V
ermöglicht Aussagen~ber das Verhalten von Automorphismen

und Teilfastkörpern des abgeleiteten t1Quaternionen-Fast­

körpers" Q~(+,.) = QK(+'o). Man erhält schließlich:

K istg.aloissch in QK(+'o) .(:==) "r, liegt in einer Kleinschen

Vierergruppe.

Die unterschiedliche Gestalt von, in den Fällen K = mund

K = ~ bewirkt, daß der reelle Quaternionen-Körper hierfür

keine interessanten Beispiele liefert, wohingegen mit dem

rationalen Quaternionen-Körper ein solches konstruiert

werden kann, in welchem eine "galoissche "Beziehung" zwischen

Untergruppen der Galois-Gruppe und Teilfastkörpern nicht ~
besteht.

R. D. HOFER:

Maximal 1eft ideals in nesr-rings of continuous functions.

Let (G,+) be a (not necessarily abelian) topological group

and let ~G) be the (right) near-ring, under pointwise

induced addition and composition, of all continuous selfmaps
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of Gwhich leave the identity element (denoted by 0) of G

fixed. For f E ?'7o (G) let Z*(f) = Lx EG : x. I 0 and fex) = o}
and for any nonzero pE G let M = {f E 1?.,(G) : f(p) = 0/.

P
If G i8 discrete, Marjory Johnson [Maximal right ideals

of transformation near-rings, J. Austral. Math. Soc.~(1975),

410 - 4121 showed that a left ideal M is maximal iff either

M = M for same nonzero p, or is maximal among the ideals I
p * *for which Z ("f)I\Z (g) is infinite for every f, gEI.

Theorem. Suppose G is a compact,first countable, O-dimensional,

Hausdorff graupe (I).If M is a maximal left ideal in ~D(G)

then {Z*(f) : f~I~lj is an ultrafilter. (II).If Q 1s an

ultrafilter of sets of the form Z*(f), then

{f E 1?(G)· : Z*(f) E a} is a maximal left ideal in ~()(G).

H. KARZEL:

On the construetion of near-fields.

The first examples of proper near~fields (which were finite)

were given by L.E. Dickson at the beginning of this century.

H. Zassenhaus determined all finite near-fields in 1936. In

1940 Kalscheuer construeted continuous near-fields. The

coneepts "Dickson near-field" and "eoupling map" were defi~ed

in 1964. With the exception of seven finite near-fields all

known examples of near-fields are Diekson. The Dickson n~ar­

fields were then studied by F. Pokropp who eonstructed many

classes of Dickson near-fields, by W. Kerby in connection

with ordering, by H. Wefelscheid in conneetion with valuation

theory and topology, by J. Misfeld in connection with topo-'

logical normal near-fields. A general theory of near-fields,

mainly Dickeon near-fields was developed by H. Wähling, who

gave many new construction methode for eoupling maps and

hence for Dickson near-fields. An interesting task is now

to find methods which enable us to construct near-fields

which are non Diekson. In the simplest ease where the near­

field F is of dimension 2 over its kernel K we heve to

find two functions f, g: K2 ~ K which satisfy some
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functional equationB. For the finite case this was done
partially with the help of a computer. Now it would be of

intereat to get- solutions for K = ~.

H. KAUTSCHITSCH:

Near-rings of formal power Beries.

Let R be a commutative ring-with identity. ~y RUx~ we_ denote
the ring o~ formal power eeries in one indeterminate-over R~

The eet R+nxjJ of formal.power series of positive order is '. 4It
a BUbrin8 cf RI~n " in whieh the substitution fog i8 always
defined. (R+n~J, +,0) 1s a zero-symmetrie neer-ring, in
general not eommutative. Therefore, we consider first per-
mutable power series (fog = gof) and commutative subsemi~

graupe of (R+~x~, 0). If R is a field of eharacteristic 0,
a complete anawer c~n be given. Then near-ring ideals and
their connections fo the ring- and composition ideals

(i.e. ideale of the TO-algebra (R+[txl],+-, ... ,0) were considered.
If R ia a field F, then all near-ring ideals are eompoeition
~deals iff char(F) # 2. All near-ring ideals I are of' the
~f'orm I = xkFltxJ) , k ~ 1 t BO that all homomorphic images of
the'power series near-ring are polynomial near-rings. In
thls eBse (ehar(F) F 2) the left ideals are exactly the ring

ideals. (F~tx~t +,0) fulfills the ACC, but does not fulfill
~he DCO on ideals, and hence, by a theorem cf Betsch, the
near-ring of formal power Beries cannot be completely redu­
cible.- Same of these results may be extended to the ease,

that R 18 noetherian. Finally, all D-ideals (i.e. ideale of 4It
the...Q-group (R+[lx~, +, ., tJ , t ), where ' denotee the formal
derivation) were determined for R a field end R = l. .

w. KERBY:

Embeddability of k-transitive groups in (k+1)-transitive

graupe.

If H 18 a sharply k-transitive group, the question arisee
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as to the number, if any, of (k+1)-transitive groups G with

the property that the stabilizers Ga are isomorphie as per­

mutation groups to H. If k ~3, then the only sharply (k+1)­

transitive groups are Sym(k+1), Alt(k+3), M11 and M12 and

we have unique embedding in the above sense. If k = 1 and

there 1s at least one group G with Ga ~ H, then in general

there are several non isomorphie such groups and we do not

always have unique embedding. If k = 2 no examples are

known to the author where the embedding i8 not unique. The

~ onlymethod presently known to the author of constructing

sharply 3-transitive graupe leads to groupe G such that

the stabilizer G b cf two distinct points eontains aa,
·commutative subgroup A with lG b:A] = 2n or infinite.a,
One has the following

Theorem. If H is a sharply 2-transitive group, which is

embeddable into a sharply 3-transitive group G constructable

by the method mentioned above and [G b:A] i8 finite, thena, .
there does not €xist another such group ~ not isomorphie

to G, such that Ga ~H.

R. LOCKHART:

The Addition cf Endomorphisms and Default Properties.

The algebr~ of endomorphisms for certain structures is

eonaidered. In fields one has matrix algebras and one loses

invertibility, although there is a complete characterisation

of the invertible elements via determinante. In near-fields

(ar more ~enerally, near-rings with identity hosted by

sbelian groupe) one loses associativity in the matrix

algebra. We give adetermination of the assoeiativity Bub­

graup for this esse.

We diseuse Fröhlich's non-abelian homological algebra, which

i8 baeed upon the notion of a dietributively generated near­

ring. Two criticisms of his approach are made and from them,

wecometo the definition cf a peeudo-homomorphism as a

mapping from a group to itself which i8 a homomorphism
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module the commutator subgroup. The set of all pseudo­

endornorphisms ferms a near-ring under the usual operations;

and we advance this as a structure upon which to base a non­

abelian homolegical algebra which would generalise the werk

of Fröhlich. Various connections with standard homological

algebra are indicated, and we conjecture that the distribu­

tively generated near-ring of endomorphisms of a group i8

dense in the near-ring of pseudo-endomorphisms in a topology

which generalises the finite topology of Jacobson. Near-rings

which have the property of pseudo-distributivity, which is ~ .

characteristic of pseudo-endomorphisms, are named Fröhlich

near-rings, by us. We suggest these as a useful generali-

sation of distributively generated near-rings.

c. G. LYONS:

Reduction theorems for endomorphism near-rings.

Let G be a group, E(G) be the endomorphism neer-ring of G,

and ·Soc (G) be the sDcle of Gwhich i s the surn of the minimal

fully invariant subgroups of G provided such subgroups exist.

It i8 the aim of this paper to study the structure of E(G).

However, the results are stated and proved for the more

eeneral D.G.nea.r-ring (R,S) with Inn(G) ~ S ~End(G). Soc(G)

is the sum of the minimal (R,S)-subgroups of G and it is

assumed to exist. We seek to deseribe R/N and N where N is

the annihilator of the R-series G ~ Soe(G) ~ioJ. Soc(G) is

the direet surn of A and B, eaeh of which is a direet SUffi of

minimal summands which are abelian and perfeet, respectively. 4It
We consider GN projected onte the summands ef Soc(G) and get

partial descriptions of N. In particular, if H is aperfeet

minimal summand _of Band {g1,g2, ••• ,gnl is any finite set

cf elements from distinct eosets of the eentralizer of H

in G, then the condition giNfTH.1 {ai for 1~i~ n implies

that N has a transitive-type property on H. The minimal

abelian swnmand ease is less tractable in the general ease.
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However, when R satisfies the DCCR the abelian ease is

strengthened and the summand B of Soe(G) is shown to be

finite.

S. J. lVlAHlVjOOD:

Subdireet deeomposition of d.g. near-rings.

A stibdireet produet of d.g. near-rings is defined to be a

d.g. near-ring (R,S), isomorphie. to a sub-d.g. near-ring of

(T, U), where {p~: (T, U) ----. (T ~,U,,)J.)~Äis the produet,

such that Pal(R,S) i8 an epimorphism for eaeh'\~A. The

restrietion of maps to the generating semigroups gives a

subdirect deeomposition of semigroups, whieh ean be trivial.

But for every non-trivial subgirect deeomposition of semi­

groups, there exists a non-trivial d.g. subdireet deeompo­

sition. Even though a d.g. nesr-ring i8 not an algebra,

Birkhofffs result about subdireet deeomposition of algebras

i8 shown to be true _in this ease.

If (R,S) i8 a d.g. subdirect produet ef {(T~,U;l.): A~.Ll{,

then, using a re8ult cf eategory theory, and a re8ult on

upper faithful d.g. near-rings, it is proyed that the upper

faithful d.g. near-ring (H,S) i8 a d.g. subdireet produet

of the upper faithf~l d.g. near-rings 1CT),U~): l~~I.
Finally, for every d.g. subdireet deeemposition of a faith-

ful d.g. near-ring with eaeh faetar faithful, whieh i8 possible

in view of the previous result, a Bubdireet decomposition in

the category of graups i8 obtained.

c. J. MAXSON:

Recent Results on Centralizer Nesr-rings.

Let V be a group and S a semigroup of endomorphisms of V

whieh includes the zero endomorphism. Under funetion

addition and composition, the set

t( S ; V) = {f: V ---+ V I f' = 'f, \f, E S I
is a near-ring, ealled the eentralizer near-ring determined

by Sand V. For the work in this investigation all algebraic
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•
structures are finite, further, all neer-rings are zero­

symmetrie and with identity. A semisimple near-ring

N = N1 G> ••• S N.t i8 streng iff each simple sum~and Ni is

either a non-ring er a field. A semigroup S ef endomorphisms

of V "ie fixed point free iff i) "Ker 0( = ~ 01 ;
;'~l

ii) Ke~ tJ( = Ker ot& = ••• V 0( 6 S; iii) For oe , ß ES, if

there exists v~ V such that ~(v) = (J(v) I 0, then 01= ß
Using these concepts a Wielandt-Betsch type structure theorem

for streng semisimple near-rings is obtained.

Theorem. N 1s astrang semisimple near-ring ~=~ 3 a group V e
and a fixed point free semigroup S of endomorphisms of V such

that N~ L(S;V).

This result leads to a study of ~(S;V) where S is a completely

regular inverse semigroup of endomorphisms. In this situation,

thoee C(S;V) that are semisimple are characterized in terms

of Sand V.

J. D. P. MELDRUM:

Free near-rings.

We extend the results of Fröhlich on free d.g. near-rings

to zero-symmetrie left near-ringe. From,now on near-ring

will mean zero-symmetrie left near-ri~g. Starting with a

Bet X we CODetruct a free additive group on a set of symbols

. which ean be completely described. A multiplication i8 defined

on the free group F thus obtained. This makes F a near-ring,

the free near-ring on X, posseBs~ng all the appropriate

universal properties. By a modifieation of this construction ~

the free product of two neer-rings ean be defined. We also

define similarly the free R-module on a set X and the free

R-module produet of two R-modules, for a given near-ring R.

In these two eaBes we get free sums of copies of (R,+) eoming

in. Finally we use theee results to define a group near-ring

R(G) for a given neer-ring R ,and a given multiplicative

group G. This group near-ring i8 shown/to have the property

that all representations of G as a group of R-automorphisms
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of an R-module 1~ are in 1-1 eorrespondence with represen­

tations of R(G) on M which map G into the group of auto­

morphisms of M.

R. MLITZ:

Radical properties of near-rings which are not defined by

ideals.

Radicals cf near-rings and, more generally, of~-groups may

arise in a natural way from properties which do not yield

ideals. Thus, consider a variety V of-Q-groups and a binary

relation4t on V satisfying some supplementary eonditions

(chosen such that in the case cf zero-symmetrie nesr-rings

each of the relations "L is a subnear-ring, a (normal) N-sub­

group, a (normal) invariant lJ-subgroup, a left" ideal, a right

ideal, an ideal in N" is a special ease of "L -« NU). Define

a ~-radical on V to be a general radiesl (in the sense cf

universal algebra) satisfying the supplementary eondition

that an element of V is radieal-free iff i t· does not contain

radical -<t'-subgroups F {aj .Characterizatiens of the radiesl

and the radical-free elasses are indicated. It turns out

that every G E. V contains a (unique) maximal« -subgroup RG

which is radiesl. RG is a lower bound for the radieal; it is

equal to the radieal iff it is an ideal.

w. B. MüLLER:

Formal differentiation and formal integration in eomposition

rings.

A composition ring (R,+,.,*) is an algebra, where (R,+,.)

is a ring, (R,+,*) is a right near-ring, and

(x.y)*z = (x*z) •. (y*z) for all x,y,z e R•.

A formal differentiation cf R is defined as a mapping D:R ~R
which sRtisfies· (1) D(f+g) D(f) + D(g)

(2) D(f.g) D(f).g + f.D(g) (V'f,g€R)

(3) D{f*g) (D(f)*g).D(g).
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All formal differentiations are deterrnined in

A[xJ, the polynomial ring in x over a commutative ring A with 1,
A(x), the ring of quotients of A[xl,
A ~xJJ, the ring of formal power series over A, and

AA , the full function ring over A.
For neer-rings (N,+,*) all mappin~D:N --+ N which fulfill

(3) are determined.

A formal integration of R is defined as a mapping I:R ~R
which satisfies

(i) l(f+g) = l(f) + leg)

(ii) l(a.f) = a.I(f) , where a i8 a constant (a*O = a),

(iii) I(I(f).g) = I(f).l(g) - l(f.l(g),
(iv) I«f*r(g».e) = I(f)*I(g), for all f,g € R.

All formal integrations in A [?CJ , A(x), A ftxll ' and AA are

determined.

A. OSWALD:

Right ideals in near-rings of group mappings.

*Let G be a group and S be a group of fixed poirit free

automorphisms cf G. Let S = S*v{oj where 0 is the zero

endomorphism of G. Then with pointwise addition and mapping

composition as addition and multiplication, respectively,

the set MS (G) = If: G~ G I ("1 ot) f = ( l f) ot , K~ G, lI( f! S J
is a left near-ring. Let ~ be the set of right ideals and

R the set cf normal right subgroups of Ms(G).
*We can parti tion G into subsets of the form d' Sand

the number of such disjoint subsets is denoted by I G: S*, ; •
A set l x;\i consisting of one x;\ from each different f S

* *excluding OS is called a basis for G over- S .
*A group G is non-normal relative to S if, for some K ~ G,

GIN ( Ys*) = {'4 EGli. + ~ S* - 1. CIS*} •
Theorem.If IG:S*' is finite and G is non-n~rmal relative to

s* then ~ = R.

This generalised part cf a result cf M. J. Johnson.
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G. PILZ:

Polynomial near-rings.

Given any algebra Gout of some variety 11 of ....Q-groups,
Uone can form G [x], the algebra of all polynomials in x over

G in V. Roughly spoken, GrJ'lx] eonsists cf "everything whieh

can be built up by Gu{xJ using the operations and laws ofl/".
If the group part of G is written additively, GUCx] is a near­

ring w.r.t. addition and substitution. Coneernirig the strue­

ture of this near-ring, one can see that all near-ring

radicals are contained in (p~ GU[X]/r'gEG: p"g ~ lR(G)/ •

where~(G) is -the radical cf G (i.e. the intersection of all

maximal ideals cf G). If q is the variety of all graups,

G"lx]=: G[xJ is a "generalized distributively generated

neer-ring" (g.d .g.n.r.), which means that G [xl is addi tively

generated by eonstant and distributive elements. D.g. near­

rings and abstract affine near-rings are other examples.

For finite g.d.g.n.r,,'s N with identtty '(No not a ring),

N is primitive iff N is simple irr N ~ ~(G) or N ~ M (G),
o

where G is finite, non-abelian and invariantly simple and

K(G) = (GG,+,o). Every neer-ring can be embedded into some

G~[x], but not always into some G[x]. Every abstract affine

near-ring is isomorphie to a polynomial near-ring in the
variety of (ring-)modules. Also, GV[x] playa a very useful

role in determining generated ideals inJl-greups.

s. D. SCOTT:

Tarne nesr-rings.

Tarne n~ar-rings are those that have a unitary faithful N-group

in which every N-subgroup is a submodule. If V is such an

N-group then for v and w in V and t( in N there exists (3 in N

such tha t (v + vi) ()( - v c( = w ß •
Examples may be found by taking semigroups of endomorphisms

of a group that contain all inner automorphisms. The near­

ring generated ~y such endomorphisms provides an example.

Also zero-symmetrie polynomial maps over an J2-group are

                                   
                                                                                                       ©



- 16 -

a further example. In both these cases the ß in the above

expression can be chosen independently of w. Such N-groups

are called compatible and a refinement of this notion gives

2-tame near-rings (and N-groups). A primitive 2-tame near­

ring on V 18 either a ring Qr dense in Mo(V). Also minimal

condition for right ideals gives all possible chain conditions.

In the ease of I(V), minimal condition yields finiteness.

Questions concerning maximal condition for I(V) arise. In,

the ease where V i8 a simple group it se~ms likely that the

introduction of a topology on V gives V finite. Indeed this

topology carries over to type 2 N-groups.

y.-s. SO:

Neer-rings of polynomials over groups.

If G 1e a group'then the polynomials in x over Gare of the

farm go + Z 1x + g 1 + Z 2x + ••• + Z nX + g n (gi E G, Z i t: Z ).
The set G[x] cf all polynomials over. G forms a near-ring

w•.r.t. addition and substitution. The zero-symmetrie part

Go[xJ turns out to be a distributively generated near-ring.

In etudying homomorphisms, one sees that a group homomorphism

from G to H ean be extended to a near-ring homomorphism from

G[x] to H[xJ in a natural way. Conversely, under a eertain

condition (whieh 16 weaker than the one used in the ease of

universal algebra), all near-ring homomorphisms from G(xj to

H [xl arise in this way. In order to get results on the radical

J 2 cf Glxl , we have to know enough strictly maximal left

ideals. We present some classes of these. In this way we 4It
obtain {p = go+z,x+ ••• +znx+gne G(xll V'ge G: Pllgff (3(G);"

~Zi = 0 j as an upper bound for the near~r~ng radical of

G[xl (where 'p(G) is Baer's group radical of G). A lower

bound is given by the ideal generated by ß (G). In the

variety cf abelian groupe A, the correspcnding polynomial

nesr-ring is abstract affine, having~(A) as radicals

( J 0 = J 1 =" J 2 ) •
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H. WÄHLING:

Dicksen near-fields with prime rank.

1) Let (F, +, .) be a skew-field, va coupling map on (F, +, • ) ,

(F,+,o) the ,-derivation ef (F,+,.), KF the kernel, ZF the

centre of (F,+,*o), U, = {XEF*I , .. = 1J , P, the fixed field

of r,= IVa1aEF J and C the centre of (F,+,.). .

If [F:KpJ = p 18 a prime and KF = ZF' then the following is

valid:
* *(A) If • is commutative, then KF = P., and - wi th v:F ---:)l. Pr

the n~rm cf F/P, - there exists an epimcrphism ~ from

( ~(F ),.) o~to r, such that ,,= ToV and T(kP ) =1

for. all k ~ KF •

(B) If • i8 not commutative and if one turns - if necessary ­
from • to the dual of ., then KF = P" is a maxim'al commu­

tative 8ubfield cf (F,+,.) with

F = Uv• KF ' c* = U, "KF , [KF :cl = 'p and

. {F~F . *
'fuk = l k : x ~k":'1xk (UEU", kEKF ).

2) (A) Let (F,+,.) be a field, r<Aut (F,+,.) finite with

fixed 8ubfield P, v the. norm of F/P and T: V(F*) ~" an
epimorphi8m.The~ Cf=ToV i8 a coupling mep on (F,+,.)
wi.th K

F
= P = P" end P, = f' ; and KF = ZF if and ori\ly if

t'(k tF: p
]) = 1 for all k ~ p*

(B) Let (F,+,.) be a skew-field with centre C F Fand

U t K' < (F* , • ). wi th F* = UK' and U f\ K' Co C. Then

CI :[F* ~Aut (F,+,.) (uEU, kE~')
uk --.-" i k

18 a coupling map on (F,+,.). If K K'~{OJ is a maximal

commutative Bubfield cf (F,+,.), then Pv= K = KF = ZF •
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H. WEFELSCHEID:

Sharply 3-transitive groups which possess a PSL(2, K) as a
Zassenhaus-transitive subgroup.

Apermutation group (H, M) is called a ZT-group (Zassenha~s­

transitive) iff tne group H operates 2-transitively -on M
and M b I {idl ,M b = (id] for different-a, ~: c E M.a, a, ,e 1
A subgroup H~G cf a pe!mutation group (G, M) i8 ealled a

ZT-subgroup of G iff (H, M) is Zassenhaus-transitive. One
can show that the set cf all ZT-subgroups of a sharply

3-transitive group forms a lattice. In all known examples 4It
this lattice has a smallest element which is a PSL(2, K).
In a eertain sense a sharply 3-transiti~e greup (G, M) whieh
possesses a PSL(2, K) as a ZT-subgroup i8 determined by the
following fact:

Theorem: Let (G, M) be a sharply 3-transitive group which
satisfies the following eonditions:

(i) G b contains an involution.a,
(ii) There exists a ZT-subgroup H<: Gwhich is isomorphie

as apermutation group to Borne PSL(2, K)
(i.e. (H, M) ~ (PSL(2, K), K) ).

Then the group (G, M) i8 isomorphie as a.permutation group

to a group consisting of elements cf the form ~ and ~ '
which are constructed in the following way:
On the field K there exists a mapping

{
K~ Aut (K,+,.)

'f:
a --<:>a"

such that F:= (K, +,0) with aob:= a.a,(b) i8 a near-field.

{

K ---+ K:= K u{oo} •
~ : x~ a + mox ( a, m ~ K, m I 0)

CD~CO

K~K

x ----.,. a + ~(b + mox)

p: -m-Joob----+ Q)

CD~ a ,

(a, b, mEK, m I 0)

                                   
                                                                                                       ©



•

•

- 19 -

where m- lo is the inverse of m with respect to (0) and

~ (z):= z-1. (inverse wi th respeet to (.».
Remark: The eondition (i) says: ehar F I 2.

H. J. WElNERT:

Structures of right guotients.

In this paper, we sketch a very eonvenient way to deal with

rings, near-rings, semirings, ••• of quotients, reducing all

tedious considerations to results on semigroups. For this

purpose, we call any algebra (8,+,.) with two binary o~era­

tions such·that (S,.) is a semigreup a "structure".

Definition. (T,+,.) is called a structure of right quotients

of a structu~e (8,+,.) with respeet to a subsemigroup (1',.)
of (S,.) iff (T,.) is a semigroup of right quotients of

(S".) w.r.t. (E,.).
Facts on semigroups cf right guotients (briefly s.r.q.)

A s.r.q. T of S w.r.t. ~ is defined to be a semigroup

containing Sand an identi ty 1 such that eaeh 0( ~ ~ has an

inverse 0/.-" ~ T and T = {sor" JaE S. tX E EI. Such a s.r.q. T

exists iff (i) each ~ E Z is cancellable in Sand

( ii) a 'Zf\oe 8 I P holds for all a ~ S. 0( cL.
(Ore Asano-Condition). In this ease. T is uniquely determined

by S and~, up to S-isomorphisms, and we write T = Qr(S,~).

Using Greek and Roman letters as above, calculations in T
are given by

.A ß_A ~ '2 A ~ ~
( 1 ) a« = b ,- ~=~ :J x, c; : oe. x = ,., #j and ax b t;

( 1 ' ) .(:==:> Y u, v : 0< u = ß':" ==> au = bv
-~ .4 1

(2) a ol • bP = (at) ( ß 't" ) - for any tX t = b r by (i i ) .

For a ahort proof of all this (based on the equivalence of te

right eides of (1) and (1'» and more results on s.r.q. see

H.J.Weinert, On the extension of partial orders on semi­

graupe cf right quotients, Trans. Amer. Math. Soe. 142 (1969),

345 - 353. Here we only need that a fini·te number ef elements
_4 ß-A

a« , b,- •••• can be written with the same denominator.

according to
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aDC-1 = ( ax) ( ß ~ )-1

bp-1= (b t) (ß t )-1

for any 0( x =pt by (ii)

The basic statement on structures of right guotients.
Let the strueture (8,+,.) be right distributive (briefly r.~.)

and eonsider any s.r.q. (T,.) = Qr(S,2r). Then there exists
exaetly one extension + on T of + on 8 such that
(T,+,.) i8 also r.d., given by

(4) ac(-1 + bP.-1 = (ax + b~){ß-t )-1 for any OIx ,=P~ .
By (3), it is enough to prove this statement using eQUiValent1lit

(4') et-1 + d/-1 = (e + d)t-1 •

Moreover, the proof of the following statements becomes·
trivial by (4'):
Corollsr,. 1. For (S, +, .) and ( T , +, .) a s abave, i f .( S, +) i s

commutative, or aSBoeiative, or .(left) cancellative, or a
group - the same property holds for (T,+). If (8,+,.) .is'
left distributive, so is (T,+,.).
Only if the existence of some special elements i8 involved,
one has to go back to (4); for instanee, we have

Corol1arx 2. If (5,+) has a neutral element 0, and if

o '2 = 0, then (T ~ +) has a neutral element 0 (which 1s
equal to 0 P-1, for each"), and convereiely.

H. J. WEINERT:

Cancellativitx in generalized ring structures.

As a far-reaching generalization of (asBociative) rings we
consider any algebra (S,+,.) with two binary operations 4It
such that .J (5,. ) i8 a eemigroup. Denote by. ~ [~] the
set of all left . [right] cancellable elements of (8 t .) ,

by 0 the 'neutral" ~lement of (8,+), and write S* = s, -(01
* .meaning 5 = 5 if (8,+) has no neutral element.

To avoid trivial rubs, assume 181 ~2. Then the following
ring-like,
Definition (8,+,.) is multiplicatively left cancellative

iff S*~~
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15 justified by the
*Theorem S ~ ~ i8 equivalent to one of the following cases:

a) S has no neutral element, and (S,.) is 1eft cance11ative.

~) 5 has a neutral element 0, and (S,.) 18 left

cancellative.

g) ·S has a neutral element 0, So = oS = 0, and (8*,.) is

a semigroup which i6 1eft cancellative.

In this eontext, Itleft1t and ~ may be replaced by "right"

and ~ t by ntwo-sided'~ and ';(n ~ , and by "mixed" and :tf.J~

* * *Moreover, S ~ :rLI R implies 5 6-:( or 8 ~ 1<
As a matter _of fact, all these statements are valid dealing

~nly with a semigroup (8,.) ~and one special element o~ S,

being except10nal for whatever reason. (Cf. H.J.Weinert, On

left, right, and two-sided caneellable elements in semi­

graupe, Semigroup Forum 16 (1978), 97 - 1"03).
For semiri~gs (5,+,.), the 9 classes (o/,~), (0/, Il),
( ol , l"nR), (ß, ~), ••• , (8, .("'"R) are mutually distinct

and not empty. For right distributive near-rings one only

has the 3 eases «(3' n), (1, *l), and (1'~) = (K, JIII'/) ,
henee a lef~ cancellative r.d. near-ring ~s also right­

cancellative and zero symmetrie.

Similarly, we justify th~ following ring-like

Definition A left or right distributive semi-near-ring

(5,+,.) is called a semi-near-field iff (S*,.)
is a group.

Theorem. For any semi-near-ring (S,+,.), the following

statements are equivalent:

a) (S*,.) ia a group.

b) There exists an element e L E S such that for all
* * *a ~ Sone has eLa = a and a a = eL for some a ~ s.

c) For all a, b GS* there are x, y~ S such that

ax = band ya = b.

In the non-trivial ease w1th a zero (which i8 hard to prove),
* * *e L 19 in S and a, x, y may be chosen in S • Moreover,

Isi ~ 3 implies S'~ ( 1 , 't'11 R ), which 18 not true in general

for the 10 semi-near-fields S of order 2.
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H. WIELANDT:

Die Anfänge der Theorie der Fastringe.

Die Grundtatsachen der Strukturtheorie bis zum Analogon
des Satzes von Wedderburn über einfache Ringe sind zwei­
mal veröffentlicht worden: (1) durch den Vortragenden,
ausgehend von Fittings "Endomorphismenbereichen" nicht­
abelscher Gruppen, auf der Gruppentagung in Hamburg 1937
(ein Auszug ohne Beweise erschien in Deutsche Math. 3),
(2) durch D. W. Blackett in seiner bei E. Artin entstandenen
Dissertation (Princeton University 1950). Da Artin zu den ~
Veranstaltern der Hamburger Tagung gehört hatte, stellt sich
die Frage nach einem möglichen Zusammenhang.

Ein Briefwechsel im Juni 1980 mit Zassenhaus, der in
Hamburg Artins Assistent gewesen war, und mit Blackett
hat ergeben: Artin war 1937 über den Inhalt des Vortrags

unterrichtet, hatte aber 1950 offenbar keine Erinnerung
mehr daran; Blackett hat" das ihm von Artin vorgeschlagene
Thema "Endliche Fastkörper" selbständig abgewandelt.

R. ZEAMER:

Some Near Ring Extensions cf m.
Let ffi(S) = S~S ms ' where S is an arbitrary set and

IR s := {rs I rEIRJ • Define a norm 11: (R(S) ~IR+ by

Iw' := inf ({~ Ir.' I w = L (r . s. )gi , g. E lR ( s) 1).
111 1

Using Van Kampen diagrams it is shown that d(uJv):= lu - vI ~

defines a distance function on ß(S) with respect to which ~

m(S) becomes a topological graupe Moreover, any monoid on
SO extends to a multiplication onffi(S) which makes ffi(S) a

near-ring d.g. by Ums and topolocical with respect to d.
A completion IRTST 2~(S) is then constructed in which
all Cauchy sequences whose elements are of bounded length,

converge. The before mentioned near rings on ~(S) all

extend to topologically d.g. neer rings on ffi1]T.
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Using this fact it is then shown that the endomorphisms

of~ as an ~-module are continuous and all extensions of

maps y: S ~tRTSY such that the lengths of the V' (s)

are bounded.

ct ~ K(S), ~(S), or ßTST is called a full ideal

(K~ ffi subring) iff ~ is an ideal with respect to every

monoid on So. For S infinite, full ideals and subgroups

invariant"with respect to ffi, on K-endos of R(S), ~, or

K(S) respectiveIy, are the same.

A variety V~ Z(S) (Z(S) the free group on S) is called

regular i f v E V, (1. )v € Z( S) ===> (.1.) v ~ V.n n

The closed full ideals of fflTST are partitioned into a

disjoint union of sublattices, {lvI V a regular variety ,

where I v:= {Oll ~ closed fuH ideal of dITST. al) Z(S) = vj.
Each IV has a minimal element, VQTST. The elements of the

lower central series are shown to be regular yielding a

descending sequence cf full closed ideals ofiRTS),

fDn(Q(s»ln~1 ' 1Dn J n~1 the lower central series.

This shows there are plenty of complete topologically d.g.

near rings extending ffi.

J. L. ZEIviMER:

Affine Transformations on a Total Near-Ring.

A (Ieft) near-ring N is called a total near-ring if it is

a subnear-ring of a (Ieft) near-field K and has the property

that ß E K implies either ß ~ N or (3 -1 ~ N. This paper

is concerned wi th the affine transformations t ~ «t + ß
where ~ I 0, ß E N, a total near-ring. These transformations

form a semigroup under composition. It is clear that this

semigroup can be embedded in a sharply doubly transitive

group of permutations acting on an appropriate B~t (i. e. a

near-field containing the given total near-ring). The two

main results of this paper are
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(1) necessary conditions that a transformation semigroup be .

embedable in a sharply doubly transitive group of permutations

and (2) necessary and sufficient conditions that a transfor­

mation semigroup be isomorphie to the semigroup of affine

transformations on a total near-ring.

Berichterstatter: G. Betsch
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