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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 21/1980

Combinatorics

4. 5. bis 10. 5. 1980

Die Tagung fand unter der Leitung von D. Foata (Strasbourg)

statt. Das Schwergewicht in der Thematik der Vorträge und

Diskussionen lag im Bereich der kombinatorischen Enumeration

und der erzeugenden Funktionen. Das enge und fruchtbare Ver-

hältnis zu Gebieten der additiven Zahlentheorie (Partitionen),

der Darstellungstheorie (symmetrische Gruppe, symmetrische

Funktionen, Charaktere, etc.) und der Speziellen Funktionen

(hypergeometrische Reihen, orthogonale Polynome, etc.) wurde

besonders betont, sei es einerseits in der Anwendung spezifi-

scher Methoden und Resultate dieser Disziplinen auf kombinato-

~ rische Fragestellungen, wie auch andererseits in der kombina­

torischen Interpretation analytischer/algebraischer Resultate.

Das Institut mit seinen vielfältigen Möglichkeiten und seiner

entspannten Atmosphäre bot den Teilnehmern einen idealen

Rahmen für intensive Kontakte und erfolgreiche Arbeit.

Besonderer Dank gebührt dem Leiter, Herrn Prof. Dr. M. Barner,

und seinen Mitarbeitern für ihre Unterstützung bei der Vor-

bereitung und der Durchführung der Tagung, eingeschlossen

ihre Geduld bei der Verminderung organisatorischer Reibungen.

                                   
                                                                                                       ©



r~.:;"~~~: :~:·:~~.l
l~......."""", ~ ~_.-- ....~ j

Vortragsauszüge

G. E. ANDREWS:

Ramanujan's "Lost" Notebook

- 2 -

In Ramanujan's I1Lost" Notebook (cf. Amer. Math. Monthly 86(1979),

89-108) there are numerous q - identities with irnplications for

additive number theory and combinatorics. The object of this

talk is to describe the rnathematical setting of these results

and to describe same of the most surprising. For example, suppose

that E ~ C qD is the power series expansion of the Rogers -
D_O n

Ramanujan continued fraction:

1+~
2

1+~
3

1+~

1 + •

and let Bk,a(n) denote the number of partitions of n of the

form n = A. 1 + A. 2 + ••. + As where Ai - Ai +1 ~ 0 , Ai - Ai +k - 1 ~ 2

and at most a-l of the AlS equal 1.

Ramanujan asserts a number of analytic results which directly ~

imply that CSm = B37 ,37{rn) + B37 ,13{rn-4), CSm+1 = B37 ,32(m) +

B37,7(~6), and similar results for CSm+2 ' CSrn+3 and CSrn+4 ·

D. M. BRESSOUD:

A combinatorial technique for partition theory

A general technique for obtaining both direct correspondence

proofs of partition identities and interpretations of ge~\erating

functions is to consider re-orderings of underlying partitions.
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This technique has yielded a correspondence proof of Schur's

partition theorem and a proof that Andrew's multisum expression

for the Alder polynomials generates the partition function of

Gordon's identity. The theory behind this technique will be

explained and several examples will be given.

D. I. A. COHEN:

Ramanujan's unwritten notebook

The ghost of the mathematician has communicated a wide range

of results using the technique of PIE-sums (Partition Inclusion-

Exclusion) •

Theorem 1: The nurnber of partitions of n into an even number

of distinct parts = o,±x (mod y) minus the number of partitions

of n into an odd number of distinct parts = o,±x (mod y) is zero

unless n jk (yk ± (y - 2x» in which case the difference is (-1) k .

Corollaries of this include Euler's theorem (even-odd) and

other amazing things (including the Jacobi tripIe product).

Let A be the collection of the multisets a .. Let a. be the SUfi
1 1

of the numbers in a i • Let LA be the lattice formed by the union

of the a i • Let lJ be the Möbius function of this lattice.

Theorem 2: The .number of partitions af n which da not contain

any set a
i

is

L lJ(n)p(n-n)
nE: LA

E
j=o

c.p(n-j)
J

, where C j = _L lJ (n)
n=j
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Theorem 3: Let A = {ai} , B = {bi} where the a. are disjoint
1

and the b. are disjoint and a. = b. for all i. Then the nwnber
1 1 1

of partitions of n which include no a. is equal to the number
1

of partitions of n which include no b .•
1

Thousands of corpllaries now appear. As a sample:

The number of partitions of n into parts no one of which is

an odd.multiple of 3

the number of partitions of n where there are no two consecu-

tive non-multiples of 3

the number of partitions of n which da not cantain an odd

number m and its double 2m.

R. eORl:

Planar maps and weIl labeled trees

We present a bijection between planar maps and weIl labeled

(or Motzkin) trees: these trees are such that positive integers

are assigned to the vertices in such a way that labels differ by

at most one on adjacent vertices. As a consequence of this re-

sult a combinatorial proof of the formula (of W.T. Tutte) enume-

rating rooted planar maps with m edges is established.
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D. DUMONT:

Les fonctions elliptiques de Jacobi: une approche combinatiore

Deux extensions des fonctions elliptiques sn, cn, dn, sont

etudiees: les polynomes de Schett a trois variables (X
n
), et

quatre fonctions Sn(u), Cn(u), Dn(u) et En(u) qui sont

definies par le systeme differentiel suivant:

d
du Sn(u)

d
du Cn(u)

d
du Dn(u)

d
du En(u)

Cn(u)Dn(u)En(u)

a 2Sn(u)Dn(u)En(u)

b 2Sn(u)Cn(u)En(u)

c 2sn(u)Cn(U)Dn(u)

Sn(o) = 0

enlo)

Dn(o)

En(u)

On montre deux theoremes combinatoires sur ces deux extensions,

en termes de pies de cycles dans les permutations. Soit a une

permutation de {1,2, ..• ,n}. Un entier pest dit pic de cycle si

a- 1 (p) < p > o(p). En denombrant les permutations suivant leurs

nombres de pies de eycle pairs et impairs, on obtient les coeffi-

eients des polynomes (Xn(x,y,z» definies par

x xo

En se restreignant aux permutations en cycles des longeurs

paires, on obtient les coefficients de Cn(u) .

Le polynome Xn est aussi le polynome enumerateur des arbres

binaires etiquetes de taille n suivant le~rs nOlmres de branches

de longeur paires, de branches gauches de longeurs iropairs, et

de branches droites de longeurs impaires.
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eh. F. DUNKL:

Orthogonal polynomials in several discrete variables

Consider the subgroup of SN' the symmetrie group on a set with

N elements, whieh leaves two given disjoint subsets invariant.

This subgroup is isomorphie to S x Sn X Sn where L.~. = N,i, N2 ~3 1 1

a Young subgroup of SN' and will be donoted by Ht . The space ~

of functions, expressed as polynomials, on SN which are inva-

riant under HR, is deeomposed with respect to the irreducible

representations of SN and of SR"X Si
2

+i
3

· It is useful to con­

sider the intermediate group because there is generally more

than one invariant in each irreducible representation. The de-

composition is perforrned by means of"differential operators.

Further, the funetions on SN ean be restrieted to the coset­

-space H \SN (where H = S x S x S , I.r. = N) and thusr r r, r 2 r 3 1 1

Hr\SN/Hl - invariants are obtained. Next, orthogonal (as

functions on Hr\SN) isomorphie copies of the same represen-

tation of SN are eonstructed. Finding the H1 - invariants.amounts

to solving eertain differenee equations. The resulting ex-

pressions involve Hahn-polynomials in one and two variables.

                                   
                                                                                                       ©



- 7 -

D. FOATA:

Divisibility and congruence properties of the g - Euler numbers

For n = m 2R. with m odd and R. ~ 0 let EV
n

(q)

and define Dn(q)

(1 + q~ TI,,.. '" Ev. (q)
~lan 1

m2 j
TI s;' s;n (1 + q )

o-J-J<.

for n odd and

for n even.

It is shown that for every n~' the polynomial Dn(q) divides

the q - tangent number T2n+, (q) .

As for the q - Euler nurnber E
2n

(q) the congruence

is derived by means of the classical combinatorial interpreta-

tions of the tangent and secant numbers in terms of alternating

permutations.

I. GESSEL:

Symmetrie functions and permutation enumeration

The descent set of apermutation n is the set {i:n(i) > n(i+l)}.

To certain sets of permutations we can associate symmetrie func-

tions whieh record the descent sets of these permutations. Thus

1n counts all permutations by their descent sets and
i,j l-X i Yj

the descent sets of their inverses, and TI --'-- TI , counts
. l-x. l-x x
1 1 i< j i j

involutions by their descent sets. From these symmetrie func-

tions generating functions for counting permutations by number

of descents and sum of descent (greater index) can be obtained.
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J. GILLIS:

Applications of Hermite polynomials

Given k finite sets of distinguishable elements, with cardinals

n"n2 , ••. ,nk respectively we define

p
n" ••• ,nk

the number of k-partite graphs of degree 1

which can be constructed of them,

E (Q ) = the number of graphs af degree 1n" ••• ,nk n" .•• ,nk
which can be farmed fram the Eni elements by

joining them in pairs such.that the number of

edges jaining pairs of elements from the same

set i5 even (odd) ,

D
n" ••• ,nk

E
n" ••• ,nk

It i5 shown that

p
n" ••• ,nk

2-x
e TI, ~i:ik Hn.(X) dx,

1

where the H (x) are Hermite polynomials, andn i

1*+00 -2x2
H (x) dxD

n, , ••• ,~ = TI J e TI,
:ii~k n.

-CD 1

Asymptotic estimates are obtained for the special case

n,= ••• =nk=r. Moreover it is shown that

D > o.r,r, ••• ,r

for any even k.
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• M. D. HIRSCHHORN

Finite continued fractions of the R0gers-Ramanujan type,

with applications to partitions

In generalizing certain results concerning continued fractions

due to Ramanujan and Gordon, I was led to eonsider

1 + a + b +
Pn +1 (a,b,c,q)

Pn(a,bq,eq,q)

P
n

Using the ordinary generating funetion, one ean find various

explicit expressions for.the P n , the simplest of which is

(m+1 )

L (_1)ßl q 2 a m (e/a)m a 1 (-bqffi/a ) 1 [n~ml[n-12rnl ~
l,ffi~o J J

• A study of the polynomials Pn has already led to

(i) a new polynomial ide~tity implying the Rogers-Ramanujan

identities,

(ii) a cornbinatorial explanation of two hitherto myster~ous

identitied of Slater,

(iii) a new proof of Sylvester's partition theorem.
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M. HOARE:

Combinatorial models, collective games and orthogonal polynomials

Three types of model games are discussed which lead to solutions

in orthogonal polynomials of a discrete variable:

A. Two person markovian games.

B. Single player against an (infinite) bank.

C. Collective binary games between players paired at random.

Evolution equations for each can be written giving the distri-

bution of wealth as a function of time. (Linear for A,B; non-

linear for C) .

An interesting case of A is compound Bernoulli trials. A player

has i B.T's for k 'successes' at probability Cl, followed by N-k

second chances for j - k 'successes' with probabilities ß. The

transition matrix K .. = Pr{i -+ ]'} is a convolution of two binomial
]"l.

distributions and defines a Markov chain. The spectrum of ! is

A = an(l - ß)n and its left eigenvectors are Krawtchouk poly-
n

nomials Kn(i,N,y) withy= ß/[l-a(l-ß»). The stationary distri-

bution (A o = 1) is a binomial with parameter y.

Under class C we consider binary games with negative hypergeo-

metric distributed outcomes , :.the ~.degree of :freedom' parameters

p,q now measuring the 'skill' of the players. The resulting

'Boltzmann'-type evolution equation can be solved under certain

conditions (e.g. p = q) and leads to a negative binomial statio-

nary distribution of wealth. The result, though over-sirnplified,

has certain implications for actual collective games such as the

ELO system for rating chess masters.
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M. E. H. ISMAIL:

Orthogonal polynomials and combinatorial identities

A sequence of polynomials Pn(x) is orthogonal if and only if

there exists a positive measure d~ such that

A Ön m,n

where An > 0 , n = 0, 1 , 2 , • •• •

A necessary and sufficient condition for orthogonality is that

Pn(X) satisfies a three term recurrence relation

p n+1 (x)

with A
n

A
n

_
1

C
n

> 0 , n= 1,2, ••••

Using Markov's theorem and some recent results on orthogonal

polynomials I present a method to recover the measure d~ from

the three term recurrence relation. The orthogonality relations

can be thought of as combinatorial identities. One of the exam-

pIes treated leads to a q - analogue of Euler' s forrnula

e
az = !

n~o

n-1a(a+n)
n!

This work is joint with Richard Askey, University of Wisconsin -

Madison.
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K. W. J. KADELL

A combinatorial approach to Selberg's integral

In 1944 A. Selberg evaluated the important multivariate extension

1 1 n
(*) J•••I TI t~-1 (1 - t. ) y-1 I TI (t. - t .) 12kdt1 ... dt

o 0 j=1 J J i<j 1 J n

n
TI

j=1

r (x+ ( j -1 ) k) r (y+ ( j -1 ) k) r ( 1+ j"k)
r(x+y+(n+j-2)k) r(1+k)

of the beta integral. It includes some later results of Mehta

and Dyson which occur in physics. R. Askey has recently observed

that (*) is equivalent to I. MacDonald's" conjecture for Ben.

We give an equivalent combinatorial problem. Such a solution

may extend to several (of many) q - analogues of (.) conjectured

by R. Askey. These include

1 1 n x-1 (qtj)co 2k (q1-kt .)
J... / TI t. TI t i t." J 2k d t, ... d t
o 0 j=1 J (qYtj)co i<j 1 q q n

k(n)+2k2 (n) n r (x+(j-1)k) r (y+(j-1)k) r(1+jk)q 2 3 TI _Q q _

j=l f q (x+y +(n+ j -2)k) r(1+k)

which yield q - analogues of some conjectures of Dyson and

I. MacDonald.
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T.H. KOORNWINDER:

Special funetions on the symmetrie grouE and on SU(2f, a

unification of two different group theoretic interpretations

Krawtchouk polynomials Kn(XiP,N) and Hahn polynomials

Qn(x:a,ß,N) are orthogonal polynomials on a finite set {0,1, •.. ,N},

which can be expressed as hypergeornetric funetions. Krawtchoük

polynomials have a group theoretic interpretation as spherieal

or intertwining funetions on wreath products of the symmetrie

group, most generally on SNO(Sk)N wi~h respect to the subgroups

SNO(SpXSk_P)N and SN O (Sk_1)N. Hahn polynornials have a group

theoretie interpretation as intertwining functions on SN with

respect te the subgroups S XS
N

and S XSN . On the ether hand.,p -p q-q

the Clebsch-Gordan coeffieients for SU(2) can be expressed in

terms of Hahn polynomials such that the orthogonality relations

for the C-G coefficients become the orthogonality 'relations for

the Hahn polynomials. First I show a similar group theoretic

interpretation for Krawtchouk polynomials, which seems to be

new: the matrix elements of the irreducible unitary representa-

tions of 5U(2) can be expressed in terms of Krawtchouk polyno-

mials, such that, for each fixed element of 8U(2), the orthogo-

nality relations for the rows or colurnns of the representation

matrix become the orthogonality relations for Krawtchouk poly-

nomials. Next, I give an intrinsic connection between the two

group theoretic interpretations for Krawtchouk polynomials des-

cribed above, by only using the group theoretic characterizations

of these polynornials and not their expression as special functions.

I also succeeded in giving a similar intrinsic connection for

Hahn polynomials.
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A. LASCOUX:

The Kazhdan-Lusztig plaetie representation of the symmetrie

group

(joint wor~ with M.P. Sehützenberger)

Kazhdan and Lusztig have shown that for each partition I,

there exists a graph r
I

whieh deseribes the representation

of the symmetrie group Sn assoeiated to this partition.

More preeisely, the set of vertiees is the set of standard

Young tableaux of shape I (read as words) and it is labeled

by subsets of {1,2, ... ,n-1} (the label S(t) of a tableau t is

the set { x E {1 ,2, .0.. ,n-1} ; • ·x+1· ·x·· is a subword of t } .

Now there is a very simple rule to write the Coxeter genera­

tors aeeording to the graph and the labeling. It was Kazhdan's

and Lusztig's conjecture that the matriees for these genera­

tors eontained only 0,+1,-1; this we solved. The main problem

is to build the edges of the graph, and this is done by using

properties of the inverse_of the plaetie relations whieh are

deseribed in "Monoide Plaxique, Combinatories - Napoli 1978",

and used in eonneetion with the finite linear groups.

P. LEROUX:

(Two talks are given, presenting work being done by a team

whieh includes A. JOYAL, G. LABELLE, J. LABELLE at Universite

du Q~ebec ä Montreal)

1 - Homogeneaus Gaussian coeffieients

Examples of triangular eategories, which are special eas~s of

Möbius categor±es, are presented. They eorrespond to the famil~ar

J

                                   
                                                                                                       ©



- 15 -

triangular arrays of numbers which occur in enumerative combina­

torics: binOmial,(~): Stirling numbers of 2
nd

kind, S(n,k), and

st . . n n
1 : Gausslan, [k]q , [k]X,y , etc.

2 - A structural calculus for generating functions

Set theoretic operations are defined on IIstructure types l1 corres-

ponding to addition, multiplication substitution and derivation of

exponential generating functions. A " one slide proof l1 in color is

given of Cayley's forrnula for the nurnber nn-2 of trees on an

n-element set.

S.c. MILNE:

Hypergeometries series weIl poised in SU(n} and a generalization

of Biedenharn's G-functions

We first proove that Holmanis multivariable generalization of

ciassical weIl poised hypergeometrie series satisfies a general

contiguous relation. We then rnake use of this general relation and

Biedenharn's IIpath sum formula" to give not only an analytical but

also a group theoretical forrnulation of a class of multivariable

special fuctions (n_2)G~n) (X) which provide a U(n) generalization

of Biedenharn and Louck's G(~iX) functions for U(3). A detailed

study of their symmetries and zeros implies that these generalized

G~functions are polynornials. This fact is equivalent to the exis-

tence of an SU(n) generalization of Holman's SU(3) extension of

Whipple's transformation of classical hypergeometrie series. A

further application of our general contiguous relations yields
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an elementary proof of Holman's U{n) generalization of the

SF4 (1l summation theorem. Suitable "q-analogs" of (n_2lG~nl (Xl

may weIl be related to a nU{n) analog" of the Rogers-Ramanujan

identities.

w. OBERSCHELP:

Rook polynomials and matching polynomials

We give an operator theoretical formula for developing the

matching polynomial M(x) ~ m xV for each graph with n nodes.
v=1 v

This formula keeps track of the different edges which occur in

those matchings, and can be viewed as an algebraic description

of an algorithm which generates all matchings of a given graph.

For the special case of bipartite graphs the formula develops

into the rook theory, developed by the author in 1973 and by

Go1dman, Joichi and White (JeT 1976). The connection to a theory

of matching polynomials by Farrell(JCT-B 1979) is described as

we11 as the connection to the calculation of the permanent. Since

ca1eulation of the permanent is a "hardlt problem (Valiant, Theor.

Camp. Sei, 1979), there i? no hope of giving simple calculations

for matching and rook polynomials. The theory is also possible e
for directed graphs and those with edge valuations.
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o. PRETZEL:

Combinatorial dime~sion of partially ordered sets

Definitions:

1. Order R on poset 5 : a ~ b (5) --+ a ~ b (R):

base on 5 : set {R1 , •.. Rn } of total orders on 5 s.th.

a~b (5) ~ Vi a~b (R
i

)

dim S := minimum ca~dinality of a base on 5 •

2. LOcation of S

u

x = (D,U)

up set of S

D down set of S,

D < U

L(S) := set of locations i

order on S U L(S) : order on S preserved,

SES< (» x = (D,U) ~ SED(sEU)i

U{S) (D,U) ~ (D',U') ~ D5 0', U2 U' [universal extension

of S]

l(S) : (D,ll) < (D',U') ~ UnD' * ~ [fuzzy version of s].

3. Double antichain: Hasse diagram is a complete bipartite graph.

Theorems:

1. dim ueS) = max cardinality of double antichain subset of S

2. ssx~ dirn X ~ dirn X'S + dirn U{S)

3. (Bogart, Rabinovich, Trotter) S chain of height n

-+ dirn 1(S) - l09
a

(n) (1<a<2, fixed)

4. S double antichain with parts of size o~m~n:

dim l(S) max ! (~) , r ~ ( (~) + (~) ) II ·
r~n

s:;m
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D. RAWLINGS:

A generalization of the Worpitzky identity with applications

to the permutation enumeration

A generalization of the Worpitzky identity for the Eulerian

numbers provides a set-up for converting certain generating

functions on finite sequences into (t,q)-generating series

on permutations. The two additional indeterrninates in the

permutation case arise in connection with the descent number

and the major index of the inverse of the permutation. As

an example, the following (t,q)-generalization of the classic

result of Andre on down-up permutations

•

I
n~Q

T (t,q)un
n
(tiq)n+1 L

r~O

t r [2 - i [ TI (u, r) - 11" (-u, r) ] ]
n(u,r) + n(-u,r)

where n(u,r)

and i = I=T ,

r
rr (1 + i u qk) , (tiq) n+1

k=Q
(l-t) (l-tq) ••• (l-tqn) ,

my be derived from a result due to Carlitz on down-up sequences.

Furthermore, the polynomial Tnlt,q) does generalize the q-tangente

and q-secant numbers obtained when counting down-up permutations

by inversions.
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A. RONVEAUX:

Survey on Polynomial Harmonie Functions invariant under the

Cubic Group

Polynomial invariant functions under the eubic group (024 ) can

b~ build systematically using the so called integrity basis of

~ the cubic group, hut these functions are not harmonie. On the

other side, solutions of Laplace equation in cubic geometry

ask to know all invariant harmonie functions. Such a set can

be obtained by summation of Spherical Harrnonies hut this pro-

cess gives an overcomplete basis.

This survey indicates an analytical approach in cartesian

coordinates.

R. STANLEY:

The Number of Faces of a Simplicial Convex Polotype

In 1971 McMullen (Israel J. Math. 2 (1971), 559-570) conjectured

that a certain condition on a vector (fo ,f1 , ... ,fd - 1 ) of inte­

gers was necessary and sufficient for the existence of a sirnpli-

cial convex d-polytope with f i faces of dimension i. In 1979

Billera and Lee proved the sufficiency of McMullen's condition.

We will outline a proof of necessity, thereby cornpletely veri­

fying McMullen's conjecture. The proof uses the theory of toric

varieties as developed by Demazure, Mumford, and others, together

with aversion of the hard Lefschetz theorem due to Steenbrink.
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D. STANTON:

Partial orders and g-Krawtchouk polynomials

There are two different families of q-Krawtchouk polynomials

which are eigenvalues of q-Hamming schemes. Partial orders

related to both possibilities are given. A lowering operator

on the partial order is used to derive explicit formulas for

the polynomials. Same irreducible representations of classi- ~

cal groups over a finite field are obtained as a corollary.

D. STOCKHOFE:

Certain bijections on the set of partitions of a natural

number

Let a = (al' ••• ,an) be a partition of n, n EJN. Then for eaeh

1 ~ i ~ n-1, q E:JN uniquely determined integers t i ~ 0, O~K i sq-1

are given by the equation a i -ai +1 = t i q + Ki • For each q

a bi]·ection L on the set of partitions P(n) can be eonstrue-q -

ted such that for eaeh k, R, EJN U {O} the set of partitions with

Liti = k and R, parts div~sible by q is mapped onto the set

of partitions with Liti = R, and k parts divisible by q. It

turns out that Lq is something in between eonjugation of par­

titions (q=l) and the identity mapping (q~n). Some partition

identities with difference conditions to the parts were de-

rived by this construetion, as specialcases (q=2) one ob-

tains results of Euler, Sylvester, Fine. The group generated

by L" ••• ,Ln _ 1 is the symmetrie group on P(n).
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G. VIENNOT:

Determinants in calors and pictures

We give an interpretation of a general determinant with the

weight of some configuration of non-crossing paths. For some

particular weights andpaths, this general theorem gives a

"bijective U proof for many deterrninants involved in cornbi-

natorics: determinants with some binornial coefficients,

Stirling numbers, up-down sequence of permutations, number

of Young tableaux, "Kreweras dominance theorem", plane parti-

tions, Schur functions, Hankel deterrninants of moments of

orthogonal polynornials.

D. WHITE:

Monotonicity and Unimodality of the Pattern Inventory

It i$ shown that the Kostka numbers respect a natural partial

order (reverse domination) on the integer partitions. It i8

then proved that the number of Pqlya patterns with ~ given

weight also respects this order. Immediate consequences in-

clude the unimodality of the number of graphs with n vertices

and k edges and the unimodality of the coefficients of the

expansion of the Gaussian coefficient [m+n] .
n

Berichterstatter: V. Strehl
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