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Tagungsbericht 25/1980

Topologische Dynamik

1.6. bis 7.6.1980

Die Tagung fand unter der Leitung von J.Auslander (College Park)

-und M.Denker (Gdttingen) statt. Sie war die erste ihrer Art in

Oberwoifach und erfreute sich groBer internationaler Beteiligung.

Die Schwerpunkte dieser Tagung bildeten Transformationen auf dem
Einheitsintervall und Strukturfragen minimaler Fliisse. Daneben wur-
den die Theorie der Markoff-Ketten, Rekurrenzeigenschaften (inclu-
siv ihr Zusammenhang zur kombinatorischen Zahlentheorie) und einige
maBtheoretische Fragestellungen in Verbindung mit dem Thema der
Tagung behandélt. Die 20 Vortridge wurden an einem Nachmittag durch
eine "problem session" erginzt. .

Die idealen Mdglichkeiten, die das Forschungsinstitut in jeder Hin-
sicht bietet, lieBen die Tagung 2zu einem vollen Erfolg werden. Die
Teilnehmer der Tagung danken dem Direktor des Institutes, Herrn

Prof.Dr. M.Barner, und seinen Mitarbeitern filr die organisatorische

‘lnterstutzung bei der Vorbereitung und Durchfiihrung der Tagung.
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Vortragsauszlige: ' |

A.BECK: - ] ‘

Special Flows in the Plane I: Flows Without Stagnation Points - ‘

In my book, "Continuous Flows in the Plane" (Springer 1974), I classi-
fied continuous flows in the plane using certain criteria and depend-
ing on the set of stagnation points (q.v.). Now, I am 1nveé€igating the
classification of structures of continuous flows carrying additional
assumptions. The specific conditions are infinite differentia.bility ‘
(C_), piecewise linearity, and semi-analyticity.

Among the flows without stagnation points, the C, flows have the same
structure as the continuous ones. The piecewise linear flows are more
restricted, and the semi-analytic are more restricted é€i11.

L.BLOCK:

Periods of periodic points of maps of the circle which have a fixed
point L

For a continuous map f of the circle to itself, let P(f) denote
the set of positive integers n such that £ has a periodic point of
(least) period n . Results are obtained which specify those sets,
which occur as P(f), for some continuous map f of the circle to it-
self having a fixed point. These results extend a theorem of Sarkovs-
kii, on maps of the interval, to maps of the circle wﬁich have a fixed
point, ! ’

S.CHEN:

Entropy of Geodesic Flow and Exponent of Convergence of some Dirichl’
Series T

We investigate the relaﬁioﬁ between the geodesic flow f = (ft) and
its topological entropy h(f) "on the unit tangent bundle TM of a
compact Riemannian manifold M and the exponent of convergences of
the following two functions: (1) the Dirichlet series

T (cosh dlx,,gx,) + 7t ter,

geG
where G is the covering group of the universal covering Mnm,
d is the distance and x is a fixed point in ™ , and (2) the

Selberg zeta function
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2(s) = N N (1 - e (BHKIT(R)) oo,
gEP k=0 .
where T(g) 1s the translation length of g and P 1is the set of
primitive elements of C. If M has nonpositive sectional curvature,
then the exponent of convergence is the topological entropy h(f) of
the geodesic flow. Our result is extended to Anosov flows of compact
manifolds with associated zeta function of Smale.

E.M.COVEN:

Periodic, Recurrent and Non-wandering Points for Maps of the Interval

Let f be a continuous map of a compact interval to itself. Let P,R
and @ denote the periodic, recurrent and non-wandering points, re-
spectively, of f . Theorem (Coven-Hedlung) P = R and-hence Q - P
is nowhere dense. Z.Nitecki [Proc.hmer.Math.Soc., to appear]) has shown
that if £ 1s piecewise monotone, then Q - P consists entiteiy of
isolated points. Theorem (Coven-Madden-Nitecki) @ = P holds c®-ge-
nerically. L.-S.Young [Invent.Math.54 (1979), 179-187] has construc-
ted an example with @ - P # @. However, in this case a(f) = a{g")
for all n 2 1. We'present examples of the more delicate phenomenon -
Q(t) # a(f") for some n 2 2. These examples illustrate the main
ideas of the proof of the following result., Theorem (Coven-Nitecki)
() = a(f®) for all odd n 2 1.

J.CUNTZ:

K-theoretic Invariants for Topological Markov Chains

Let I be a finite set, A = (A(i'j))i,jez a matrix with entries in
{0,1}) and OA the corresponding shift transformation. A and B are
called f;ow-equiyalent if the suspensions Fp = X, x lR/oA x T, and

Fy = XB xR / Op X T1 ('I'1 = unit translation on R) equipped with
this natural orientation are isomorphic. .

With A one can associate a certain non-commutative C*-algebra bA
(W.Krieger and the author, Inv.Math. 1980). This algebra is an invar-
iant of flow equivalence for A ., For any C®%-algebra A one can define
Abelian groups Ki(A) (i=0,1) and Exti(A) (i=0,1). In the case

A = C(X), X a compact space, these are just the ordinary K-groups
for X, i.e. generalized cohomology groups, and the Brown-Douglas-
Fillmore Ext-groups, i.e. the corresponding homology grups.

Thanks to recent results on algebraic topology for non-commutative
C*-algebras (partially due to the author) one can compute
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Forschungsgemeinschaft . . . ©



o .
K (5,) = zz/_u-A)zz Ext(5,) ~ Ker(1-A) on 2

Ky} = Ker(1-a) on 2 Ext'(3,) e 2%/ (1-a) 2t

Thus, one recovers the invariants of flow equivalence discovered
before by Bowen and Franks. One-also obtains new invariants for re-
ducible Markov chains. Assume for instance that A = (31 : ) where
A1 and Az, are irreducible. Then there is an exact sequefice )
Py ¢ o(» QAZ - QA - 6A1 - 0.  Equivalence classes (for an appropriate
notion of equivalence) of siuich exact sequences form a group denoted
by Ext(5A 0, ). The couple [ppls Ext(5A /0, ) is an invariant of
flow equivllen%e for A which can easily1
matrix A,

2 be computed from the

F.M.DEKKING:

Substitution Minimal Flows

We slightly generalize Gottschalk's definition of a substitu-
tion maximal flow. The extended class of flows comprises a minimal
flow studied by Chacon, and by del Junco.
In this class one can give simple examples of flows (not maxi-
mal that are 1-mixing but not 2-mixing (similar to those given
by S.Goodman, B.Marcus. An example of a minimal flow with this
property is given by M.Keane and myself. .
Finally, we discuss the computation of sequence entropy for 1&-};[53'
substitution minimal flows. o ]

H.FURSTENBERG:

Recurrence in Topological Dynamics and Combinatorial Number Theory

A number of theorems in topological dynamics when applied to symbolic'i;A
.systems (subshifts) have implications for combinatorial number theory.liij
Multiple Recurrence Theorem: Let '1‘1 'T2"“'T1 be commuting maps.of .

a compact metric space X to itself, 3 x € X and a sequence

n e with T,X x - x for i=1,2,...,1. . T
When applied to a symbolic system: X ¢ Q = AZ, A finite, To(n) ="
w(n+1), T, = Ti', one obtains van der Waerden's_theorem: 5 ool
Theorem: If Z = C1U...UCn is a fin%te partition, some Cj cOntaips
arbitrarily long arithmetic progressions. . o

Let (X,T) be a compact metric dynamical system. A point x € X is

uniformly recurrent if for any neighbourhood V of x there is a
s:quénce (nk) with n > and (nk+|-nk) bounded for which

TX x € V. Two points x,y € X are proximal if lim inf aer"x,ty) = o.
Theorem (Auslander-Ellis): If x 1is any point in a compact metric
dynamical system, 3 a pdint y proximal to x such that y is

ormly recurrent. .
D#& %rsémngsgegwscum . © @



’ We say that a set H < N is a central set if for some system (X,T) and
| - some point x € X and a uniformly recurrent Y Proximal to x, there is
a neighbourhood V of y with {n: T x € V) ¢ H.
Applying the Auslander-Ellis theorem to symholic systems one obtains:
Theorem: If N = CIU"'UCn is a finite partition, some Cj is a central
set.
The significance of central sets for combinatorial number theory '
comes from the following results.

Theorem: If H- is a central set, there is a sequence hi € H such

tha? for all 1‘ < 12 < ... < ik » k arbitrary, h11+h12+...+hikeﬂ.
. Theorem: If H 1is a central set and | aijxj = 0 1is a regular system

in the sense of Rado, there exists a solution x1....,xm coming from

H.

These now imply Hindman's theorem and Rado's theorem for finite parti-

tions of N. .

S.GLASNER:

Structure of Minimal Flows

The structure theorem for minimal flows which represents a minimal flow

as a weakly mixing extension of a PI-flow (see [V]), can be viewed as

a completion of an important step in the theory of minimal flows. How-

ever, a much finer structure theory for minimal flows is clearly de-

sirable, especially so in the case of weakly mixing flows and weakly

mixing extensions,

Some recent results in this direction ((E-G],[G], [G-W]) concerning

the notions of Pure Weak Mixing and Dll will be described,

[Vv) - W.A.Veech, Topological Dynamics, Bull.A.M.Soc.83 (1977),775-830.
.IE-G] - R.Ellis & S.Glasner,Pure Weak Mixing, T.A.M.S. 243 (1978),

135-146.
[G] - Minimal Skew Products, to appear in the T.A.M.S.
[G-W] - S.Glasner & B.Welss, A Weakly Mixing upside-down tower of

Isometric Extensions, to appear.

F.HOFBAUER:

The Transformation T : x - ax(1-x) on [0,1]

The goal is to determine the topological transitive T-invariant closed
subsets of [0,1]. To this end certain shift spaces (X,0)} are used
which arise from f-expansions and whose topological structure can be
determined with the aid of infinite transition matrices. Then these re-
sults are brought back to the original transformation T on [o,1].

Deutsche @
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One gets the following: [9,1] is the disjoint union of a wandering set

and v Li for some K with 1 s R s = (for K = » we have also

. IsiskK
an L_).
The Li's are topologically transitive, closed, T-invariant subsets of
[0,1]) and L, n Lj 1s at most finite for {1 ¢+ j. For i <K, Ly 1s
a periodic orbit or a Cantor set, which has Lebesgue-measure zero and
is isomorphic (as a fopological dynamical system) to a finite type
subshift, L, is a periodic orbit, a Cantor set or a finite union of
intervals. It contains the limit sets of almost all x € [0,1]. In the
case K = «, L  is a Cantor-set which contains no periodic points.
During the conference, 1 learned about papers of Jonker and Rand (pre-

‘print), and Guckenheimer (Comm.Math.Phys.) which contain similar thinqs

A.KATOK:

Every transformation with'finite entropy has a realisation on every
manifold B

Theorem: Let M be a topological manifold, dim M > 1, A - a continuous
Borel probability measure on M positive on open sets; T ': (X,u) - (X,u)
an automorphism of a Lebesgue space X with finite entropy.

Then there exists a A-preserving homeomorphism £ of H which is
metrically isomorphic to T. :

For M = "2 (two~dimensional torus), this result was proved by D.Lind
and J.-P.Thouvenot in 1975, - A simplified version of the trick de-
scribed in [1], § 2, allows to extend the method of Lind-Thouvenot to
the disc D2 with extra condition £|4p2 = id. The transition from p? to
an arbitrary manifold is based on the construction from [3], § 1 (als.
simplified) and on the following general statement.

Proposition: Let X be a compact metric space, G a locally compact
group, U c X a non-empty open set, £ : X - X a topologically transi-
tive homeomorphism preserving a measure y which is positive on open
sets. Then there exists a continuous map g : X - G and a u-measurable
(Borel) map ¥ : X » G such that (1) g(x) = $(£(x)) * ¢~ (x)

(ii) g is equal to identity outside U (iii) for arbitrary open sets
AcX and Hec G the set A, = {x € A : P(x) € H) has positive
measure.,

(References: (1) A.Katok, Ann.of Math.110 (1979), 529-547.(2) M.Brin,
J.Feldman, A.Katok, Bernoulli diffeomorphisms and group extensions of

Deutsche
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dynamical systems with non-zero characteristic exponents, to appear
in Ann. of Math.)
* G.KELLER:

A Short Proof for a Central Limit Theorem for Certain Piecewise Ex-
panding Maps of the Interval

Let T : [0,1) » [0,1] be a transformation for which there exists a
partition O =1ao < ..o <cag =1 of [0,1] such that Tl(a ey )
. " is of class C' (i=1,...,N), IT'l >a > 1 , and such that

IT'I-1 is a function of bounded variation. By means of an ergodic

theorem of Ionescu-Tulcea and Marinescu (Ann.Math.,1950) we obtain

a spectral représéntation for the Perron-Frobenius-Operator PT asso-

ciated with T , which allows us to apply a CLT for stationary pro-

If T 4is weakly mixing for its unique absolutely continuous invariant!
probability-measure m on [0,1], and 1f £ : (0,1] -« R 1is of boundec
variation or Hb6lder-continucus, ff dm = O, then oj := 1im 1/Vn -

([ts £1%am) /2 exists - ‘where o
S f = E;A fo TK - and i{if °j > 0 , then

new

cesses due to Gordin, resulting in the following theorem:
| m{x l(1/oj¢;)snf <z} -~ 1/¥Zn .fexp(-uz/Z)du (V z € R)
|

| W.KRIEGER:

Full Shifts and Their'aomomorphic Images of Maximal Entropy

The following theorem is given: Let T be a topological Markov chain

. such that for-all n € N the number of periodic points of period n
of T equals N . Then T is a homomorphic image of the full
N-shift. This theorem is the converse of a theorem of B.Marcus (Fac-
tors and extensions of full shifts, Monatshefte). The proof uses the .
notion of a (future) dimension of a topological Markov chain as in-
troduced in W.Krieger, On dimension functions and topological Markov
chains, Inventiones 56, 239-250 (1980), and it consists of three parts
that can be described as follows: Constructing a synchronization me- |
chanism, providing a suitable lemma of Rohlin-Kakutani type, and the
actual coding procedure.

|
Deutsche ‘
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D.McMAHON: i *

Structure Theorems in Topological Dynamics

There are two keys to proving general structure theorems for minimal
flows. The first is a shadow diagram - given v : X + ¥ there exists
0 : X' + ¥ such that X', ¥' are (strongly) proximal extensions
of X,Y and ¢ is special, in this case ' 4is open and has a rela-.
tive invariant measure, RIM, (eee the paper of Glasner on RIM's). Then
for any minimal flow X there is a (strongly) proximal extension X*
of X ; a flow Y¥* that is obtained from the singleton flow via almost‘f
periodic (equicontinuous) extensions, proximal extensions and inverse .
limits; and a homomorphism ©® : X* + Y* such that no nontrivial
almost periodic extension of Y* is a factor of X*. The second key
to the .structure theorem is that o* is weakly mixing when X is
metric; that is, oc(x,x') > R(¢*) for some (x,x') in R(p?) wheren"
R(o?®) = {(x,x") 1 @*(x) = o*(x')). We give the outline of an easy o
proof of this theorem in the case that Y¥* is . the singleton flow

-and X = X%, This proof generalizes easily to the general case.

.

J .MOULIN-OLLAGNIER:

Riemann—integrable Functions in Topological Dynamics

Given a dynamical system (X,G) where X is compeot and G 1is a -
group of homeomorphisms of X , we say that a bounded real-valued func-"-,
tion fon X is Riemann-integrable if the set D(f)’ of all its disconti-_“
nuity points satisfies u(D(f)) = O for every u € M(X,G), the convex ‘
compact set of all Borel regular probability measures on X, invariant
under the action of G. ' *-~"}:}-
Riemann-integrable functions still enjoy many interesting properties . )
‘that were previously known to hold for continuous functions. Here are R o
some examples: :

- the ergodic minimax theorem: sup u(f) = lim sup 1/1al ( Z fég(n)f
HEM (X, G) M uex - geA .
when G 15 amenable and M is its ameaning filter. (For detdils see: -

Une nouvelle demonstration du théoréme devF¢1ner. J.M.O.}and D.Pinchcn .
CRAS (1978)) ’
- a well-known corollary of this theorem for continuous functions.

1f M(X,G) ={du) 1IAl T f£og =~ u(f) uniformly.
‘ geA M

-~ the variational principle sup (h(u)+u(f)) = P(f)
ueM(x,G)

Deuts sm( . -
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(For a proof of the variational principle for amenable groups, see:

The variational principle, J.M.0. and D-Pinchon: Studia Math. 1980).

As a final remark, let us say that the algebra R(X) together with its
group G of automorphisms is an invariant of the equivalence of
dynamical systems, in the sense given to this work by R.Adler and
B.Marcus in their paper, Topological Entropy and Equivalence of dynami-
cal systems.

K.PETERSEN:

. Speed of Mixing

Let (X,B,u) be a nonaﬁomic probability space and T : X - X a strong-
ly mixing measure-preserving transformation.
(1) Given any speed function ¢(n) > 0 with 1lim ¢(n) = 0, there is

new

a measurable set A < X such that

u(TAnA) - u(A)z

lim sup
nee $(n)

(2) If T has positive entroéy, then in fact there is a measuréble
set A c X with

lim u(T“Aﬁ))- p)? o
n

nes

(3) Suppose that T 1is ergodic. Call a function f € LZ(X) with

| £G4 = 0 consistent 1f <f,fT®> 2 0 for all k . Then the con-
sistent functions are contained in the orthocomplement of the eigen-
functions.

" K.SCHMIDT:

Almost Invariant Sets

Let G be a countable group, (X,f,u) a nonatomic probability space,
and {4, Xx) - ox a measure-preserving ergodic action of‘ G on
(x,5,u). A sequence (Bn) c is called'asymptotically invariant if
1im u(Bn)(1ou(Bn)) > 0 and 1lim u(Bn A an) = 0 for every ¢ € G.
Proposition 1 n .

G 1is amenable iff évery finite measure preserving ergodic action of
G on (X,¥,u) has asymptotically invariant sequences.

Proposition 2 (Connes-Weiss)

G has Katznelson property T iff no finite m.p. ergodic action of
G on (X,¥,u) has asymptotically invariant sequences. '

DFG Deutsche
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Proposition 3 : : -
G has property T 1ff, for every f.m.p. ergodic action of G on
(x.j.u). and for every Abelian (amenable) group A, every cocycle for

G with values in A 1is cohomologous to one with values in a compact
subgroup of A.

The talk containes several examples, including two actions of .
SL(2 2): one on the 2-torus without asympt.inv.sequences, and one on A
the 3-torus with asympt.inv. sequences.

W.SZLENK: .

Absolutely Continuous Invariant Measures for Almost Expanding Mappings.
of An Interval

L]
Let £ : <0,1> be a differentiable mapping. Set C: ={x : % (x) =0}

C_ = c®u {0,1}, £7 = fo...of, We assume that
. n n —— . -
n~times
2

A.t. f €C
A.2., card CJ < +=
A3 £m] J e 0
¢4
A.4. There exists a number xo > 1 such that
U r“(c1) c {x : LE' () 22 ).
n=1 . o

A.5. There exist: xl > 1, Xz > i, n, such that 1§ -
D={x:1£(x) <1}, £(x) €D for n2n, , then
LE™ (01 2 A
2
Theorem 1:
If the assumptions A.1.-A.5. are fullfilled, then there exists an .

invariant measure absolutely continuous with respect to the Lebesgue

measure.

Theorem 2:

AThe condition A.5. ist equivalent to the following one:

A.6. There exists a number Ab > 1 such that for every periodic point
x ¢ £P(x) = x the following inequality holds: I[£P (x)12 AE.

.

J.P.TROALLIC:

Theorémes de DELEEUW et GLICKSBERG, ELLIS, NAMIOKA, VEECH: Une Approche
Commune

Nous montrons que divers résultats importants de DELEEUW et GLICKSBERG,

DFG Deutsche o
Forschungsgemeinschaft ©



°

-11-

ELLIS, NAMIOKA, BERGLUND et HOFMANN, VEECH découlent de la propriete
topologique suivante:

Soit (X,G) un systéme dynamique minimal localement compact, Y un espace
topologique, Z un espace nniforme et ¢ : X - CS(Y,Z) une application
continue, Soit K un ensemble de parties compactes de Y et V la struc-
ture uniforme sur X la moins fine rendant 1'application v : X = CK(Y;Z)
uniformément continue. Si le groupe G est V-uniformement &quicontinu,

0 : X > CK(Y,Z) est une application continue. ’ . )
Nos demonstrations ne font appel & aucun théoréme de point fixe (con-
trairement & certaines des demonstrations initiales).

J. de VRIES:

Compactifications of Topological Transformation Groups

It is well-known that every completely regular Hausdorff space X can
be embedded in a compact Hausdorff space; e.g. X can be embedded in
BX, its Stone-Cech compactification. However, usually a continuous
action of a topological group G on such a space X carnot be extended

to a continuous action of G on BX. For a large class of topological
transformation groups (ttg's) <G,X,n>, including all Uﬁ{s with G locally
compact and X completely regular Hausdorff, the action n can be exten-
ded to some compactification of X:

Theorem: Let <G,X,n> be a uq such that there exists a separated uni-
formity on X, generating the topology of X, and a neighbourhood U j
of e in G such that (n : t € U } 1s -equicontinuous. Then there ‘
exists an equivarxantembedding of <G,X,n>» in a ﬂ3<G Y, 0> with Y a com- ’
pact Hausdorff space. Moreover, Y can be chosen such that -

w(Y) s max!w(G/Go),w(X)),

where G, := (tecént=ix) and w(+) denotes the weight of a topological
space. : )

Remark: If G is locally compact, then the conditions of the theorem
are fulfilled for every completely regular space X, and the estimation
for w(Y) can be improved to w(Y) s max(L(G/GO),w(X)), where L(*)
denotes the Lindeldf degree of a space ) .
Corollary: Let <G,X,n> satisfy the conditions of the theoreh (e.g. G
locally compact). Then for x € X the following are equivalent:

(1) X 1s an almost periodic poiné;

(ii) X is a discretely almost periodic point;

(111) the orbit of x can equivarlantly be embedded in a compact mini-

mal set. . -
Deutsche f%
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J.v.d.WOUDE: -

Highly Proximal Extensions and Relative Disjointness

A homomorphism ¢ : X - Y of minimal transformation groups (m.t.g's)

is8 called highly proximal (h.p) if v is irreducible (i.e. o[A)l =Y =

A= X). If X i5 metric then ¢ is h.p. iff v is almost 1-1. Two m.t.g's

X and Y are h.p. equivalent if they have a common h.p. extension. The
unique maximal element in the equivalence class of X is called X*.

Then X = X* iff X is an image of the universal m.t.g. under an open

map. If the acting group T is discrete then X = ¥X* iff X is extremely
disconnected. We prove that if T is discrete then X = X* {s distal 1£‘
X 1s finite.

Let © : X~ 2 and ¢y + Y = 2 be homomorbhisms of mtg's then © and ¢ are
disjoint (o L ¢) if Rpp = {(x,y)l0(x) = ¢(y)} is minimal (and so X L ¥
1ff X x Y is minimal). It is known that X 1 Y iff X* L Y*. Our ob-
jective is a relativized version of this fact. (i.e. © 1 ¢ iff o* L ¢*
wﬁere ©*1X* -« 2% is the induced map), We prove that © L ¢ implies

wf L ¢y* and {f 2 = 2¢* or wa has a dense set of almost periodic
points then © L ¢ 1ff o* L ¢* and o = ¢ 1ff o* * ¢* (i.e.

R

oY i
almost periodic points then

is ergodic iff R v is), Moreover, if wa has a dense set of
Rw‘W‘ does.
T.S.WU:

A Note On The Measurable Subsets In Compact Topological Groups

Let G be a compact connected topological group and u be its {nor-

malized) Haar measure. Given 6 > 0, let A A, ... be a sequence of
measurable subsets of G such that "(Ai) 26 for 1=1,2,3,... :
We show that there exists an integer n such that A.I,Az,...,An = G..

DFG Deutsche
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Problem Session

Let T BE a plecewise Cz-map of the interval with IT'l > 1, Wong
(Ann.Prob.7(1979)) has shown that for a class of HSlder continuous
functions f a central limit theorem holds: Set Sn(f) = £ + foT+..
..+£o™"'. Then 1/v3 (s f - / s fdu) converges weakly to a normal di-
stribution. In many cases such results follow from an invariance
principle. It does not seem to be too difficult to redefine the pro-
cess Snf on a richer probability ‘space together with a Brownian
motion B, 8O that P(IS[tJ-BtI 2 vt 9(t)) - 0 for some u(t) - 0,
or to obtain s[t]-Bt = 0(vt y(t)) a.s. where Y(t) - 0. Then find
the best possible functions ¢ and y. (DENKER)

(2) A well-known conjecture about the transformation ft HE -(t—fﬁ

on [-1 - VI+t, 1 + Vi+t] says that the map t - hiop(fy) 1is monotone,
t € [4,8]. It is shown in "The topological entropy of x - ax(1-x)" by
F.Hofbauer (to appear in Monatshefte f.Math.) that this is equivalent
to the following problem about the polynomials P (t) given by P (t)=0
and Pk+1(t) = *(A-P (t) ) One can easily deduce from this recursion
formula that (9) Pk+m(t) = P (t) and Py (t) = Pr(t) for m2 1 if
P (t) = 0, Let 4 =2 < z, < AN 20 (k) -1 nik) = 8 be the zeros
of PIPZ“'Pk' together with the number 8. Using (#) one can determine
the sign of Pk+1(zi) and Pk+1(zi+1). If one of these numbers is zero,
we take the sign of Pk+1(zi+c) or Pk+1(zi+1-c) respectively for

arbitrary small ¢ > 0. If =z

< z

i+1 = Zn(k) = 8 one easily shows from
the recursion formula that Pk+1(8) = -4, The problem is now to show
for 0 s i s n(k)-1 and k 2 1 by induction on k that P
no zero in (zi,zi+1x if APk+1(zi) and Pk+1(zi+1) have the same
sign, and that Pk+1 has only one zero in (zi,zi+1), if Pk+1(zi)

and Pk+1(zi+i) have different signs. (HOFBAUER)

(3) Automorphisms of the 2-shift. Let X = (O,I)Z be the space

of two-sided sequences of O's and 1's, and let ¢ : X » X be the
shift. It is well-known that every automorphism of (X,d), i.e.,

every shift-commuting homeomorphism of X, can be expressed as okof

for some k € z and some uniformly finite-length block map (i.e.,code).
Thus the group G of automorphisms is at most countable. The theorem

of Curtis, Hedlund and Lyndon (Hedlund, Math.Systems Theory, 1969)
states that G contains a copy of evary finite group.

The subgroup G' generated by o and the elements of finite order

k+1 has
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contains all known automorphisms. Problem: Is G' = G.

(4) Positively expansive mapé oh manifolds.
A continuous map £ : M+ M of a compact manifold is called positive
expansive if there is a constant e > O such that if =x¢ y., then
a(£™(x), £(y)) 2 e for some n 2 0. A C'-endomorphism g : M - M
is called expanding if there exists ¢ > O and A > 1 ‘such Ehat‘
ipg"(v)f 2 cA"{v|f for all v e TM and all n 2 1. N :
Problem: Is every positively expansive map of a compact- manifold tobc
logically conjugate to an expanding endomorphism? >:

(covzm.

(5) Let B> 1 be real and let T, : [0,1) » [0,1) ' be the trans-
formation Tan= Bx(mod 1). A point x € [0,1) is c§;1éd periodic
if the set {TBx : n 20} 4is finite, and Per(8) will denote the set

.of periodic points for TB‘ The following results arqiknqwn.

1. ~ Let B be a Pisot number (i.e. an algebraic intgget > 1 with

all conjugates of modulus < 1). Then Pef(B)'= @(8) n fo,1),
. when Q(B) is the smallest subfield of R containing B.

2. If Per(8) > [0,1) N Q , then B is either a Pisot- or a Sale
number (= an algebraic integer > 1 with all coﬁjugétes of
modulus < 1) . - _

Problem: If 8 is a Salem number, is it true that B(mod 1) € Per(B8):

Is it true that Per(B8) = ®(8) .a [0,1)? - (SCHMIDT)

(6) Consider aperiodic and irreducible topological Markov chains 1
and T'. If T 4is a factor of T' and T' a factor of T are then

T and T' conjugate? - -
: L (KRIEGER.

(7)) Let f be a C'¥ (r21) diffeomorphism of a compact manifold.
Can f at the same time have-positive topological entropy and be
strictly ergodic? I think that the answer is negative. Moreover the
following conjecture may be true. For any h; O < h < h(f) there

' exlsts a probability f-invariant Borel ergodic measure such that
hu(f) = h. (A.Katok: Hyperbolicity, entropy and minimality for
smooth dynamical systems, preprint, Univ. of Maryland, 1979

(8) Let f be a map of an interval I into itself of class C2

(or C1+C) except for finite number of points with one-sided derivativ
(finite or infinite) at all points; u - an absolutely continuous f-
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invariant ergodic measure such that hu(f) = 0.

Conjecture: £ as an automorphism of (I,u) 18 metrically conjugate to
an interval exchange transformation. . .

Stronger version: There exists an f-invariant set A c I u(A) =1

such that flA is:topologically conjugate to an interval exchange
transformation. '
Question: Find a counterexample to this conjecture for c! maps.

(9) ‘Let T be a finite graph f : ' + T a continuous map

. Pe=(neN:3xel fx=x, fxsx, k=1,...,n-1]. Describe
possible sets Pf for a given graph. v
For the interval the answer 1s given by Sharkovski, for the circle
with the extra assumption '

Pf 3 1 by Block.

Let £ : I - I be an interval exchange transformation. (i) If £
is weakly mixing with respect to the Lebesgue measure then it is topo-
logically mixing. (ii) If f is strictly ergodic and topologically
weakly mixingithen it is metrically weakly mixing. (iii) If f has an
eilgenfunction then this function is continuous in the'“symbolic topo-
logy" (thé weakest tbpology which is stronger than the standard one
and which makes f a homeomorphism. (iv) Discrete part of ‘the Bpéctrum
of f may contain one irrational frequency and finite number roots:of
unity. Similar question can be asked for substitution minimal sets.

’ (KATOK)

.

(10)” Non-wandering sets for powers of a diffeomorphism: Recall the
. definition of the non-wandering set of amap f : M - M :

(f) = {x €M1 3 x, »x n, €NIE x

a point x belongs to the nonwandering set of a power of f, g = fN,

if it belongs to Q(f) and furthermore the "return times" ny of *1 to

the vicinity of x can be chosen all divisible by N.Sawada ("On the

iteration of diffecmorphisms without c® Q-explosions," Proc.Amer.Math.

- x}. It is easy to see that

So0c.79(1980),110-122) recently constructed an example of a diffeomor-
phism £ : s2 - 82 such that Q(fz) ¢ Q(f). Further examples of dif-
feomorphisms of surfaces and maps of the interval with Q(fN) b Q(f)
for various N > 1 were given by Coven and Nitecki (“Non-wandering
sets of the powers of maps of the interval", to appear). These are
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based on examples built on the M8bius band and the annulus; in the
latter case £ interchanges the two boundary circles. These examples
embed in any closed surface of positive genus, and in any higher-di-

mensional manifold, but they do not embed in the two-dimensional disc.
2 2

. Problem Does there exist a diffeomorphism £ : D » D for which

Deutsche ’ ’ .
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_interval", IHES 1979), and Guckenheimer ("Sensitive dependence to

Q(f ) ¢+ Q(f) for some N > 1?

(11) Homtervals' Suppose M = I or S1 is a one-dim. manifold and

£f: MM is a continuous map. A homterval for £ is a non-degenerate
intgrval J < M such that (1) the iterates of J are disjoint: :
'3 n £ = # for n + m; (ii) for each n > O, 17 is a homeo‘ :
morphism; and (iii) J does not bélong to the stabie set of a periodic
sink. (The terminology, due to Misiurewicz,.is a. transcription of -
his Polish term, "homcinek".) Homtervals were first encountered by .=
Poincaré and Denjoy in the context of aperiodic, non-transitive hb-]:
meomorphisms of the circle. Denjoy showed that there exist C1 diffeo-
morphisms of s1 with homtervals, but if the derivative of f has bound- 3'1
ed variation {in particular, if £ 1is C ), then - £ has no homter- __fu~
vals. Recently, the question of existence of homtervals for certain ."‘7
maps of .the interval has aroused some interest in the work of Mi-
siurewicz ("Absolutely continuous measures for certain maps of the

initial conditions for one-dimensional maps", Comm.Math.Physics 70
(1979),133-160) . The question arises because its intimate connection
with the question of whether a symbolic dynamicé for for such a map
separates points. Misiurewicz and Guckenheimer. (op.cit.) have shown
that certain interval maps, characterized espeqially by a negative
Schwartz ian derivative: . . . .

s = £9/¢" - 3/2(£"/£")2
- & . _- ~ ’ - .
have no- homtervals (Misiurewicz assumes also that the.orbit of every

crltical point is bounded away from the critical set, while Guéken—s
heimer assumes a single critical point), and it can be shown that
for any 02 map £ : I - I, no homterval can have an orbit bounded
away from all critical points. On the other hand,_Ehe Denjoy example-
on s1 can be adapted to give an example of a C1 map £ : I - I
which possesses homtervals (see Coven-Nitecki,‘op.cit., forAan
example with two critical points; this can be modified to give an
example with a unique critical point.
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Problem 1: Does there exist a C2 Denjoy homeomorphism - i.e., is there

1
a homeomorphism f : S‘ - S with irrational rotation number that

possesses homtervals but is C2 ? Note that such an example must
have critical points. An answer to the question above might also help
solve Problem 2: Does there exist a c? map f : I - I with hom-

tervals? (NITECKI)

(12) Strange series. It can be proved that a series like

®  <x+ka> - 1/2
o

k
k=1
part of y , converges for almost all x € {0,1]. Does the equiconti-

where a 18 irrational and <y> 1is the fractional

nuity of the maps y = <y+ka> then force it to converge for all x?

(13) Weak mixing and density zero. If T : X - X 1is a weakly mixihg

measure-preserving transformation and A,BC X are measurable, then
there is8 a set N C N of density zero such that
n
1im u(T ANB) = u(A)u(B).

ne=

né&N
S.Kakutani has observed that it is possible in fact to choose a single
set N of density zero which works simultaneously for all A,B. Of
course it is not N itself but. rather some equivalence class, [N},
that is important - for example, only the tails of N matter. Which
equivalence classes ({N] can arise? How are transformations with the
same [N] related?

(14) Expected multiple recurrence time. Furstenberg's ergodic Szemé-

redi theorem implies that if T : X -+ X 1is a (finite) measure-preserve-
ing transformation'and A € X 1is a set of positive measure, then al-
most every point of A is multiply recurrent with respect to A: for

almost all x € A, given 1 there is an n such that

1n R
20, . ..,T x €°A.

x,Tnx, T

Let rl(x) be the smallest such n. If T 1s ergodic, is there any
kind of formula for AI rl(x)du(x) ? (Recall Kac' Theorem:

A/ r‘(x)du(x) = 1.) (PETERSEN)

(15) Suppose ¢ : (X,t) = (Y,T) 1is a homomorphism of minimal flows
having a RIM, A. Is there a RIM 4 of ¢ such that (support py)r =
w-'(y)t for some r € J. What if X = M the universal minimal set.

© @
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. . "
what if X 1s metric and there is a RIM, a, on o o ¥y, M + X » ¢y
that induces A, ¢(a) = A,

(16) Suppose o : (X?T) - (¥,T) is an open homomorphism of metric
minimal flows having a RIM. Given y does 3 Xx,x' € m-l(y) such
that the smallest closed invariant equivalence relation containing
(%x,%x') equals R{o) = {(x,x') : o(x) = ¢(x')}. What 1f Y .is a single

t
ton and x' & xT. " . ' (McMAHON)

Berichterstatter: M, Denker (Géttingen)
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