
MATHEMATISCHES FORSCHUNGSINSTITUT OBER\iOLFACH

Tag u n 9 s b e r 1 c h t 25/1980

Topologlsche Dynamik

1.6. bis 7.6.1980

Die Tagung fand unter der Leitung von J.Auslander (College Park)

. und M.Denker (Göttlngen) statt. Sie war die erste ihrer Art in

Oberwolfach und erfreute 'sich groBer internationaler Beteiligung.

Die Schwerpunkte dieser Tagung bildeten Transformationen auf dem

Einheitsintervall und Strukturfragen minimaler FlUsse.-Daneben wur­
den die Theorie der Markoff-Ketten, Rekurrenzeigenschaften (inclu­

slv ihr Zusammenhang zur kombinatorischen Zahlentheorie) und einige

ma8theoretlsche Fragestellungen in Verbindung mit dem Thema der

Tagung behandelt. Die 20 Vorträge wurden an einem Nachmittag durch

eine ·problem session" ergänzt.

Die idealen Möglichkeiten, die das Forschungsinstitut 1n jeder Hin­

sicht bietet, ließen die Tagung zu einem vollen Erfolg werden. Die

Teilnehmer der Tagung danken dem Direktor des Institutes, Herrn

~rOf.Dr. M.Barner, und seinen Mitarbeitern fUr die organisatorische

~nterstützun9bei der Vorbereitung und Durchführung der Tagung.
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Vortragsauszüge:

A.BECK:

Special Flows in the Plane I: Flows Without Stagnation Points

In my book, "Continuous Flows in the Plane" (Springer 1974), I c:lassi-.

fied continuous flows in the plane uslng certain criteria and depend­

ing on the set of stagnation points (q.v.). Now,. I am investigatinq the

classification of structures of continuous flows carryinq "additional

assumptions. The specific conditions are infinite differentiability 4It
(CCD) , piecewise linear! ty, and semi-analytici t.y. ...

Among the flows without stagnation points, the C
m

flows have the same

structure as the continuous anes. The piecewise linear flows are more
restrlcted, and the semi-analytic are more restricted ·stl~l.

L.BLOCK:

Periode cf periodic points of maps of the circle which· ·have a fixed

point

For a continuous map f of the circle 'to itself, let ".': P (f) denote

the set of positive integers n such that f ha~ a p~rlodie point of

(least) period n. Results are obtained which specify· those sets,

which oceur as P (f), for some continuous map f of the..circle to i t­

aelf havinq a fixed point. These results extend a theorem of sarkovs­

kil, on maps of the interval, to maps of the circle wh!ch have· a fixed

point.

S.CHEN: •

Entropy of Geodesie Flow and EXponent of Convergence of some Dirichl~

Ser1es

the

and

of a

of

(2)

j

We investlgate the relation between the geodesie flow f = (ft )

its topoloqical entropy h(fl· on the unlt. tangent bundle TiM

cornpact Riemannian manifold M and the exponent of convergences

the followihg two functions: (1) the birichlet sertes
-t

(cash d(xo,gxo ) + 1) , t E R,L
gEG

where G 1s thc covering group of the universal coverlnq

d 1s the distance and x 18· a fixed point in ~, ando
$elberg zeta function
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.Z( 8) = TI n (1 - e - (s+k) T (9) ), sEC ,
gEP k=Q

where T(g) ls the translation length of 9 and P i5 the set of

primitive elements of C. if M has nonpos1tive sectional curvature,

then the ~xponent of convergence i8 the topological entropy h(~) of

the geodeslc flow. Dur result 1s extended to Anosov flows of cornpact

man1folds with assoc1ated zeta function" of Smale.

E.M.COVEN:

Period1c, Recurrent and Non-wandering Points for Maps of the Inte~val

Let f be a continuous rnap of a cornpact interval to itself. Let P,R

and Q denote theperiodlc, recurrent and non-wanderin9. points, re­

spectlvely, of f. Theorem (Coven-Hedlung) P = R and·hence n - P

18 nowhere dense. Z.Nltecki [Proc.Amer.Math.Soc., to appear] has shown

that if f 18 piecewise monotone, then n - P consists entirely of
" - 0

isolated points. Theorem (Coven-Madden-Nitecki) n = P holds C -ge-

ner1cally. L.-S.Young [Invent.Math.~ (1979), 179-187 j"has construc­

ted an example with 0 -p * 0. However, in this case Q ( f) = Cl( fD)

for all n ~ 1. We present examples of the more delicate phenomenon ~

oCr) ; o(rn
) for some n ~ 2. These examples il1ustrate the main

ideas of the proof of the following result. Theorem (Coven-Nitecki)

O(r) = n(rn) for all odd n ~ 1.

J.CUNTZ:

K-theoretic Invariants for Topological Markov'Chains

Let E be a finite set, A = (A(i,j»i,jEE a matrix with entries in

{Ot l } and 0A the correspond1ng shift transformation. A and Bare

called flow-equi~alent if th~ suspensions FA = XA x m/o A x T, and

Fa = XB x ~ / 0A x Tl (Tl = unit translation on m) equlpped. with
this natural orientation are isomorphie.

With A one can associate a certain non-commutative C~-algebra ÖA
(W.Krieger and the author, Inv.Math. 1980). This algebra i8 an invar­

iant of flow equivalenee for A. For any C*-algebra A one can define
iAbelian graups Ki(A) (1=0,1) and Ext (A) (i=O,l). In the case

A = C(X), X a compact space, these are just the'ord1nary K-groups

for X, i.e. generalized cohomology groups, and the Brown-Douglas­

Fillmore Ext-groups, i.e. the corresponding homology gr)ups.

Thanks to recent results on algebraic topology for non-commutatlve

C*-algebras (partially due to the author) one can compute
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Ko(Ö
A

) .... ZE/(l-A)Z!: ExtO(Ö
A

) c>o Ker(l-A) o~ ZE

1<1 (ÖA~ ef Ker(1-A) on zE Ext' (Ö
A

) e zE/(1-A)ZE

Thus, one recovers the invariants of "flow equivalenc~ discovered
befor~ by Bowen and Franks. One-aiso obtains new invariants for re-

. A, X
ducible Markov chains. Assume for instance that A ~ ( ) where

. 0 A
2A, and A 2 . are irreduclble. Then there 18 an exact sequence

PA : ° ~ Ö~2 ~ ÖA ~ Ö
Al

~·O•. Equivalence classes (for an appropriate

netion of equivalence) of such exact sequences form a group denoted

by Ext(ÖA 'ÖA .). The couple [PA J, Ext(ÖA ,ÖA ) 1s an invariant of

flow equivllen~e for A which can easily' 2 be computed from the

matrix ·A.

F.M.DEKKING:
••••

Substitution Minimal Flows

We slightly qenerallze Gottschalk's definition of a substitu-

tion maximal flow. The extended elass of flows comprises a minimal

flow studied by Chacon, and by del Junco.
In this elaas ene can give simple examples of flows (not maxi­

mal that are 1-mixing but not 2-mixing (similar to those given

by·S.Goodman, B.Marcus. An example of a minimal flow with thls·

property 19 qiven b? M.Keane and myself.
Finally, we discuss' the computation of sequence entropy for

substi~ution minimal flows.

H. FURSTE!'lBERG:

Recurrence in TOpological Dynamies and Combinatorial Number Theory

" :".::/.....

~ '.1.. • . ... _ ...

.......... , :

. .
A number of theorems in topologica1 dynamics when applied to symbolic' ._~_-:. .

:.. .,. ~

. systems ~stibshifts) ha-ve impllcations for combinatorial nwnber theory. ~ ....
Multiele Recurrence Theorem: Let T l ,T2 , ... ,T1 be cotnmuting maps.o~.,··.·.

a compact metrlc space X to i t.self, 3 x e: X and a sequence .. _ .~ .
nk :

nk 4 m with Ti x· x for 1=1,2, ••• ,1. .
When appl1ed to a symbollc system: X c n = h Z, A fin! te, Tc.> ( n) .c···; .'

~(n+l), Ti = Ti., arie obtains van dgr Waerden's theorem:

Theorem: If Z = C,U .•. UCn 1s a finite partition, some Cj contalns
arbitrarily 10ng arithme~ic progressions.

Let (X,T) be a compact metric· dynamica1 system. A point x E X i9

uniformly recurrent if for any neighbourhood V of x there 18 a

sequence {nk } with nk - CD and {n
k

+
1
-n

k
} bo·unded far wh1ch

nk. n nT x E V. Two points x,y E X are proximal if 11m inf d(T x,T y) = o.
Theorem (Auslander-Ellis): If x i9 any point in a compact metrie

dynamical system, 3 a ~bint y proximal to x such that y is

uniformly recurrent.                                    
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He say that a set H c ~ 15 a central set If for some system (X,T) and

some point x E X and a uniformly recurrent y proximal to x, there 15

o neiqhbourhood V of y w1th {n: Tn x e V} c H.

A~plyln9 the Auslander-Ellls theorem to symbolic systems one obta1ns:

Theorem: If N = C1U... UCn 15 a finite partition, some C
j

15 a central
set.

The slgn1f1cance of central sets for comblnatorlal number theory

comes from the followinq results.

Theorem: If H· 18 a central set, there 18 a sequence h
1

E H such

that for all 1 1 < i 2 < ... < i k
, k arbitrary, h i +h i + ••• +h

i
EH.

1 2 k

e Theorem: If H 15 a central set and r ajjX j = 0 1s a regular system

1n the sense of Rado, there exists a solution x" ••• ,xm comlng from

H.
These now imply Hindmanls theorem and Radols theorem for finite parti­

tlons of N.

S.GLASNER:

Structure of Minimal Flows

The structure theorem for minimal flows whlch represents a minimal flow

as a weakly mixinq extension of a PI-flow (see [V]), can be vlewed as

a complet1on of an important step in the theory of minimal flows. Ilow­

ever, a much f1ner structure theory for minimal flows 1s clearly de­

strahle, espec1ally so in the case of weakly mixing flows and weakly

mixing extensions.

Some recent results 1n th1s dlrection «(E-G],[G], (G-W]) concerning

the notions of Pure Weak Mixing and oii will be described.

Iv] - W.A.Veech, Topoloq1cal Dynam1cs, Bull.A.M.Soc.~ (1977),775-830.

~IE-G) - R.Ell1s & S.Glasner,Pure Weak Mix!ng, T.A.M.S. 1il (1978),

~ 135-146.

(Cl Minimal Skew Products; to appear in the T.A.M.S.

(G-W] - S.Glasner & B.Weiss, A Weakly Mixing upside-down tower of

Isometrie Extensions, to appear.

F.HOFBAUER:

The Transformation T: x 1 ax(l-x) on [0,1]

The goal 1s to determine the topological transitive T-invariant closed

subsets of [0,1 J. Ta this end certa1n shift spaces (X,al are used

which arise trom f-expansions and whase topological structure can be

determ1ned with the aid of infinite transition matrices. Then these re­

sults are brought back to the original transformation T on [0,1 J.
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One gets the following: '[0,1] 19 the dlsjoint union of a wandering set

and U L for same K with 1 s K S ~ (for K = m we have also
IsisK i

an L
m

).

The Lt'S are topologically transitive, ~losed, T-invariant subsets of

[0,1] and Li n Lj 1s at most finite for 1 4: j. Fer i < K, Li .19

a periodic orbit or a Cantor set, which has Lebes9ue-meas~re zero and

18 isomorphie (as a topological dynamical system) to a finite type

subshlft. L g is a periodic orbit, a Cantor set or a finite union of

intervals. It contains the limit sets of almost all x E [0,1]. In the

case K = ~t Lm is a Cantor-set which contains no periodic points. ~

During the conference, I learned about papers of Janker and Rand (pre-

'print), and Guckenhe!mer (Comm.Math.Phys.) which contaih sLm11ar thIngs

A.KATOK:

Every transformation with finite entropy has a realisa~ion on every

manifold

Theorem: Let M be a topological manifold, dirn M > 1, A - a cont1nuous

Borel probability measure on M positive on open sets;'T": (X,u) ~ (X,U)

an automorphism of a Lebesgue space X with finite entropy.
Then there exists a A-preserving homeomorphlsm f of:M which 1s

metrically isomorphie to T. .
2 . -

For M = 11 (two-dimensional torus), this result: was p~oved by D.Lind

and J.-P.Thouvenot in 1975. A simplified version of' the trick de­

scribed in (1], § 2, allows to extend the method of Llnd-Thouvenot to
2 2'the disc D with extra condition fl ao2 = id. The trans~tion from D to

an arbitrary manifol~ is, based on' the construction from [3], § 1 (als~

simplified) and on the followinq general statement. . ~

Proposition: Let. X·' be a compac~ metric space, G a loeal1y compact

qroup, U c X a non-empty open -set, f : X ~ X a topologically transi­

tive homeomorphism preserving·a measure ~ which 1s posi~lve on open

sets. Then there exlsts a continuous map q: X ~ G and a v-measurable
-1 .

(Borel) m~p ~: X ~ G such that (i) q(x) = W(f(x» • -~ (x)
(ii) 9 18 equal to identity outside U (111) for arbitrary open sets

A c X and H c G the set Au = {x E A ~(x) E H) has positive

rneasure.

(References: (1) A.Katok, Ann.of Math.11Q (1979), 529-547.(2) M.Srin,

J.Feldman, A.Katok, Bernoulli diffeomorphisms and qroup extensions of

                                   
                                                                                                       ©



•

-7-

dynamical systems wlth non-zero characterlstlc exponents, to appear

in Ann. \of Math.)

·G.KELLER:

A Short Proof for a Central Limit Theorem for Certaln Piecewise Ex­

panding Maps cf the Interval

Let T: [0,1] ~ [0,1] be a transformation for whlch there exlsts a

partition 0 = a < ••• < ar~ = 1 cf [0,1] such that T ( )1 0.. I B. 1,8.
15 of class C (1=1, ••• ,N), I T'I ~ a > 1 , and such that 1- 1

IT ' I-
1 15 a funct10n of bounded variation. By means of ~n ergodie

theorem of Ionescu-Tulcea and Marinescu (Ann.Math.,1950) we obtain

a spectral representatlon for the Perron-Frobenlus-Operator PT asso­

ciated wlth T! whlch allows us to apply a CLT for statlon~ry pro­

cesses due to Gordin, resultlng in the following theorem:

If T i5 weakly rnlxlng for its unique absolutely contlnuous Invarlant~

probabi11ty-measure rn on [0,11, and if f: [0,1] ~ ~ 1s of bounde

variation or Hölder-contifitiÖUS, Jf dm = 0, the~ o. := 11m 1/~ •
<f(S f)2dm) 1/2 .exists -'where J n~

n n-1 . K
Snf = IK=o foT - and if 0j > 0 , then

m{x I (1/0 .~)s f < z) 1/v2n
J n

W.KRIEGER:

!exp(-u2/2)dU (V Z € ~)

•
Full Shifts and Their Homomorphic Images of M~ximal Ehtropy

The ·following theorem 15 given: Let T be a topological Markov chaln

such that for·all n E ~ the number of periodic points of" perlod n

of T equals Nn • Then T i5 a homomorphic image of the full

N-shift. Th1s theorem 18 the converse of a theorem of B.Marcus (Fac­

tors and extensions.of full shifts, Monatshefte). The proof uses the

nation of a (future) dimension of a topological Markov chaln as in­

troduced 1n W.Rrieger, On dimension functions and topologlcal Markov

cha1ns, Inventlones 56, 239-250 (1980), and it consists of three parts

that can be descrlbed as follows: Constructing a synchronizatioll me­

chanism, providing a suitable lemma of Rohlin-Kakutanl type, and the

actual coding procedure.
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D.McMAHON:

Structure Theorems in Topological Dynamies

There are two keys to proving gene~al structure theorems for minimal

flows. The first 1s a shadow diaqram - given ~ : X ~ Y there exlsts

$': X· ~ Y' such that" X', Y' are (strongly) proximal extensions

of X,~ and ~ 1s special, in tnis ease ~' 18 open and has a rela-.
tive invariant rneasure, RIM, (see the pape~ of Glasner on RIM's). Then

for any minimal flow X there lS'a (strongly) proximal extension X·

of X: a flow Y· that 18 obtained fram the slngleton flow via almost

periodlc (equicontlnuous) extensions, proximal extensions and inverse •.
limits: and a homamorp~ism ~* I Xh ~ y~ such that rio nontrlv1al ..'

almost periodic extension of Y* 18 a factor of X~. The second key' ~

to the ·s·tructure theorem 19 that q>1t 19 weakl~ '~i~inq when X is'
, "

metric: that 1s, oc(x,x') 2 R(~*) for some (x,x') in R(~*) where

R(q>s"I) ((~,x') : 'q>"'(x) = cptt(x·)}. We q1ve the.o~tline of an easy:."

proof cf this theorem in the eBse that y* 1s - the sinqleton flow-.

~ and X = X*. This proof generallzes easl1y to the general ease.

J.MOULIN-OLLAGNIER:

Riemann-integrable Functions .in Topolog'ieal Dynariflcs

Given a- dyna~ical system (X,G) where Xis· compact and G 1s a

qroup of horneomorphisms of X, we say that a bounded real-valued func- ,.­

tion f on X ~s Riemann-integrable if the set D~f)' cf all its discontt­

nuity points satlsfies U(D(f» = 0 for every lJ E MCX,G), the convex'
compact set of all Bore! regular probabllity measures on X"lnvarl~t: : •..

under the actio·n of G. . ,'" '

Riemann-integrable functions still enjoy inany interestinq properües~-:._

'that'were previously known to hold for continuous functions. Bere are'
." .

some examples: " ,

- thß ergodie minimax theorem: sup \J(f) 11m sup 1/IAI. ( E. f~q(n»
J,1EM (X, G) M uEX gEA·.

when G 1s amenable and M 1s its ~meanin9 filter. (For det~11s see: '

Une nouvelle demonstration du theoreme de.F~lner. j~M.O. and D.Pinc~n

CRAS (1978»

- a well-known corollary of this theorem for continuous functions:

if X(X,G) =(dul 1/IÄI ~ fog ~ u(f) un1formly.
9EA M

- the variational principle sup (h(~)+u(f» = P(f)
uEM(X,G)
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(For a proof of the variational prlnciple for amenable groups, see:

The var1atlonal prlnciple, J.M.O. and D-Pl~chon: Studla Math. 1980).

As a final remark, let us say that the algebra R(X) together wlth its

group G of automorphlsms 15 an invariant of the equivalence of

dynam1cal systems, in the sense given ~o this work by R.Adler and

B.Marcus in their paper, Topolog1cal Entropy and Equivalence of dynaml­

cal systems.

K.PETERSEN:

Speed of Mixing

Let (x,8,~) be a nonatomic probabl1ity space and T: X ~ X a strong­

ly mixing measure-preservlnq transformation.

(1) Glven any speed function ~(n) > 0 with 11m .(0) = 0, there 18

a measurable set A c X such that

11m sup ~(TnAnA) - p1A)2 = m.

O .. CD • (n)

(2) If T has positive entropy, then in fact there 15 a measurable

set A c X wlth

°(3) Suppose that T 1s ergodlc. Call a funct10n f E L2 (X) with

f fä~ = 0 consistent lf <ftfT
K> ~ 0 for all k. Then the. con­

sistent functions are contalned in the arthocomplement of the eigen­

functions •

K.SCHMIDT:

Almost Invariant Sets

Let G be a countable group, (x,1~~) a nanatomie prob~bility space,

and ~,x) tpx a measure-preserving ergod1c action of G on

(x,I,~). A sequence (8 ) c 1s cal1ed asymptotically invariant ifn
1im ~(Bn) (1-~(B » > 0 and 11m ~(B 6 ~B ) = 0 for every ~ E G.n n n .
Proposition 1 n

G i9 amenab1e iff every finite measure preserving ergod1c action of

G on (X,1,~) has asymptotically invariant sequences.

Proposition 2 (Connes-Welss)

G has Katznelson property T 1ff no finite rn.p. ergodlc action of

G on (x,~,~) has asymptotically invariant sequences.
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Proposition 3

G has property T iff, for every f.rn.p. erqodic action of G· on

(x,~,u), and for every Abellan (amenable) group A, every cocycle for

G wlth values in A 19 cohomologous to one with values in a compact
subqroup of A.

The .talk containes several 'exa~Ples, includlng ~wo 8c~ions of
SL(2,3)1 one on the 2-torus without_asympt.inv.sequences, and one on

the 3-torus with asympt.inv. sequences.

W.SZLENK:

Absolute!~ Continuous Invariant Measures for Almost Expanding MaEpings~
of An Interval

Let f.: <0, I> i) be a differentiable mapping. Set c~ .{x
C = CO U {O,l}, fn f f We assume that. n n :: L

0
- - : 0 'J

n-times

A. 1 • f e C
2

A.2.\ .Card c~ < +-

1\.3.· f"1 • 0
CO

1
A.4. There exists a number Ao >"' such that

CD

u rn{c,' c: {x : 1ft (xli ~ A
o
).

n=1 .

A. 5 _ Thel:e exist: ") > t, )..2 > 1 t no Buch tha·t if

D = {x : 'f' (x) I < l,), fn (x) E 0 f or n ~ no ' then

Ifn ' (x), ~ A
2

- .

n'r ( x) 00}

Theorem 1:
If the assumptions A.1~-A.S. are fullfilled, then there exists an ~
invariant measure absolutely continuous w1th respect to the Lebesque

measure.

Theorem 2:
The condition A.S. ist equlval~nt to the following one:

A.6. There exists a number k 4 > I such that for every periodie point

x : fP(x) = x the following inequality holds: IfP ' (x)l~ l~.

J.P.TR01\LLIC:

Theoremes de DELEEUW et GLICKSBERG, ELLIS, NAHIOKA, VEECH: Une Approche

Commune

Neue 'montrons que divers resultats importants de OELEEUW et GLICKSBERG,
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ELLIS, NAMIOKA, BERGLUND et HOFMANN, VEECH decoulent de la proprlete

topologlque su1vante: .

SOit (X,G) un systeme dynamique minimal localement cornpact, Y un espace

topolsqlque, Z un"espace Dniforrne et ~: X ~ C (Y,Z) une app11cation
s

cont1nue. Soit K un ensemble de parties compactes de Y et V 1a struc-

ture uniforme Bur X· 1a maine fine rendant l'application ~ :- X ~ CK(Y,Z)

unlfo~ement continue. Si 1e groupe Gest V-uniforrnement equlcont1nu,

~ : X ~ CK(Y,Z) est une applicatlon continue.

Nos demonstrations ne font appel a aucun theoreme de point fixe (con­

tralrement a certaines des demonstrations initiales).

J. da VRIES:

Compactifications of Topological Transformation Groups

It 15 well-known that every completely regular Hausdorff space X can

be embedded in a compact Hausdorff spacei e.g. X can be embedded in

ßX, its Stone-Cech compactiflcatlon. However, usually a conti~uous

action of a topological group G on such aspace X cannot be extended

to a contlnuous action of G on ßX. For a large class of topological

transformation groups (tts's) <G,X,n>, including all ~~s w1th.G locally

compact and X cornpletely regular Hausdorff, the action n can be exten­

ded to~ compactlflcat1on of X: .

Theorem: Let <G,X,n> be a l~ such that there exists aseparated unl­

formity on X, generating the bopology of X, and a neighbourhood Uo
of e 1n G such thät {nt : t EU} i8 -equicontinuous. Then there

o .
ex1sts an equivariamembedding of <G,X,n> in a ~<G,y,a> with Y a com-

pact Hausdorff space. Moreover, Y can be chosen such that

w(Y) S max{w{GiG ),w(X)},
~ 0

t "
where Go := {tEG:n ='x} and w(·) denotes the weight of a topological
space.

Remark: If G 18 locally compact, then the conditions of the theorem

are fulfilled for every completely regular space X, and the estimation

for w(Y) can be improved to w(Y) ~ max{L(G/Go)'w(X)}, wher~ L(·)

denotes the Lindelöf degree of aspace

Corollary:" Let <G,X,n> satisfy the conditions of the theorem (e.g. G

locally compact). Then for x E X the following are equlvale~t:

(1) x 18 an almost periodic point;

(11) x 15 a discretely almost periodic point;

(111) the orbit of x can equivariantly be embedded in a compact mini­

mal set.                                    
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J.v.d.WQUDE:

H1ghiy Proximal Extensions and Relative Disjointness

A homomorphism ~: X ~ Y cf minimal transformation qroups (m.t.g's)

is ~al1ed highly proximal Ch.p) if ~ 18 irreducible (i.e. ~[Ä] = y ~

Ä = X). If X 1s metr1c then ~ 18 h.p. iff ~ 18 almost 1-1. Two m.~.q's

X. and Y are h.p. equivalent if they have a common h.p. extension. The

unique maximal element in the equivalence class of X 1s called·X·.

Th~n X = X* iff X 19 an image of the universal m.t.q. under an open
rnap. If the actin~ group T is discrete then X c x- iff X 1s extremely

d1sconnected. We prove that 1f T 1s d1screte then x = ~ is distalif~

X 1s finite.

Let ~ : X ~ Z and $ : Y ~ Z be homomorphisms of mtg's then ~ and ~ are

disjolnt (~ ! ~) if R~~ c {(x,y)t~(x) = ~(y)} ls min1mal (and so X ! Y
1ff X x Y is minimal). It 18 known that X ~ Y iff X- ~ Y*. Our ob­

jective 1s a relativized version of this fact. (i.e. ~ ~ Wlff ~. ~ ~.

where ~ lX· .. Zo 19 the induced map). We prove that CO 1.,p 1mplies

~. i w· and if Z a Z· or R~w has a dense set of almost periodie
points then ~ i ~ iff ~. ~~. and ~ ~ $ iff ~. ~ w· (i.e.

R~$ 19 ergodie iff R~~. ie). Moreover, if R~~ ~as a dense set of

almest periodlc points then R~.wo does.

T.S.WU:

A Note On The'Measurable Subsets In Compact Topological Groups

Let G be a compact connected topo16gical group and ~ be its (nor­

malized) Haar' measure. Given 6"> 0, let. A, ,A2, ••• b~ a sequence of

measurable subsets of G such that U(A1 ) ~ 6 for 1=1,2,3, •••

We show that there exlsts an integer n such that A,.A2, •••• An e G.~
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Problem Session

2
Let T be a piecewlse C -map of the 1nterval wi th I T 'I > 1. Wong

(Ann.Prob.7(1979» has shown that for a class of Hölder cont1nuous

functions f a central limit theorem holds: Set Sn(f) = f + foT+ ••

••+fo~-l. Then l/V; (S f - I S fd~) converges weakly to anormal di-n n
stribution. In many cases such results follow fram an invariance

principle. It does not seem to be too dlfficult to redeflne the pro­

cess Snf on·a richer probabl1ity·space together ~ith a Brownian

motion B
t

80 that P(IS[tJ-Btl ~ vt ~(t» ~ 0 for some ~(t) ~ 0,

or to obtatn ~[t]-Bt = O(vt ~(t» a.s. where $(t) ~ O. Then find
the best possible funct10ns ~ and~. (DENKER)

(2) A well-known conjecture about the transformation f t : x ~ ~(~-;)
on (-1 - ~l+t, 1 + v1+t] says that the map t ~ htop(f t ) 18 monotone,

t E (4,8]. It 18 shown in AThe topolog1cal entropy of x ~ ax(1-x)" by

F.Hofbauer (ta appear in Monatshefte f.Math.) that thls 18 equivalent

to the follow1ng problem about ~he polynomials Pk(t) given by Po(t)eO

andPk +1 (tl == ~(A-Pk(tl2). One can easily deduce from th1srecurs~on

formula that (.) Pk+rn(t) = Pm(t) and Pk+m(t) = P~(t) for m ~ 1 ~f

Pk(t) = O. Let 4 = Zo < z1 < ••• < Zn(k)-l < Zn(k) = 8 be the zeros
of P1 P2 ••• Pk. toqether with the number 8. Using (e) one can determine

the sign of Pk+1 (Zt) and Pk+'(Zi+1). If one of these nurnbers 1s zero,

we take the sign of Pk+1(z1+t) or Pk+ 1 (z1+,-t) respectlvely for

arbitrary small t > o. If' zl+1 = zn(k) = 8 .one easily shows from

the recurslon forrnula that Pk + 1 (8) = -4. The problem 19 now ta show

for 0 S i S n(k)-l and k ~, by 1nduct1on on k that Pk+1 has

DO zero in (zi,zi+1) if .Pk+ 1 (zl) and Pk+ 1 (zi+1) have the same

si9n , and that Pk+1 has only one zero in (z1,z1+1)' 1f Pk+ 1 (zi)

and Pk + 1 (%1+1) have different s19n5. (HOFBAUER)

(3) Automorphisms of th~ 2-shlft. Let X = {O,I}Z be the space

of two-slded sequences of O's and "s, and let a : X ~ X be the

shift. It 16 well-known that every automorphism of (X,o), i.e.,

every shift-cornmuting homeomorphism of X, can be expressed as okof

tor same k E Z and some unlformly flnite-length block map (i.e.,eode).

Thus the qroup G of automorphisms 1s at most countable. The theorem

of Curtls, Hedlund and Lyndon (Hedlund, Math.Systems Theory,1969)

states that G contains a copy of eV3ry finite graupe

The subgroup G' generated by a and the elements of finite order
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contains all known automorphisms. Problem: Is G' G.

(4) Positively expansive maps on manlfolds.

A continuous map f: M ~ M of a compact manifold 19 called positive

expansive if there 19 a constant e > 0 such that if x t: y, then
d(fn(x), fn(y» ~ e for sorne n ~ o. A c 1-endomorphism q : M .. M

18 called expanding if there exists c > 0 and k > 1 'such that

~Dgn(v)K ~ ChnVVß for all v E TM and all n ~ 1.

Problem: Is every positively expansive map of a compact·manifold tape

logically conjugate to an expanding endomorphism?

(5) Let ß > 1 be real and let TB: [ 0 I 1) ... [0, 1) .. ,be the trans-

formation TaX = ßx(mod 1). A point x E [0,1) 1s called periodie

if the set (Tnx n ~ 0) ls finite, and Per(ß) will denote the setB
.of periodic points for Tß • The following results are"known.

1. Let 8 be a Pisot number (i.e. an alqebraic integer> 1 with

all conjugates of modulus < 1). Then Per(B) '= ~(8) n [0,1),

when ~(8) 1s the smallest subfield of R containinq 8.

2. If Per(ß);:, [0,1) n Q , then B 1s elther a Pis~t- or a Sale

number (= an algebralc integer> 1 with all conjugates of
modulus S 1)

Problem: If 8 18 a Salem number, is It true that ß(mod~;) E Per(S)i

Is 1 t true thai: Per (8) = ~ (8) ." [O,1)? (SCHMIDT)

(KRIEGER.

(6 )

and

T

Consider aperiodic and irreducible topological Markov chalns

T'. If T is a" factor of TI and T' a factor ,of .·T are then

and TI conjugate?

(7) Let f be a er (r~1) diffeomorphism of a compa~t manifold.

Can f at the same time have·positive·topoloqical entropy and be

strictly er~odic? I think that the answer is negative. Moreover the

following conjecture may be true. For any h: 0 S h < h(f) there

exists a probability f-invariant Bore! ergodie measure such that
h (f) = h. (A.Ratok: Hyperbolicity, entropy and minimality for

lJ
smooth dynamical systems, preprint, Unlv. of Maryland, 1979

(8) Let f be a map of an interval I into itself of class c2
1+t(or C ) except for finite number of points wlth one-sided derivativ

(finite or infinite) at all points; ~ - an absolutely continuous f-
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invariant ergodlc measure such that h~(f) = o.
Conjecture: f as an automorphism of (I,~) 18 metrically conjugate to

an 1nterval exchange tran~formatlon.

Stronger version: There exists an f-invariant set A c I ~(A) = 1

such that fl
A

is"topologically conjugate to an 1nterval exchange

transformation.

Ouestion: Find a counterexample to this conjecture for Cl maps.

(9) Let r be a finite graph f r .~ r a continuous map

P f = (n E N 3 x E r fnx = x, fkx .. x, k = 1, ••• ,n-'1. Describe

poss1ble sets Pf for a. glven graph. v

Far the Interval the answer 18 glven by Sharkovski, for the clrcle

with the extra assumptlon

P
f

3 1 by Block.

Let f: I - I be an interval exchange transformation. (1) If. f

1s weakly mlxing with respect to the Lebesgue measure then it 18 topo­

logically m1xing. (li) If f 18 strl~tly ergodie and topologlcally

weakly mixlng .then it 1s metrically weakly mixing. (ii1) If f has an

eigenfunctlon then this function 16 contlnuous in the R symbollc topo­

logy" (the weakest topology which 18 stronger than the s~andard one

and which makes f a homeornorphlsm. (iv) Dlscrete part of ·the spectrum

of f may contaln one irrational frequency and finite number roets· of

unity. Slmilar question can be asked for substitution minimal sets.

(KATOR)

(10)- Non-wandering sets for powers of a diffeornorphism: Recall the

definltlonof the non-wanderlng set of a map f : M ~ M :
. "1

n{f) = {x E MI 3 Xi ~ .X, "i E N.3.f xi· x}. It is ~asy to see that

a point x belangs to the nonwandering set of apower .of f, 9 = fN,

if lt belangs to 0(1') and furthermore the lIreturn t1mes" n 1 of xi to

the vicinity of x can be chosen all divisible by N.Sawada ("On the

iteration of diffeomorphisms without CO n-exploslons," Proc.Amer.Math.

80c.79(1980),110-122). recently constructed an exarnple of a d1ffeornor-
- 2 2 2 .

phism f: S - S such that n( f ) tJ Q( r). Further examples cf' dif-
. N·

fecmorphisms of surfaces and maps of the interval with n(f) ~ O(f)

for varlous N > 1 were given by Coven and Niteckl ("Non-wandering

sets of the powers of maps of the interval", to appear). These are
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based on examples built on the Möbius band and the annulus; in the

latter ease f interch~nges the two boundary eirc1es. These examples

ernbed 1n any closed surface of positive genus, and in any higher-di­

mensional man1fold, but they da not embed in the two-dimensional dlse.

Problem: Does there _exist a diffeomorphism f: 0 2 ~ 02 for which
Q(fN) ~ O(r) for BOrne N > 11

,01-"

oe
Sf = f~/~' -. 3/2(f"/f,)2 < 0

(11) Homtervals: Suppose M = I or 8' 1s a one-dim. man~fold and

f : M + M is a c~n~inuous map. A homterval for f 18 a non-degenerate .
interval J c M such that (i) the· iterate~ of J are disjoint:

fnJ"n ~J ~ ~ for n * m; (11) for each n > 0, fnlJ ls a homeo~

morphism; and (li1) J does not belong to the stahle set of a perio~ic

sink~ (The terminology, due to Misiurewicz, i9 a.transcription of

his Polish term, f1horncinek".) ijomtervals were first encountered by
Poincare and Denjoy in the context of aperiodic,'non-transitive hO-·

meomorphisms of the circle. Denjoy showed that there exist C1 diffeo-' . "~- .-;'.
1 .:. '. . :', .

morphisms cf S with homtervals, but if the derivative of f has bound- .,'

ed variation (in particular, if f 16 C2), then:· f' has .no homter~ '.

val~. Recently, the question of existence of hom~e~als for certain.
maps of ~the interval has aroused sorne interest in the work of Ml- .',

siurewlcz (tlAbsolutely continuouB measures for dertain maps of the

interval", IHES 1979), and Guckenheimer ("Sensitive dependence to

initial cond1t1ons for one-dimensiona~maps", Comm.Math.Physles 70

(1979),133-160). The question arises because' its '1!1timate co~nectlon

with. the question of whether a'symbo1ie dynamies for for s~eh a-map

separates points. Misiurewicz and Guckenheimer. (op.cit:.) have show

that ·eertain int~rval maps, characterized espe~ia1~y by a negative
Schwartzian derivative:

have no· homtervals .(~i'siurewicz assumes also that. the·.orbit of every

critica.l point 18 bounded away fram the critical s~~, whi~e Gucken­

helmer assumes a single critical point), and it c~n be shown that
for any C2 ,map f: -I ... I, no homterva1 can have an' orbit bounded

away from all eritical points. On the other hand, .the Denjoy·example·

on S 1 can be adapted to give an example of a C1 map f:·I ..: I

which possesses homtervals (see Coven-Nitecki, op.cit., for an

example with two critlcal points; this can be mQdified to give an

example with a unique eritiea1 point.
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Problem 1: Does there exist a C2 Denjoy homeomorph1sm - 1.e., 16 there
1 1

a homeomorphl~n f: 5 • S with irrational rotation number that

possesses homtervals but i8 C2 ? Note that such an example must

have cr1tical points. An answer to the questlon above mlqht also help

salve Problem 2: Does there exlst a·C 2 map f: I • I with hom-

tervals? (NITECKI)

(12) Strange series. It can be proved that aseries like

18 the fractlonal<y>18 irrational andQwhere1/2
k

<x+ka> -
L.

k:::1
part of y, converges for almost all x E [0,11. Does the equ1contl-

nulty of the maps y. <y+ka> then force 1t to converge for all x?

(13 ) Weak mixing and density zero. If T : X .. X

measure-preserv1ng transformation and A,B C X are

there 18 a set NC~ of density zero such that
n

11m lI(T MB) = lJ(A>,,(B).

18 8_ weakly mixing

measurable, then

D~N

S.Kakutanl has observed that it 18 poss1ble in fact to choose aslngle

set N of density iero wh1ch works simultaneously for all A,B. Of

course 1t ls.not N Itself hut· rather some equivalence class, [N),

that is ~portant - for example, only the tails of N matter. Which

equivalence classes (N] can ar1se? How are transformations w1th the

same [N] related?

(14) Expected multiple recurrence time. Furstenberq's ergodlc Szeme­
red! theorem implies that if T: X + X 18 a (finite) measure-preserve­

lng transformatlon"and A C X 18 a set of positive measure, then al­

most every point of A 18 multlply recurrent with respect to A: for

almost all x E A, 9iven 1 there i8 an n such that
2n In

X,Tnx, T x, ••. ,T x E -A.

Let r1(x) be the smallest such n. If T is ergodie, 1s there any

kind of formula for J rl(x)d~(x)? (Recall Kac' Theorem:
A

Al rl(x)d~(x) = 1.) (PETERSEN)

(15) Suppose q;J : (X,t) • (Y,T)

having a RIH, A. Ia there a RIM ~

~-I(y)r for some r E J. What lf

18 a homomorphism of minimal flows

of ~ such that (support ~y)r =
X = M the universal minimal set.
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~
What if X 18 metric and there 1s a RIM, a, on ~ 0 ~, M + X + Y

A

that induces A, w(a) = ~.

(16) Suppose ~ : (X?T) • (Y,T) 1s an open homomorphism of metric
minimal flows having a RIM. Given y does 3 x,x~ E ~-I(y) such

that the smallest closed invariant equlvalence relation contalning
(x,x') equals R(~) = ((x,x') : ~(x) = i(x')}. What if Y .ls a single

ton and x' ~ xT.

~. . ~ '.

Berichterstatter: M. Denker (G~ttingen)
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