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Tag u n g s b e r ich t 12 /1981

" Probability Theory and Mathematical Statistics "

8.3. bis 14.3.1981

Die Tagung stand unter der Leitung von Hans G. Kellerer (München) und

Frank L. Spitzer (Ithaca/USA) und führte insgesamt fünfzig Wissenschaftler

aus dem In- und Ausland zusammen.

Neben Berichten über neuere Einzelergebnisse aus Wahrscheinlichkeitstheorie

und Mathematischer Statistik ergaben sich in den Vorträgen folgende Schwer­

punkte: (1) Interaktionsprozesse (Zeitentwicklung und Gleichgewichtstheorie),

(2) Grenzwertsätze vom Typ "Iarge deviations", (3) Charakterisierung extremaler

Wahrscheinlichkeitsmaße und Integraldarstellung. Der durch stochastische Mo­

delle in Physik, Biologie und anderen naturwissenschaftlichen Disziplinen ange­

regte Themenkreis (1) hat sich im letzten Jahrzehnt zu einem der aktivsten

Forschungsgebiete der Wahrscheinlichkeitstheorie entwickelt. Die zunächst mehr

theoretischen Themenkreise (2) und (3) gewinnen zunehmend Bedeutung in den An­

wendungen, etwa in der Mathematischen Statistik. In einer Reihe von Überblicks­

vorträgen wurde auch den Teilnehmern mit anderen Arbeitsrichtungen die Möglich­

keit geboten, sich über den aktuellen Stand in diesen Gebieten zu informieren.

Die Tagung hat gezeigt, wie wichtig in Anbetracht der raschen wissenschaft-

~ lichen Entwicklung und der großen Entfernung der einzelnen Forschungsgruppen

die Möglichkeit zu einem intensiven Gedankenaustausch ist. Dafür hat sich

das Mathematische Forschungsinstitut Oberwolfach erneut als ideales Forum

erwiesen.
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Vortragsauszüge

s. ALBEVERIO:

Stochastic fields for hydrodynarnies

We discuss stochastic solutions for the Euler equation for an incornpressible

.d· d . A f 1R 2. The . b· a ()' hflu~ ~n a oma~n 0 equat1.on can e wr~tten "3t" n = B n , W1.t!

~ n = rotu, u being the velocity field and B(n) a certain non linear operator.

The energy H(u} = ~ JAu
2
dx and the enstrophy S(rot u) =~ -i (rot u)"2 dx are

invariant.in time, for u a classical solution of the Euler equation. We use

these invariant quantities to construct invariant measures. Let A be bounded,

y > 0 and let ~y be the Gaus~ian measure given formally by exp(-yS(n))dn i.e.

vhite noise distribution for n i.e. f ei<f ,~>dlJ. (A) = e-~ y<f ,f>, <, >
V'(A) Y

meaning pairing (in the sense of generalized functions). Then B(-) EL2(d~ )
y

vhereas H(~) = ~ for a. oe. ~ E supp J.1
y

• However a renormalized energy :H: y (~ )

. 2 I NI 21
obta.ined as the limit l.n L (d~ ). as N - 00 of - 1: - «CD ,~> - -) (-Ä: n-th

'Y 2 n=1 An n y n

eigenvalue of the Laplacian in A , with eigenfunction ~n) exists, and yields

the probability measures d~B = e-ß:H:Yd~ Ife-ß:H:Ydu for all ß~O, formally
,y Y Y

equal to exp(-ßH(n)-yS(n))dn. There exists a flow a t on supp ~y which is a

suitable limit as N of the classical Euler flow, obtained by writing the

Euler equations for the components of n along ~n and retaining only the

components corresponding to ;An ' <.N. The fields ~Oat with stochastic initial

condition ~ E supp ~y have ~B,Y as stationary distribution and are thus

stochastic (non classical) solutions of the Euler equation. The limit AtR 2 ,

the relation with the Navier-Stokes equation as weIl as other invariant

measures (of Poisson type: "vortex modelt!) is also mentioned. The results are
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. in the 1930's in the context of genetics, and has more recently surfaced in
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joint work with R. H0egh-Krohn and M. De Faria. Recent related work has been

done by C. Boldrighini and S. Frigio.

R. AZENCOTT:

Asymptotic expansions for slightly perturbed dynamic systems

For dynarnic systems of the type K~ = b(Kt ), consider the slightly perturbed

€ € € •system dK
t

= EO(Kt ) dßt + b (Kt)dt where ßt = Brownian motion, E ~ O. We give

asymptotic expansions of F (K[O,l]EA) for certain smooth sets A in C[O,l]

(space of paths), as weIl as expansions of JE: (exp 0:~E:» where e : C( 0,1 j-m

is a continuous functional. This is done using Laplace methods in path space,

stochastic Taylor expansions, and action functionals. The results apply to

diffusions in small time interval, and give promising handles to grasp the

problem of asymptotic expansions of densities for the two above considered

situations.

M. BRAMSON:

Application of the Feynman-Kac fOrIDula to the Kolmogorov nonlinear diffusion

equation

The Kolmogorov equation is a semilinear diffusion equation which first appeared•connection with the maximal displacement of branching Brownian motion. As is well-

known, the solution to the equation un~er Heaviside initial data approaches a

travelling wave. It has recently been shown, that simi~ar convergence holds for

certain other initial data, although convergence rnay be to ether waves. Here, the

general so~ution to the problem is .discussed, where necessary and sufficient

conditions on the initial data ar~ given for convergence to a travelling wave.

An exact formula is also given for the position of the wave. The basic tool

employed is the FeyTIman-Kac integral formula~ which ~s applied in conjunction
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with estimates for crossing probabilities of certain curves by Brownian motion.

One obtaines estimates for path integrals af Brownian motion which lead to the

desired results.

L. DAVIES:

Some characterizations of the exponential and stable distributions

It is shown that many wellknown characterizations cf the exponential and stahle

distributions reduce to the convolution equation H(x) = !H(x+Y)U(dy)

where U is aradon measure and H a non-negative continuous function. The general

solution of this equation for a locally compact separable abelian group was given

by Choquet/Deny in 1959/60. A martingale proof for a locally compact separable

abelian semigroup is given. Far the case lR+ the convolution equation with errar

term is studied which leads to some newcharacterizationsof the Weibull and

stable distributions.

M. D. DONSKER:

Function space integrals and large deviations

Asymptotic evaluation of Markov process expectations as the time gets large

has gone through successive stages of refinement. What lies behind these

results is an exponential estimate on the probabilities of large deviations

fram the typical behavior implied by the ergodie theorem.

These results have been applied to various problems such as the Wiener

sausage and more recently the asymptotics of the Polaron problem in

statistical mechanics.

R. DURRETT:

Seme new results on centact processes

In this talk we survey some new results o~ contact processes concentrating

on those obtained since the monograph of Griffeath was published.
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E. EBERLEIN:

Strang approximation using the Wasserstein-distance

We consider sequences of random variables (Xk)k~l with values in complete

seperable metric spaces (Sk)k~l and having a dependence structure which is

given in terms cf the Wasserstein-distance of certain distributions:

Furthermore let (~)k~l be a sequence of distributions on (Sk)k~l such that

~ is not too far frcm the distribution of Xk in the Prohorov-distance. Then

(Xk)k~l ~an be approximated by a sequence of independent random variables

(Yk)k~l such that Yk has distributi?n Gk for every k~l. This extends results

of Berkes/Philipp and Philipp for sequences satisfying mixing conditions.

As an application of this approximation theorem we get a strong, i.e. almost

sure invariance principle for very weak Bernoulli processes.

J. nu~:

Interacting diffusion processes

We consider diffusion processes in an infinite product space

sR ={x=(~ kES)} of type (*) ~ bk(x)dt + 0k(x)dWk ,

vhere Wk is a family of independent Wiener processes. SCRd is such that

!j-kl~l if j*kES, bk and 0k depend only on such x j that 'j-kl~r. The process

is associated to an interaction U = {U
v

} of radius r of interaction by

~(x) = -ck(X~:k V~kUV(K). Dur basic condition is that öo~ ~ ck ~ LO~ with ~

same 0 < Ö < L. The allowed singularity of Uv depends on the dimension and a

local Lipschitz condition is assumed, too. The Markov process associated to (*)

is constructed in the set 00cR
S of configurations with bounded logarithmic

energy fluctuations. Thpse results extend to point fieldsin dimensions four O~

less with smooth positive interactions and in dimension two with certain

singular interactions.
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Stationary measures in the time-reversible case can be characterized as follows.

Suppose that 0k = 1 and SG~d~ = 0 for a reasonable class of smooth functions,

where G is the formal generator associated to (*). Then same moment conditions

imply that ~ is a Gibbs random field with interaction U. If d & 2 and U is

dynamically superstable then moment conditions reduce to the following support

S I I -€Ik'conditian. Let n = {xER : lim xkle ' • = 0 for VE>O}, then IG~d~ = 0 and
, I-:J:I' ..
~kJ

~(Q) = 1 imply that ~ is a Gibbs state. Results by Holley and Stroock are

~ extended to unbounded spin systems. We can prove a similar statement for certain

small random perturbations of Hamiltonian systems.

P. GAENSSLER:

Recent developments in the theory of empirical processes

Starting with Donskerts theorem (Functional CLT) for the uniform empirical

process in the setting of weak convergence in nonseparable metric spaces

(cf. Dudley (1967), Wichura (1968), Pollard (1979», the natural extensions

to empirical C- and F-processes (for classes C of sets resp. classes F of functions:

due to Dudley (1978-81) are illustrated: First, in obtaining a Functional CLT

for empirical C-processes in case that C allows in a certain sense a finite-

dimensional parametrization, and secondly (concerning empirical F-processes)

in obtaining Funktional CLTts for weighted ~mpirical processes (O'Reilly (1974».

Finally, some connections between empirical processes and simple point processes

(via the martingale approach) are mentioned.

H.O. GEORGII:

Markov random fields and their typical configurations

We consider Markov random fields on the square lattice ~2 with cornpact state

space which are Gibbsian for ß~, ~ being a continuous potential. ror given

e>O and each conriguration a we construct a subgraph G (0) of ~2 by drawing
E
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aa an edge between all pairs {i,j,} of adjacent sites far which ~(a.,a.)~in ~ + E.
~ ]

Theorem: If ß is sufficiently large then there is same Markav randam field ~

for ß~ showing all symmetries cf ~ and such that ~ - a.s. there is an infinite

cluster cf G
E

(-) which surrounds each finite subset of ~2. Therefore:

If ~ and E are such that each cluster of G
E

(-) shows one of N ~ 2 syrnmetry ­

related hut mutually incompatible patterns - then for large ß there are at

least N mutually singular Markov random fields for ß~.

N.C. JAlN:

Same large deviation results for sums of independent random variables

L~t X1 'X2 ' .... be i.i.d. random variables in the domain of attraction af a

stahle law G with a strictly positive density and satisfying the scaling

property. Let Sn= Sn/a(n)-G. We obtain Donsker-Varadhan type large deviation

results for the normalized sums S . These results are then used ta obtain
n

analogues of Strassen's results for the behavior of ·"small" values of {S }.
n

Some examples of these applications are the following: let

ben) = [n / log log n] , and c(n} = a{b{n}) . Theorem 1. For c > 0 , there

lim sup' n-lE~ l X[ ]( Is.! / c(n})
n J= o,c I J

Theorem~. With cG as above,

exist constants kc,G and cG such that

= kC,G ' a.s., and kc ,G=1 for c~cG.

lim inf c(n)-1 maxIS.! = c
G

' a.s. (lf
n 1~j~n ]

G is N(o,1) , then c = 1TS-1 / 2 )
G·

-1 n I' aFar a > a there exists a canstant Aa,G such that limninf n Lj =l ( Sjl / c(n» ~

= Aa,G ' a.s. (lf G is N(o,l) , then A2 ,G··: 1/4).

O. KALLENBERG :

Some surprises related to previsible sarnpling

From current work on exchangeability some surprising facts related to

previsible sampling are presented. Here are a few simple examples:

a) Let x = (Xl' • x )
TI

be a finite population enurnerated
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in random order, and le~ Tl < ••. < Lv be previsible stopping times.

Then (X , ... ,X ) can be imbedded into a copy of X. b) Let X be a continuous-
Tl Tv

process on [0,1] with XO=Xl=O, and suppose that the process obtained by_join~ng

together the paths on [O,s] and [t,lJ can be imbedded into a copy ofXf?r all

sand t. Then X is a mixture of Brownian bridges. c) Let X be a random sequence

such that 0 ~ X for all s~opping times T. Then X is exchangeable. d) Let X be
T

a continuous recurrent process such that e g 0 for every pair Gf stopping
. (j T

times cr and T with constant X =X . Then X is a mixture of diffusions.
cr T

J.F.C. KINGMAN:

Coalescence and genealogy

Models for the genetic.diversity, or the geographical spread~ o.f a reprod~~ing

population demand implicit or explicit analysis of the family relationships, the

genealogy of the population. Far a wide class of haploid mod~ls this can be

expressed in terms of a particular continuous-time Markov process, the

n-coalescent (n'= 1,2 ... ), having as states the equivalence relations on

{l,2, ... ,n}. The n-coalescents for all values of n c~n be coupled using a

more complicated Markov process, which can be described in terms of random

colouring from adynamie paintbax.

u. KRENGEL:

~ On multiparameter sub~dditive ergodic theary

A subadditive mUltiparameter process is a stationary process {F
I

} indexed

by the set of "rectangles: t such that FI ~ E~=l FI. holds if I is the
1.

disjoint union of I 1 , ... ,In . Numerous interesting examples have been given

by Hammersley and Smythe. The paintwise ergodic theorems given by Smythe and

Nguyen require additional "strang subadditivity". A new maximal lemma for

such processes yields a proof without these supplementary conditions and at
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the same time provides a simple new proof of the l-parameter special case

due to Kingman. (Joint work with Akcoglu). It can be shown by example that

convergence in L2 holds in the subadditive ergodic theoremif FI is

non-negative, but fails in general. Without non-negativity one can'prove

weak canvergence. Same parts of the mean ergadic theory for linear operators

in Banach spaces admit generalizations to subadditive processes in Banach

lattices (joint work with Derriennic).

H. KüNSCH:

Thermodynarnies and maximum likelihood for Gaussian random fields

Gaussian fields are considered as Gibbsian fields. Thermodynarnie functions

are calculated for them and the variational principle is proved. As an

application we get an approximation of log-likelihood and an information

theoretic interpretation of the asyrnptotic behaviour of the maximum likelihood

estimator for Gaussian Markov fields.

St. LAURITZEN:

Extreme point models in statistics

Many statistical models are given as the extreme points of the convex set

~f probability measures, satisfying various symmetry conditions. We give

examples of this and discuss also some situations where the extreme points

of the corresponding set only are partially known.

Tb.M. LIGGETT:
•

Generalized potlatch and smoothing processes

The potlatch a~d smoothing processes were introduced by Spitzer in his 1979

Wald Lectures and were later studied by Liggett and Spitzer. In this joint

work with Richard Holley, we introduce same generalizatians.of these processes

which exhibit a form of phase transition. Dur results show that phase transition

                                   
                                                                                                       ©



- 9 -

does not generally occur in one or two dimensions, bu~ usually does occur in

higher dimensions. Upper and lower bounds for the relevant critical values are

ohtained. As one application of our resul~s, we obtain the limiting behavior

of the critical values for the linear contact process in cl dimensions as d~.

This is done by comparing the contact process with an appropriate generalized

smoothing process.

P. MAJOR:

Limit theorems for dependent random variables

We are interested in the limit behaviour of partial sums of strongly dependent

random variables. When one tries to salve such problems the firs~ step of the

investigation is to find the possible limits. This leads to the problem of

determining the fixed points of a 'rather complicated transformation. This

quest ion seems to be very hard, hut in the special case when non-linear

functionals of Gaussian fields are considered we can find some non-trivial

fixed points. We have presented some limit theorems where the limit is non-

Gaussian. We have indicated how to find examples where the norming factor is

a 1
N , a < '2

H. METIVIER:

Weak convergence and diffusion approximation of jump processes

~ The purpose of the talk is to call attention on sufficient conditions of

uniform tightness for sequences of laws of stochastic processes, the prototype

of which is due to D. Aldous and R. Rebolledo and on recent developments in

different directions.

These theorems are very well fitted to sequences of semirnartingales for the

following reason: if (Xn ) is a sequence of processes which can be written

X
n = Mn + An where Mn is a martingale and An a process with bounded
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variatien,the uniform tight?ess is in many cases immediately reduced to an easy

applying ef a condition of Aldous type to the sequence «Mn» and (An) of

processes.

10
) Very simple examples are given to show these uniform tightness

conditions combined with a characterization of the law of a diffusion as the

solution of a submartingale problem gives a natural way to get convergence

(Example in .queueing theory, stochastictheorems to diffusions

·approximation, ... ).

20
) Extensions in two directions are mentioned: •

a) obtaining of sufficient conditions which do not imply the quasi continuity

of the" limit (Jacod-Memin-Metivier-Rebolledo);

b) Extension to infinite dimensional valued processes.

J. NEVEU:

Stationary point processes and queues

For a stationary point process of arrivals marked by required services, it is

almost obvious that there exists a stationary waiting time provided the

expectation of service is strictly less than the expectation of the interarrival

time ( a two line proof is provided). This immediately implies Birkhoff's ergadic

theorem with a finite or infinite invariant measure (playing the rale af a Palm

measure) and also the Chacon-Ornstein theorem. Different disciplines of

lead to different hut equivalent proofs of this theorem.

Queues with k servers, or with impatience (eventually rejection) are also studied:

there exist for them stationary characteristics (waiting time, queue·length, etc.)

under natural conditions only if one extends the underlying space in general. A

minimal extension is provided.

A general "Little formula" is given that contains many "knowo·and recently

discovered formulas.
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H. ROST:

Hydrodynarnical limit of a stochastic many particle system

One considers a particle system in R
d

which evolves in a Markovian way, with

a translation invariant interaction between the particles. Define the rescaled

(in space and time) random measure

Me: ( t ) . _ E:dr:c .
i EXi(t/c(e:»

E : a scaling parameter, c(E:) : typically apower of E:.

We give examples which exhibit the following macroscopic and microscepic

behaviour ( as e: tends to zero):

1) If ME:(O) - r(x)dx (weakly in probability) then for all t > 0

ME:(t) - f(x,t)dx , where f(.,.) is the solution cf a kinetic (or Euler).

equation

~~ = F (f,Df, higher derivatives in x)

to the initial value f(x,O) = f o .

2) For every xER
d

and t > 0 the random measure ~ÖX.(t/c(e:» _ x/e: converges
1 1

to the (unique) ergodie equilibrium measure for the original dynamics with

density f.(x, t).

D. SIEGMUND:

Large devfations for boundary crossing probabilities

Far randam walks sn' n = 1,2, ... , whose distribution can be imbedded in an

exponential family, a method is described for determining the asymptotic

behavior as m-ao of P{sn > mc(;) for same n < m:' sm = mj.J.o} (~o < c(l)).

The method involves considering this conditional probability as one member of

a family indexed by ~o and expressing the probability as the integral cf the

likelihood ratio of this measure with respect to another appropriately chosen

member of the class. Applications are given to the distribution of the

Smirnov statistic and to modified repeated significance tests.
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F. SPITZER:

Products of i.i.d. positive matrices

(joint work with H. Kesten)

Let An be a sequence of i.i.d. positive matrices, with the property that their

expectation matrix M = E(Ak ) has largest eigenvalue p(M) = 1. What can be said .

about the distribution of the products Pn = A1A2... A
n

as n - ~.-·In the one­

dimensional case Pn -'0 except in the trivial case ~ = 1. In higher dimension

there are other possibilities - e.g. if all the Ak are stochastic with proba­

bility one, then Pn is stocha~tic' and hence cannat tend to zero. This phenomenon

is related to two others

(i)

(ii)

1

The Furstenberg-Kesten theorem which implies that [(p ) .. ]n ~~ L ~ 1.
n 1J

The Kronecker product R : R.. kl = E[A·kA· 1 ], which determines
1J, 1 J

whether the covariances of (p ) .. tend to finite limits. They do iffn 1J

peR) = 1.

Under suitable positiv~ty hypotheses we prove that the following fi~e conditions

(5)· Pn converges weakly to a probability measure

which is not concentrated at o.

are equivalent (1) (Pn)ij~ 0 in rneasure for some pair i,j

(2) L : 1 in the Furstenberg-Kesten theorem

(3) pCp ) = 1 w.p.l for all nn

(4) peR) - 1 for the Kronecker product R

•
H. STRASSER:

An invariance property of statistical experiments

It has been shown by LeCam, 1973, that weak limits of localized product experiments

as a rule satisfy an invariance candition which is called translation invariance.

It is shown that such limits also satisfy anather invariance"condition called

stability. A complete description is given of all Gaussian experiments which are

stahle and translation invariant. It is known that such experiments can be con~

                                   
                                                                                                       ©



- 13 -

sidered as subexperiments of Gaussian shifts where the' underlying Hilbert

space may be of infinite dimension. It cannot be finite dimensional if the

stability exponent is p < 2. Moreover, any translation invariant experiment

which is stable with exponent p = 2 must be a Gaussian shift. If p < 2 then

itneeds not be even Gaussian. As an application it is shown .. that for sequences

of experiments with stable limits the not ion of Pitman efficiency for tests

can be introduced in a natural way.

Convergence to eSuilibrium of the Lorentz gas

For systems with a finite number of degrees cf freedom good ergodie properties

involve convergence to equilibrium' of non-equilibrium evolutions. Far systems

with an infinite number of degrees of freedom a deeper analysis of the e~godic

behaviour of the evolution rnay give the same type of result. We show that if the

initial distribution ef the periodical Lorentz gas satisfies an independence

condition then the convergence of the system to its equilibrium fellows from the

K-property of the Sinai billiard. If we use the global central limit theorem,

proved by Bemimovich and Sinai for the Sinai biIIiard, then we can substitute this

independenee condition by a weaker rnixing condition. To the extension 'cf tqe

results to the non-periodic Lorentz gas the Ioeal version of the mentioned CLT would

be needed, which we could not prove because of principal difficulties. The

results are joint with A. Kramli.

S.R.S. VARADHAN:

Large deviations

We consider the problem of evaluaLing the function space integral

E{exp[aftrte-lcr-sl dads ]} asymptotically for large t.
0·0 lx(a)-x(s)/
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Here x(a) is a tied down 3-dimensional Brow~ian motion tied down by

x(O) = x(t) = o. One aims to show that for large t the expectation is of the

form exp[tg(a) + O(t)] where g(a) is a function behaving like ca2 for large Q.

We study the problem using the method ~f large deviations. We prove that a

conje·cture cf Pekar regarding the constant c is indeed correct.

A. WAKOLBINGER:

statistic was introduced by Dynkin (1978).

In case of a standard Borel space (which is the case essentially treated by

Dynkin) different characterizations of such simplices are given in the present

talk:

a) as invariant measures w.r. to an arbitrary countablefamily of Markov ke~nels

b) as measurable, weakly closed sets of probability measures possessing an

. ( apriori not unique) integral representation and a sufficient and cornplete

statistic.

In addition, the corresponding results in case of perfeet spaces are stated.

Finally, the following question is dealt with: when does an element of seme

simplex of probability measures belong to a "sub-simplex" of Dynkin's kind

(i.e. when are its representing extrernal measures strongly orthogonal)

and an answer in terms of its Bayes estimator is given (if the latter can

suitably defined, which is the case, e.g., in the situation 'of the simplex

of Cox processes).
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P. WEIß:

Time reversible states of spatial birth - death processes

(joint work with E. Glötzl)

For a lattice phase space Zd it is weIl known that Gibbsian measures on
?d

{o,lf with respeet to a Ioeal energy e(x,~) are just the probability

measures which are time reversible for the spin~flip process with the speed

function c(x,~) = exp (e(x,~)).

We generalize this result' to general phase spaces, including in particular

models with phase space Rd
and Zd. The corresponding generalization of spin-

flip processes are spatial birth and death processes.-

H. v. WEIZSÄCKER:

Extreme probabilities: theory and examples _

The talk first discusses Douglas' extreme point criterion and a general Choquet-

type result for non-compact sets of probability measures (v.Weizs~cker-Winkler

Math. Ann. 79). As examples of extreme point problems the following are dis-

cussed: Extreme martingale distributions, extreme doubly stochastic measures

(we characterize allrnixtures of permutation rneasure on [0,1]2) and an ergodie

decomposition of quasiinvariant measures. At the end it is pointed out that

weak algebraic conditions on a non-compact simplex imply almost the existence

~ Qf a sufficient statistic for the extreme points.in the sense of Dynkin.

s. ZABELL:

Upper bounds forlarge deviation probabilities

It is possible to give a very general lower bound for large deviation

probabilities. This gives rise to the problems of

1) computing this bound in particular cases,

2) determining if this is the exact rate of exponential convergence to zero

3) if not, determining upper bounds.
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If {X
n

} is a sequence of sampie 'means for random vec~ors in a locally convex

TVS ~ and GCV is closed, a number of partial results is discussed for the

case n-llog p{X EG}.
n

W.R. van ZWET:

A Berry-Esseen bound for symmetrie statisties

Then there exists C > 0 depending on A and B such that

Sup!P(T
N

~ x) - ~(x)! ~ CN-1/ 2

x

when ~ is the standard normal distribution funetion. This result is applied

to U-statistics and to linear functions of order statistics.

Berichterstatter: P. Prinz'(München) .

G. Winkler (München)
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