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The Third International Conference on General Inequalities

was held fram April 26 ta May 2 at the Mathematisches Forschungs-

institut Oberwolfach. Only two of the three chairmen of the con­

ference, Prof. E.F.Beckenbach (Los Angeles), Prof. M.Kuczma (Ka­

towice) and Prof. W.Walter (Karlsruhe), were able to attend. Prof.

Kuczma 18 seriously il1 end his usual stimulati~g scientific con­

~ributions were badly missed. As usual, Prof. R .Ger (KFito'.Yice)

served extreme1y weIl as a secret~ry cf the Conference.

The meeting was attended by 39 participants fron 12 countries.

It was opened by E.F.Beckenbach, who presented the good news that

the next conference on GenAral Inequalities has tentatively been

set here in Oberwolfach far the week of May 8-14, 1983.

Many branches of mathematics and its applicationR were repre­

4It sented, such as functional ~nd differenti~l inequalities, convexity

and its generalizations, inequalities in functional analysis, in

particular in sequence spaces, applications to geametry, complex

variables, probability theory and economics. Classica1 i~equalities

continued to be a steady source of the new ideas and methods. Spe-

cisl emphasis was placed on majarization and optimization techniques.

which play such an important rale in economic ana industri~l appli-

. cations.

The exchange of ideas was'especially fraitful in the Problems
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far the hospi t81 1.y of its lea(i~rs s.nd st~f.f.

E·~" t~ ,3~k~(~(~L-k\~-k

E.F.Beckenbach

The abstracts of the talks, the remarks and the problems follow
(separately) in chronological order cf presentation.

R. REDHEFFER: Easy prcors cf herd inegualities

A ~ew inequalities, o~ general interest, are proved by methods
which are perheps shorter than those sometimes used. The talk is,
in part, expository.

R. J. NESSEL: On uni~orm boundedness principles with rates

Let X be a Benach space, Y a normed linear space, end UC X
a linear Bubspace with seminorm I lu. Consider the intermediate
spaces Ue Xc;.) C X, Xfo):= {fE: X; K(t,f;X,U) = O(w(t» , t---+-e:,
where the K-functional is defined ~or f € X, t ~ 0 by

K(t,f;X,U):= inf {Il f - gllx + t Iglu g€ U}

end CAJ is a modulus of continui ty satiafying t/ c..) {t} = o( 1) , t ---+{)+.

Let lim <f n = 0 monotonely.
n......pao

Theorem: For X,Y,U,Xw ' w ,'f es above let {I\t}c [X,y]
be a sequence of bounded linear operators of X ioto Y and suppose
that there exists {hn } C U such that

11 hn 11 x.:s:;; C, , I hn I u~ C2 lf' ~ 1

lI~hnll y~ CJIIRntl [X,Y]
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If for every fe. X(,J one has 11 Rnf 11 y = 0(1), n~ 00 , then the
operator norma necess81-·ily satisfy the growth condition

•
The method of proof essentially consists in the familiar gliding

hump method, but now equipped with rates. The present approach sim­
plifies and unifies the discussion of the sharpness of errar bounds
in various areas cf analysis. Explicit applications are given to nu­
merical quadrature, multipliers cf uniform convergence, and to the
numerical solution cf properly posed initial value problem~.

F. FEH!R: ExPonents cf submultiplic8tive functicns and function
spaces

If L (1 ~ P ~ 00) is the Lebeague space of real valued, mea-
p

surable functions with the ususl norm, then it is weIl known that the
number p playa an important role in connection with properties such
as reflexivity, uniform convexity and separability. On the other hand,
quite a lot of generalizations of Lp spsces are known such as Lorentz
spaces, Orlicz spaces, Zygmund spaces.-A,naturslly arising question
therefore is, whether it is possible to assign also to these more
general spaces numDers wh~ch would correspond to the number p in the
Lebesgue CBse. The purpose of. this talk therefore is, rirst to give
8 brief survey on the different 8ttempts, whieh were made in litera­
ture in order to define such numbers. In the second part of the talk
it is shown, how all these Dtimbers can be obtained from one basic

.4It principle on submultiplicative functions.

K. ZELLER: Erweiterung des Mittelwertsatzes von Riesz

Der Mittelwertsstz von M. Riesz epielt eine wichtige Rolle in
verschiedenen Gebieten der Mathematik (Fractional Calculus, Limi­
tierung, Funktionalanalysis; Bosanquet, Wilansky, Beekmann u.a.) •
Leider gilt er nur für den Exponentenbereich (-1 ,0 J • Hier wird
gezeigt, da~ der Satz sich in geeigneter Weise ( Mittelung) auf
den Bereich (0,00) erweitern lä~t. Ein Beweis beruht auf ent­
sprechenden Positiv~t8tsau8sagenüber Summen von Binomialkoeffizien­
ten.
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J. ACZ!L: Functional eguations end inegualities in "rational group
decieion making" (Joint werk with PI. Kannappan, C. T. Ng and
C. Wagner)

A fixed &mount s is te be allocated to a fixed number m (> 2)
of competing projects. A group of n decision makers, each make re-

commendations, allocating, sey, lfi = (xi 1 ' • • • ,xin ) to the i -th

project, in order to establish the "consensus" allocation fi(~) •
, We only suppose that fi(Q) = 0 ("consensus cf rejection") and

prove that esch f i is the same weighted arithmetic mean.

This result mey be surprising since so little has been suppos~

But the fact that the whole &mount 8 should be allocated, gives

~ Xi ~ J!.:= (s, ••• ,8) =? t: ri(~i) = s which can be written
~ 1=1

ae a functional equation. This is still not enough, but the inequali­
ties O~fi(~i) (~8) do the trick (~i~ Q; i = 1, ••• ,m).

The C8ees m~ 2 are also completely solved.

I. FENYÖ: An error estimate ror approximate solutions of operator
eguations

Let (A, 11· 11 A) eng (B, 11 • 11 B) be normed spaces end consider
the equation

Cl) J-l,x = f ( fe B )

where Ji is a given linear operator. We approximate this by

(2) Jfy = g (geB).

Also Jf is supposed to be linear from A to B. If we suppose
At) -1

a) vV exists

b) 11 JI-l ( Jf - }t ) 11 <: 1

then (1) has 8 solution and for the difference of the solutions of
( 1) and ( 2) the inequality

IIx-YIIA~
1I vV,.l (Jf - )1, ) 1111 K-1rIlA + 11 X-1 ( r .- g) 11 A

1 - 11 JI'-l(J/'-ji)\l

holdH. Special important situations are discu8sed.
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R. GER: Almost approximately additive mappings

The functional inequality of approximate additivity was first
considered by D. H. Hyers (On the stability of the linear ~unctional

equation, Proc. Nat. Acad. Sei. USA 27 (1941) , pp. 222-224). He
proved that to esch function f mapping a given Danach apace E into
an another Banach space E' and satisfying the inequality

If f(x+y) - fex) - fey) 1I::s:; e ,x,y € E,

there corresponds an additive function e: E~E' such that

11 :fex) - tex) 11 E:; E. ,x E. E.

This kind o~ problem has been later investigated by many euthors.
During the preceding meeting on General Inequalities (Oberwolfach,
1978) J. Rätz presented some nice reaults cf that type in a very
general setting (cf. Proceedings of the Second International Con-·

ference on General Inequalities, Edited by E. F. Beckenbach, ISNM 47,
pp. 233-251 ) •

Answering a question of L. Reich we present ä result about the
behaviour of functions sstisfying the approximate additivity inequa­
11ty almost everywhere with respect to an axiomatically given family
of "emaIl" sets (almost approximst.ely sddi tive functions) • Our con­
siderations are carried on under assumptions similar to those adoptec
by J. Rätz in his paper quoted above.

z. PALES: Hölder and Minke.ski ineguality for homogeneous means
depending on two parameters

Le t a, p e. lR, .!. = (x1 ' ••• , xn ) E]R~ and

[~ x~+;/ ~ xf] ~ a 1 0 ,

~,a(!)p = exp [~ Xl log Xi/~ Xl] a = 0 •

We ~nvestigate the following inequalities:

1)

2)

Mn a (~1 + ••• +~k) < M s (~1) P +. •• + ~ a.. (~k) P
, O' Po 11, 1 1 ' Je k

( ~1'·"·· '~k e: nr:., k e lN' ) ,
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and their inverses. We give necessary and sufficient conditions
2concerning the parameters (soJPo ) J ••• J (~JPk) E:. JR J kE: JN

for 1) and 2) to hold.

L. LOSONCZI: Remarks on Hölder and Minkowski inegualities

We consider the following Hölder type inequality

( x = (xl' .... xn ) E. ~ I

Y =ey 1 I • • • ,Yn) €. R~ n = 1, 2, • • .)

where F,G are dif'f'erentiable deviation f'unctions on R+ =(0, (0) alt
MF' MG are the corresponding deviation means ( for .the definitions
see z. Dar6czYJ Über eine Klasse von ~ittelwertenJ Publ. Math. Debre­
cen 19 (1972) 211-217; ---, A general inequality for means,
Aequationes Math. 7 (1972 ) 16-21).

If (1) holds then there exist homogeneous deviation means

MF J MG such that
1 ,

( x,y E. R~ ;

n= l,2 J ••• ).

The deviation functi?ns F"G 1 have the ~orm F,(u,v) = v f,(~) ,
G,(uJv) =·v gl(~) , u,v E R+ ' where f"g, are increasing convex

functions which, apart from a translation J satisfy the Young inequa-

(
1: \.fJeYi»)'f -, _1=_' _

n

are quasiari thmetic means where t.f, \tJ are twice dift"erentiable on R+

end cf' ,;,'-;,. 0 then there exists a constant p > 1 such that,
, 1

*t xiYi ~(* t:x~) p (* ~ Yf)q ~ MF(x) M_(y)1=' 1=1 1.=1 u

(x,y E R~ n= ,,2, ... ) holds (i + ~
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I. OLKIN: Inegualities: Seme applic8tions of majorization

Majorization i5 a partial ordering between.vectors. Because the
eIses of order-preserving functions i8 rich, many different inequali­
ties can be generated. In this talk we previde a revi~w o~ the histo­
ry of majorization and give e number of examples cf majorization anä

consequent inequalities in m~trix theory, prcbability, numerical ~a-'

lysis, combinatoric, as weIl as analytic inequalities.

eh. WANG: lnegualities end IDathematical programming

Extensions of the R-P (abbreviation of Rade and Pcpoviciu)

inequali ties, which in turn generalize the usual A-G ( abbreviation
of arithmetic and geometrie) inequality, are given. These extensions
are established by suitable equalities. Mathematical programming

problems involving an MIC (abbreviation of monotonically increasing·

convex) function are also examined.

M. GOLDBERG: Better stability bounds for Lax-Wendroff schemes in se­
versl space variables

Some classical inequalities are used in order to obtain improved
stability regions for the well-known Lax-Wendroff finite-difference
approximation to the multi-dimensional hyperbolic initial-value
problem

d
dU(X" ••• ;xd,~)/dt = P dU(X" ••• ,xd,t)/c>x

J
"

:Pt
u (x t ' • • • , xd ,0) = f( xl' • • • ,Xd ) •

4It This talk represents joint work with E. Tadmor.

w. EICHHORN: Tax progression and decrease cf income ineguality

Let1R+ be the nonnegative reals. An income tax rate is a function
p: m+ ----+-- [0, ,) that assigns to esch grass .income x E m+ areal num­

ber P(X) such that x"P(X) i8 the income tax amount. Then

(1 - P(X)) xis" the income after income tax or net inceme.

From the (economic) policy point cf view, an income tax rate
should satisfy the following properties.

("i) Progression: p: lR+~ [0, 1) i8 monotonically increasing,
p(X) i. const.

(ii) Preaervation of motivation: Net income i8 a strictly increasing

function ef grass income, that is, x~(l-p(x»)x i8 strictly                                   
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increasing (p: lR+~[O,1)) .

( iii ) Decrease cf income ineguality: p: 11\+~ [0, 1) shall be such
that for all income distributions x, , ••• ,xn the inequality
of, the distribution cf net incemes (l-p<x,»)x" ••• ,
(l-p(xn)) xn is equal er smaller than that of x" ••. ,xn •

Def~nition (Majorization property; see, for instance, A. W.
Marshall and I. Olkin: "Inequalities: Theory of majorization and its

app1ic8tions", Academic Press 1979): y =( Y, ,••· ,Yn ) # 0 satisfy­
ing O.:E;;: Y, ~ ••• ~ Yn is less unegually diatributed than

x=(x" ••• ,xn)#O satiafying O~x,~ ••• ~xn i:f

tt Yi/~ Yj :;> ~ Xi/~ xj f"or every k = 1, ••• ,n •

Remarks. Note that neither Ci) nor (ii) implies (iii) ,
tbat. Ci) end (ii) are independent and that there exist functions
p:lB.+~[O,,) whichsatisfy <i) end Cii).

Theorem. Ci) , (ii)~ (iii) •

A. CLAUSING: Quasiconvexity end integral, inegualities

Cargo has pointed out the "vertex phenomenon", a feature common
to the proofs of many complementary inequalities. Consider, for
example, the inequality cf Wilkins:

q, (:f)

which is true for every f in the set K cf all concave functions with
values in ra, b] (0 <. a < b ) • Here, equali ty holds if f is a cer­
tain extremsl point of K. ~, however, is not 8 convex function.
Similarly, inequalities of Schweitzer, Kantorovich, Specht,
Cargo/Shisha, Beckenbach, Berwald, Marshall/Olkin end others can be
considered as stating that a certain nonconvex function ~ attains its

supremum over same convex snd.compact set K at an extremsl point of
K. We propose a simple, unified proof of these as weIl as some new
inequalities that is based on two facts:
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Ci) The funct~ons ~ in question are quasiconvex.
(ii) For (l.s.c.) quasiconvex [wlctions, a boundary maximum

principle holds.

Also, some extensions end li~itations of this method are discussed.

M. LACZKOVICH: A generalization cf Kemperman's ineguality

Let f: R~R be areal t"unction end suppose that

(1 ) fex) ~ ~ 8 i f(x+ih)
i=1 k

holds for every x and for every h > 0, where a i ~o end E a·
1=1

1

Then f is increasing. Also, if

1.

fex) ~ p f(x-h> + (1-p) f(x+h)

. 1
holas for every x an~ for every h> 0, where o~ P<2 ' then f

must be increasing. These theorems (the proofs cf which use different

methods: number theory and real functions, respectively) rise the

following general problem: what are the lin~ar in~qualities of type

~ a.f(x+b.h) ~. 0
i=1 1 1

implying monotonicity ?

P. VOLKMANN: Existenz einer zwischen zwei Funktionen v,W gelegenen

Lösung von Funktionalgleichungen der Form ue~(xl t • • • ,Xn » =
~(U(X1)' ••• ,U(Xn») , wenn V,w entsprechenden Funktionalgleichun­

gen genÜgen

( Bericht über gemeinsame Arbe i t mi t Herbert Weigel) •

Sei M eine Menge. Zwei Funktionen ~ : !fD ---+M , 'f: Jil---+M

hei~en vertauschbar (~. '!' = '1' <i? ) , wenn

<I> ( 'f' (x 1 1 ' • • • ,x1n ) , • • • , 'f(xm1 ' • • • ,Xmn ») =

='P( ci? (X11 '··· '~1)'···'~(Xln'··· ,Xmn»)

(Xf'1E. 14) gilt.

Sei r ~ {(~ ,f) I ~: ~~M, tf': JIil-+JR , f stetig
und in jeder Variablen (schwach) wachsend, n = 1,2, ••• } mi t

~ '!J = '!'~, lf'f = 't''f für (q" f) , ('±J,'f) Er· Zusätzlich

gelte:

c.) {Für (~, 'f ) e rist 'f bezüglich jeder Variablen streng

wachsend oder konstant.
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Satz. Sind V,w: M--+lR mit v.:!f. W, v(~(xl, .•. ,Xn») ~

lf ( v ( Xl) ,. • • ,v (Xn), W ( ci' ( xl' • • · ,xn » ~ Cf ( w (x1) ~ · • • ,w (Xn ))

für alle (<F,f)~ r , so gibt es ein u: M-+1R mit v.:E;u~.w,

u ( ~ ( xl' • • • ,xn )) = lf ( U (x , ) , • · • , U (Xn ) ) für alle (cp, f ) E: r ·
Es wird noch diskutiert, wie weit man sich von der einschränken­

den Bedingung (.> lösen kann.

J. RÄTZ: On Lorentz transformations in the plane

Lorentz transformations in Rn have beenchar.acterized by many ~
authors and in several ways: 1) as isometries, 2) as mappings

preserving a single non-zero distance, ;) as light cone preservlng
mappings.

Gur contribution belongs to the third circle of ideas and ex­
hlb~~s a big contrast of the situation in R2 with respect to that

in Rn (n ~ 3) • All bijective light cone preserving mappings
T: R2~R2 are determined, and it is shown what kind of regulari­

ty conditions are used to single out the Lorentz transformations of
the plane R2• Among these the preservance cf a distance inequ~lity

plays a central role.

z. DARdCZY: Inegualities for deviation means

Let I ~ :IR be an open interval. The :function E: r 2--.+-'lR is
seid to be a deviation on I if it has the following properties:

CE1) For every fixed value x e: I the function y~E(x,y)

is strictly decreasing and continuous on I ;

(E2) E(x,x) = 0 for all x EI.

Denote by t (I) the set of all deviations on I. It is known

that ror every ]I = (Xl' ••• ' xn ) e: In the equation

has exactly one solution yo€ I and this solution satisfies the in­
equality

min ( K ) ~ y 0 ~ max (~)

The quantity Yo:= ~n,E~)is said to be the deviation meen value

generated by E e: E. (I) • In the lecture we shall investigate

some general inequalities far deviation means.                                   
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A. w. ~~SHALL: Use 01" majoriz8tion end SChur-convexity to obtain

inequalities

Majorization can be regarded es a pre-oräering of n-uimensional

real vectors. Real functions 01· n arguments that are increasing in

in tne sense cf majari ~ation (i. e., order-preserving functiona )

are seid to be Schur-convex. 'I'hese functions are qui t~ ....ell characte­

rized, and numeraus specific examples can be given. The evaluation

of a Schur-convex functian at two vectors ordered by majorizatian

yieldb an inequaJity. A nillnbel' of inequalities are öeriveö in this

manner to illustrate the methode
A few generalizations cf ma~orization are also intraouced, to­

gether with the corresponding order-preserving functions. Again,
some ine~ual~ties are derived by comparing the values an order-pre­

serving function takes on at two ordered points. The purpose is to

expose a method for deriving inequalities, with specific inequalities

obtained only for illustration.

C. ALSINA: A functional ineguality for triangle functions

We study solutions cf the functional inequality

~(Fo G,Ho K) ~ 7(F,H) 0 7:(G,K)

where F,G,H end Kare arbitrary distribution functions in Ll+ ,
~ denotes composition and the unknown binary operation ~ on ~+

i8 an e -stri/ct triangle function.

The mein result is the following

Theorem. If an c -strict triangle function ?: satisfies <.) then

there exist TrE~ and L'Z' e: La such that 'Z ~ ~TL' i.e.,
7' r

e ?:(F,G) (x) ~ sup { T~ (Feu ), GtV) L-c(u,v) = x } ,

5I1d TT' L 7: are der-inec., respec tive ly, by

T 7 (x,y) = ~(Ax,Ay) (1) L~(aJb) ~(ea' t~)V (1/2) •

Moreover, all ~TJL operations are salutions cf C.) ·

B. SCHWEIZER: Menger- betweenness in dw-simple sp8ces

Let (S ,d ,Gj 0(,) be the c(.-simple space generated by the metric

space (S,d) and the distribution function G, snd suppose (X. > 1.

Then the point q 18 Menger~between the points p and r if and only if

p,q,r are diatinct and
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Cf.) d cL ( P , q) H(u) + d d. ( q, r) H(v ) ~ d d.. ( P ,r) H(u+v)

fer all u,v ? 0, where Hex) = G- 1 (1 - G{x 1-oc..)) • We study the

properties of the set B(p,r) of all points q s8tisfying (.) • We
obtain best-poseible upper and lower bounds for B(p,r). We show
that if (5,11·11) is a normed linear space and d(p,q) = oU p - qll,
then B(p,r) is convex and p,r are on the boundary of B(p,r) ,
but that this need not be the esse when the metric d is not derived
from 8 norm.

R. P. AGARWAL: Some inegu8lities for 8 function h8ving n zeros

°Let x(t) e: Ce n) [8
1
,ar] , sstisfying

x ' ( Si) = ••• = x(k i l ( si) = 0 , l~i~r

r~ 2 , .8 k. + r
1= 1 1

n .

Then n-k
I x(k)Ct)1 ~ C (a - 8

1
)

n,k r
max I x(n>(t) I

a,~t~ar

k = 0,', •.• ,0-1 ,

where, if cL = min (k1,kr) J

1 (R_c(,~,)n-ol.-' (oL-k+1) oG-k+l
..,.(n-_.....k~)""P! (n_k)n-k k O,l, ••• ,a,

k
Co, a.+k = (0- 0(,) (n-oc.-k)! k = 1,2, ••• ,n-et-l •

The constants Cn,k are best possible if ~ = Oj k = 0, ~ I 0 • The 4It
eBse k # 0, ~# 0 is an· open problem.

E. R. LOVE: Inegualities·between norme in seguenee spaces

Inequali ties of the form 11 Ax 11 q~ c 11 x 11 p J where A is a linear

operator, have reeeived much less attention when x is a sequenee in

t P than when x is a function, at any rate since the days cf Hardy,

Li t tlewood and Polya (HLP) • lnterest in sequence cases has however
been reviving, for instance in the work of Johnson end Mohapatra
(1980) •

The best Buch inequality in HLP is probably Theorem 318 Ce) • It
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is however restrieted to q = P ; end it does not seem to include
Hardy's Ineq~ality as a special esse. It also imposes two monotony

conditions on the elements 8 mn of the matrix A.

I have tried to obtain theorems with looser end simpler
requirements. The main one is "as fellows.

Theorem. If q > p > 1 ,

negative, increasing in [0,1)

-1 (-1 -1)r = 1 - P - q ,cX,(t)

end decreasing in (1, 00) ,

is non-

~ 1 (n-1)
lamnJ~:mrJ., m

m

and

if n~ m ,

then

<00,

There is also a simpler theorem, like this with q = p and
r = 1 • 1t includes Hardy's Inequality, with constant C 1esB than

181 above the best possible.

D. C. RUSSELL: Interpolation problems in approximation theory

(Jointly with A.Jakimovski)

Let m be a fixed positive integer and x = (xk ) k E Z a fixed

strictly increasing real sequence, unbounded at both ends. Suppose

that r is a semi-normed linear space of functians lR~~ , and

r m := { f I i!D.-l) E Ac(1ll) I f em ) e l"' } I nfU m := 11 r Cm
) 11 •r f"'

Far a real- or complex-valued sequence y = (Yk) k E Z ' we de:fine

A unified functional analytic proof gives necessary and sufficient
conditions in order that (i) IP(y; rID,x) should have a solution;

(ii) it should have an optimal (extremal) solution, namely a solu-

tion f. with smallest 11 f.H . The mein requirements are the
rm

existence ot· a Banach function space A such that A- ~ r through

a Riesz-type Representation Theorem, and the existence cf asolid
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AK-BK sequence space ~ such that ~m,x" A' ~ r ' where Sm,x is the

space cr spline functions of degree m-l w~th knots at x. The last
requirement involves proving inequali ties ot' the form

for

a closed

for xe:.n

J. SCHRÖDER: Shape-invoriant bounds for.veetor-valued elliptic­
parabolic problems

Let n c:. 'lR,m be a bOW1ded domain, u: .a ~1ltn , G
star-shaped .set in]Rn 'fI : n --+1R. ,

{
ci [u](X) + ~ (x, u(x), .ll ~(X»)

JIf' 3 M U(X) =
u(x) for xe: d!l

(cf [U))i = L[U i ] = - Ai' ui, Ai(x) symmetrie end positive defi­

nite. We derive differential inequalities for ~ which imply'that
U(X) e: ~ (x) G (x E: fi) for each solution U of M u(X) = rex) •

Generalizations: M quasilinear; ether boundary terms; estimates
u(x) €. 'tJ.(x) G. (j = 1, ••• ,N).

J J

Examples: (a) If u(x) 11 ~ 't'ex) , (b) two sided bounds.

Problems: 1) may fi(x,u,u~) depend on u' ( k 1 i)k
(YES in ease (a) , NO in ease eb) ) •

2) 18 Ai 1 Ak ( i I- k ) possible ?
(NO in eBse ( a) , YES in esse Cb) ) • Intermediate results
other eases.

?

for

e
C. SANDLE: Comparison theorems for secend end feurth order elliptic
differential eguations

Sounds for the sol~tions cf the niriehlet problem

ß u + oc..u + fex) = 0 in D c:mN, u = 0 on an are constructed
by means cf symmetrization methode. The estimates are sharp and
equality holds for eertain radially symmetrie problems. Then the

results are extended to ~ 2 u + a 6 u + b u = 1 in D, u = ß u on

~D. The basic idea is te write this equation as a system cf two

seeond order equations and to apply the previous results.
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M. C. READE: Subordination end differential eguations

The basic. idee in this exposition can be expressed best by the

following two examples. (1) Let A,B and C be real constants, with

B ~ A ~ 0 and C ~ 0, end let H(z) = 1 + h 1z + ••• be analytic in

the uni t disc ß . If P(Z) = 1 + Pl z + is ~alytic in ß, if
pez) satisfies the (Euler) equation

A z2 p" (z) + B z p'(Z) + C p(Z) = H(z)

inß,andifIH(z)j~M inA,then Ip(z>1 ~ M hOldsinl1.

(2) Let 8 and·t be constants t 8 > 0 , Re t ~ 0 J end let

FCz) = 1 + P, z + be analytic in the uni t ai::>c 11. If QCz}

= 1 + Ql~ + •••. is analytic in ~ end if Q(z). satisfies the
( Briot-Bouquet ) differential equation

Q{z) + z S'(z)
s Q(z> + t

in 6, and if Re F<z) > 0 holds in ß J then Re Q(z) > 0 holds

in ß .
These results. illustrate the notion of (Littlewood) subordi­

nation that is st the heart of the reaults.

These resulta, and others, are due to P. Eenigenburg, S. Miller,
P. Mocanu end the present author.

w. WALTER: A comparison theorem for difference inegualities

In the study of growth and decay properties of nonlinear evolu­
tion equations ( in particular hyperbolic end parabolic partial

differential equations) as t---+oo the :fol~owing difference

inequali ty arises (which i8 satisfied by an energy expression)

1+d" r ( )sup ues) ~ C (l+t) uet) - u(t+l)
t~s~t+'

+ g(t) •

Nakao and others have derived theorems about the asymptotic behaviour
cf solutions to <.> as t~oo , using rather complic8ted methode

The basis of our treatment 15 the following theorem ( which has

a one-line-proof)

Theorem. Let (un ) and (v) be real sequences, cfu = u , -n n n+

- un end erun ~ f n(un + 1), cf vn ~ f n (vn+,) for n ~ 0, where

f n is increasing. Then U o ~ v0 implies un ~ vn i'or all n ~ 1.
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All the results about (_) which are found in the literature
are simple conaequences of this theorem. Above that, new results
can be derived which are reievant to evolution equations. Three
examples: Let öuet> = uCt+1) - u(t) and

C (l+t)r dU(t) .E:; g(t) - u(t+1) 1+<' for t ~ 0 ,

where C > 0, g ~ 0, u ~ O. Then for t ~oo we have

cL = 0, r < 1, m E :IR.

C
Cl. = 0, r = 0, m > log C+l

et>O,m>O g(t)

g(t) = O(tm) ====>uet>

g (t ) O(emt) ===;> u(t)

= o(e (1 + ~)-mt ) ====> u t

O(tm)

OCe
mt

) e
O(emt J .

w. SCHEMPP: Unßleichungen und Symmetrisierung

Das Mitteln über endliche Gruppen oder al~gemeiner über kompakte
topologische Gruppen und kompakte homogene Mannigfaltigkeiten hat
sich als wirksame Methode erwiesen, um z.T. sehr weitreichende
Identitäten und Ungleichungen herzuleiten. Ziel des Vortrages ist es,
die Wurzeln einiger klassischer Ungleichungen d~r Approximations­
theorie bis auf den Satz von Maschke über die Vollreduzibilität der
Darstellungen endlicher Gruppen zurückzuverfolgen und daran anschlie­
pend einige neuere Ergebnisse der Kombinatorik über sphärische
Pläne darzulegen,' die ebenfalls mit Hilfe der lliittelungstechnik
("Symmetrisierung") aus der Ungleichung von Sidelnikov gewonnen
werden können.

G. CBOSS: On functions with non-negative divided differences

Let Vn(F) = Vn(F; xo·,x1, ••• '~) be the n-th divided difference

of F with respect to the n+1 points xo,Xlt ••• '~ on an interval
[a,b] •

If the inequality Vn(F) ~ 0 hOlde for all choices of points

xo,x" ••• ,xn in [a,b] then F is said to be n-convex on [a,b]

It is ahown that if Fex) is n-convex on [a,b] , if F(r~x)

exists end is continuous on [a,b] , 0 ~ r ~ n-2 , end if FCn- 1) ,+(8)

is finite, then
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1l=J. (x - a)k
Fex) = G(x) + L FCk ) +(a) k!

k=Q J

x € [a,b]

where G(x) is monotonie inereasing on [a,b] , and F(k),+(8) is
the one-sided peano derivative of F at 8.

The result has applic8tions to approximation theory.

T. F. BANCHOFF and E. F. BECKENBACH: Counterspherical and counter­
circular representations

In 1825, in introducing the concept of spherical image for
studying the geometry of a surface in ~-space, Karl Friedrieh Gauss
gave a preliminary treatment cf the cireular image of a smooth plane
curve.

- We now introduce end study the countercircular image ·of aplane
curve with respeet to a given point in the plane, to complement the
secand-named author's recently defined counterspherical image cf a
surface with respect to a given point in space. A principal tool in
the study is the notion of the osculating tube of the curve, a concept
introduced by the first-named author in collaboration with James
H. White.

For space curves, counterspherical images suggested by the Frenet­
- Serret tangent-normal-binormal apparatus are also briefly investi­
gated.

A. KOV~: Eine algoritmische Methode zum Nachweis von Ungleichungen

Zum Nachweis einer Reihe klassischer Ungleichungen wird über
die folgende Idee berichtet: Mittels eines geeignet zu wählenden
Funktionals cr;: m.n--+-lR lassen sich die in Rede stehenden Ungleich­
ungen in der Form CZ"cy> ~ 'r<y) mi t y = y(y> schreiben. Man sucht

nun eine Abbildung ~: mll--+lRn welche den folgenden Bedingungen
genügt:

(ii)
n .

lim ~ (1!) = !
n____._oo

Aus (i) und (ii) folgt die erwünschte Ungleichung sofort vermöge

-rCy> ~ 't'( ~ (!:!») ~ ~( ti> 2 C!d») .=e;: ••• ~ ~ ( <p n e!!») ~ ••• ~ 'Z"'(y) •

Ein allgemeiner Satz, der aus diesen Überlegungen folgt wird zitiert,
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. und an Anwendungsbeispielen illustriert.
AbwandlWlgen dieses Konzepts gestatten mittels einer übersicht­

lichen Matrizenschreibweise die Erzeugung von algebraischen Ungleich­
ungen.

D. BRYDAK: Nonlinear differential ineQualities

Let us consider the inequality

( ) (n) ( , \U( 0-1) )1 't' (X) ~ g x, "1", ••• ~

Let us assume that the equation

(2) yen) = g(x,y,y', ••• ,yCn-1»

has n-parameter family F 01' solutions.

We denote by R(x'Y'Y" ••• 'Yn_l) the first integral of (2) such

that R i8 increasing with respect to the last variable.

Theorem 1. The fWlctian't' i8 a solution cf (1) iff the function

'7,(x):= R(X, ~(x), 't"(X) , ••• ,\jJ<n-l) (Xl)

is-increasing.

Using the first integral method we can prove a generalization
of Polya's generalization cf Rolle theorem. Namely, we have

•at s.(2)such that 't' satisfies

Theorem 2. Let ~ be a function which i5 n times differentiable
in [a,b] end let \fJeXi) = Y(Xi ) for i = 1,2, ••• ,0+1 , where y is
a solution of (2) in [a,b], x, < x2 < ... <xn+1 ' Xi € [a,b]

for i = 1,2, ••• ,n+l • Then there exists a point SE. [x"xn+1]

B. CHOCZEWSKI: Differentiable solutions cf a functional ineguality
with two Wlknown functions (by Z. PowQzka)

A paper by Z. Pow~zka fram Krak6w is presented.
The inequality is cf the form

(1) ~, (G(X,y» ~ F (\.fI,(X), 'Y2CY») , x,ye: I

where F: J 2 --+J, G: 1 2--+1 are given functions, and 't'i: I--+J
i = 1,2 , denote unknown functions. Here I end J are some intervals
of reals. Differentiable solutions cf C",) in some classes of
functions are det~rmined.

                                   
                                                                                                       ©



- 19 -

B. SAFFARI: Trigonometrie polynomials end cross-means

Let f: [0, 1)~lR be a bounded measurable funetion wi th

f
o
'1 fex)dx = 0

H:= ess sup f

and

and

f(x)i 0 almost everywhere, so that the numbers

h: = -ess inf f are posi tive. For p E:tR, let

1

+2 h
P

) P if p ~ 0

if p = 0

Also define the "cross-meen" cf order p by

if p 1 0

1

'(h HP + HhP)P
H + h

h H
HH+h. h H+h if p. = 0

p>o, writellfll p =(~: If<x)IP dx r/P
• While studying realWhen

trigonometrie polynomials

n.L ek exp 2i 'Xkx
-n

I observed that nf 11 , ~ 2Hh/(H+h) = M_l(H~h) and n f 112~ {Rh =:=

otherwise .

1~p~2if

MO(H,h) , with more preeise statements rar trigonometrie polynomials.
Whereupon J. Steinig eonjeetured that n f 11 :5: M 2(H ,h) whenever

p -- p-

p ~ 1. I disproved this :rar 1 < P <: 2 , but proved i t for p'~ 2 as..
folIows: One easily observes that, for p ~ 1, \\ f II ~ M (H ,h) ,

P P
end on the other hand there are several ways af proving that, when-
ever pe IR ,

. {~Mp_2(H'h)
M;(H,h)

~M 2(H,h)p-

For trigonometrie polYnomials one obtains, for same values of p, im­

provements depending on the degree.
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Problems and Remarks

1. Remark (on an inequality for the LP-norm 'related to uniform

convexi ty)

Definition. A normed linear space (cl, 11 ;-fl) is Wliformly convex

when, for any (fn ) ,(~) in J." we have

("fnll~ 1, II~II~ 1, 1I~(fn+~)1I---+-1) ~lIfn-~lI~o •

Clarkson proved in 1936 that LP (:= LP(.D.) , where n is a measurable

aubset of lR.) is uniformly convex for 1 < P < 00 • A proof can alse
be found in Köthe (Topological Vector Spaces I ) •.

For P ~ 2, uniform convexity comes at once from:

If 11- 11 is the LP-norm~ P ~ 2, then for complex valued
:r,g E LP(.n) :

(1) ·l/f-gIIP~ 2P-1{UfIlP+ IIg!lP - IIf+g11 p}.
For 1 < p < 2 there is no euch simple inequality, and the

method of proving uniform convexity is quite invo1ved.

We furnish here an analogue of ( 1) for the range 1 < p < 2 ,

which again leads immediately to the uniform convexity of LP in this
ease.

Theorem. Let 1 < P ~ 2, 0 < ~ < 1, .n a measurable subset of
11. Theh there exists positive constant Cp,~ such 'that,for every
f ,g fii LP(.n)

(2) IIf-gIlP~ Cp,~ {(l-?)lIfIlP + ~lIgllP - lI(l-?)f +"gIIP}~P.

-{l max(lfIP,lgIP) }l","~P •

D. C. Russe11 (with' A. Jakimovski)

2. Problem (on a functional equation)

Must every f: J:r --i'-C be continuous if

10 ~ is a complex Banach algebra ,

20 f(ab) = heb) t(s) + g(8) fCh) for all a,b E ~ ,

3° g,h are distinct, nonzero homomorphisms tram ~ into C ?
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Reference
[1] A. Wilansky: Subspaces, subalgebras and ideals of codimension

one in complex algebras, J. London Uath. Soc. 9 (1974),
87-92.

A. Wilansky

J. Remark (on loca11y autophorbic topological vector spaces )

Let (K, I· J). be a topological subfie1d of~. A subset B of

a K-vector space is called autophorbic if for all ~ 1' ~ 2 e: K" m+
there exists an s E lN such that Ci?lB + ~2B c sB. A topological
K-vector space is called locally autophorbic if cr has a neighbour­
hood base consisting of autophorbic and circled sets. For a K-TVS
X the following holde:

locslly convex

locally autophorbic

locally bounded

pseudo-metrizable

None of the converses cf these implications holds.

For r, s e {', ... ,6 }, <9~0 means:

(E) holde for X irf X is embeddable inta a product cf TVS's
wi th property 0.

Äcknowledgement: ® ~ CD was proved and

was suggested by Professor V. L. Klee.

Reference
Cl] J. Rätz: On approximately additive mappings, General Inequa­

lities, Vol. 2 (1980), 2;3-251, especial1y pp. 245 ff.

J. Rätz
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4. Remark (on Prof. Agarv:'al'8 lecture )

With respect to the last part of the lecture which deals with
the approximate solution ef the boundary value problem in questi~n,

the following inequality concerning contraction mappings in any me­
tric space M can be used:

If T: M~M satisfies ~(Tx,Ty) "" o(,~(x,y) ,where
o E;; cx, < 1, then

~<x,y) ~ '< (x,Tx) + ~(Tx,Ty) + ~(Ty,y)

If the middle term on theright is estimated according to the previou~

inequality andthe resulting termis brought to the_left, then

inequali ty

~ ( x, y) ~ 1~ oe. { ~ (x, Tx) + ~ ( y •Ty) }

.fellows. This basic ine9uali ty can be used in many ways (tor example,
it yields a simple proof cf the contraction principle which does not
require the summation cf geometrie series ). In the eBse eonsidered
here, x is the fixed point ( x = Tx) , Y is the fixed point of a map
T- (y = T'y) ,end ~(Ty,T·Y) ~ c • Then inequality <.w) gives

e
~(x,y) ~ 1-~.

w. Walter

5. Problem. There are several infinitesimal characterizations of
convex functions. For example, a eontinuous function f is convex iff

1)2 f(t) : = lim sup [f(t+h) + f(t-h) - 2fet) ] ~2
h-+O ./~~

is nonnegative. Question: Are there simi1ar infinitesimal characte- ~
rizations (cf the i:f and only if type) ror Schur-convex functions ?

w. Wa1ter

6. Remark (on another application cf majorization )

We "know" ( intui tively ?) that the ares (or perimeter) cf
a (convex) polygon wi th n+ 1 eides, inscribed to a circle, is

greater than that of a polygon with n sides. This, of course, is not
true in general. It elearly is true for regular polygons (may be
that is all what we "knew" in the first pIece).
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.J1ore generally : Rearrange the (first) polygon so that the

length cf its sides decrease. ( This can be done by rearranging the

ccrresponding central segments, that is, the triangles with the centre
cf the circle and the two endpoints of the respective sides as ver­

tices.) If, sturting from the same point, the vertices of the first
polygon precede the corresponding vertices of the (possibly re­

arranged) second polygon (till they are exhausted ) , then the first

polygon .has greater ares (end perimeter ). than the second.

on [0, ~]. So their sums are Schur-concave••

Similar statements (wi th .. smaller" instead of "greater") hold
for eircumscribed polygons with the same proof and, if the sides are

small enough to begin with, even for the sum of areas of the inscri­
bed and cf the corresponding eircumseribed polygons (now egain wi th
"greater"). The letter statement is contained in [1] , the former
ones are in [;] and ualmostu in [2] • For sums of perimeters. of
inscribed end corresponding circumscribed polygons again the state­

ment wi th 11 smaller H holds (not only for small angles) .

•
Proof: The functions x t--+- sin x end x..---+sin 2x are coneave

References

[1] J. Aczel and L~ Fuchs: A minimum-problem on areas of inscribed
and circumseribed polygons cf a circle, Compositio ~ath. 8

( 1950) , 61 -67.

[2] E. Egervary: Aremark on the length of the circle and on the

exponential fWletion, Acta Sei. h"lath. Szeged 11 (1946))
114-118.

[J] A. W. Marshall and I. Olkin: Inequalities: Theory of majori­
zationand its epplieations, Aeademie Press, New York, London,

Toronto, Sydney, San Francisco 1979, eh. 8 E.

J. Aezel

7. Remark (answer to Prof. Wilansky's question )

Remark 4, A. Wilansky asked

((M,~) - ametrie space)

In connection with W. Walter's
whether a transformation T: M~r.1

s&tisfying the condition

,?(x,y) ~ 1~ce. { ~ (x,Tx) + ~ (y,Ty) } , x,Ye: M ,

where oe. e: [0, 1) , had to be a contraction.
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The answer is: 00. For, take M. =lR , ~(x,y) = I x - yl , x,ye: 1R
'and Tx: = x + 1 +. (1- OG) x ,x € 'IR. T is not a contraction, because
otherwise it would have a fixpoint and it has not. On the other hand

1~ ()I.. ( I x - Tx I + I y - Ty I) = 1~ CL (1 + ( 1- Cl.) I x I + 1 + ( 1- 0(.) I YI ) ~

~ Ix I + 'y1 ~ \ x - Y·l , x, Ye. :IR. ,
i.e. (.) is satisfied.

R. Ger

8. Remark. In connection with Prof. Ger's talk, in which he re­

minded the proble~~q~ stability. of the Cauchy,'s: fun~tional equ8tion

f(x+y) = fCx) + fcy) in lR.

aa it has been formulated by S. Ulam and then solved by D. H. Hyers
in 1941, arecent work by E. Turdza from Krak6w is to be remarked.

The result reade that the functional equ8tions

•
g(X;Y) = ~ (g(X) + gey») end h(xy) = h<x) + hey)

are both stable in Ulam' 5 sense, the last in lR as we1l as in 'IR, {O} •
These cases are not covered by recent works by John Bsker and co­
authors (cf., in particu1ar, J. Bsker, J. Lawrence, F. Zorzitto,
The stability of the equation fCx+y) = f(x) fCy> , Proc. Amer. Math.
Soc. 74 ( 1979) , 242-246) •

••
B. Choczewaki

Cl)

9. Remark. Theorem. Let u(x,y)€ c(2)([O,a]X[O,bJ), u(x,O}

u(O,y) ='0 for all 0 ~ x ~ a, 0 ~ x ~ b • Then

raa r
o
b ra r b

) ~ I u(X,y) uxy{x,y)ldx dy ~ C jo J
o

I uxy(x,y)1 2 dx dy

where
C ab

2W
Proof: Since,

rx

o
tY

o
u(x,y) = j J ust(s,t) da dt

then, on using the Schwartz'8 inequality

lu(x,y) uxy(X,y)I < luxy(x,Y>1 (~:~: I Ust(s,t)1 2 da dt)'/2yxy.
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Integrating the above and applying the Schwartz's inequality again,

we obtain

~:~: I u(x,y) ux.y(X,y) I dx dy ~ (~: I: x.y dx dy ) 1/2 •

• ( ~:~: IUx.y(x,Y)12(~:\: (Ust(S,t)\2dsdt)dXdY) 1/2~

~ ~b (~ ~:~: I Ux.y(X,y)\ 2 dx dy ) 1/2

·e
which is same as (1) •

R. P. Agarwal

. 10. Problems. (i) Can the constant C in ( 1) (see Remark 9

above) be replaced by ~?

(ii) Find the best possible constant for which
( 1) (see Remark 9 above) holds.

R. P. Agarwal

11. Remark (answer to R. P. Agarwal'8 question (i»)

The choice u = X3 + e q; shows that the constant C in Agarwal's

inequality must exceed ~. Here we assume onl~ that~ satisfies the

boundary conditions, end

~~ ~ ~ ~ ~ dx dy = 0 , ~ ~ ~~ ( xy ~~ + ~) dx dy > 0

Such 8 4> is readily cönstructed, and E..~O+ gives a contradiction.

With Wolfgang WeIter it was found that the choice <p<x,y) =
= hCx) h(y) , heO) = h(l) = 0 gives

C ~ :3 + m ab.-- 24 '

when e is optimized.

R. Redheffer

12. Problem. Assume that (M,~) is ametrie space, d..E [0,1)

end T ie a transformation of M inta i tseif. If C'? ( Tx, Ty ) ~ 0(, ~ ( x ,y) ,

x,y E M, then, as R. Redheffer seid,

~(Tx.Ty) ~ c(,~(x,y) ~ '~Ol,(~(X,TX)+~<'Y,Ty»), x,YE M
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(see.also Remarks 4 and 7). The question is: does

~ ( Tx, Ty) ~ 1~d. ( ~ ( x, Tx) + ~ ( y , Ty) )

imply

~ ( x, y ) ~ 1~ ~ ( ~ ( x, Tx) + ~ ( y , Ty ») ?

Theorem. Let T: X----+-X be a contraction on a compact metric

space ( X,d) • Then T has a fixed point 'xc and, for every x € X,

lim ~x = x •
n~oo 0

Proof: Consider ~: X--+]R+ defined by 'Z"(x):= d(x,Tx) •

~ ia continuous, hence, since X is compact, it has a point of mi­

nimum, say at xo.
The assumption -Z-(xo) > 0 leads to a contradiction:

CZ"(Xo) = d(xo ' Txo ) > d( Txo ' T2
Xo ) tz"'( Txo ) ( Txo E. X !)

Thus Txo = X o • Wi th this Xc define T: X---+o-lR.+ by

~(X):= d(xo,Tx) • Since X is compact there exists a sequence
n

(Dk ) ke.. IN' such that p:= lim T kx exists. Assume ,z,(P) > 0
k-+oo

this leads to the following contradiction

13. Remark.

A. Wilansky

This is ·8 ahort proof for the following •

"nk A A
= lim 'Z" (T x) = 'Z:' (p) > 'l: ( Tp )
k~oo

oe,:= lim rr< rflx)
n~oo

n
i( T lim T kx )

k-+-oo e
A ~+1 A= lim ~(T x) = lim ~(rflx)

k~oo 0-+00

Thus i(p) = 0, whichmeans limf(~x)= 0, i.e. Xc
n--.oo

lim 'flx
n---lil-oo

(The limits mentioned exist since the corresponding sequences are
monotone decreasing and bounded by 0) •

A. Kovacec

14. Problems. 10 Let a,p€ R, x = .( x 1' ••• ,xn ) E R~ and
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n
~ xl? ln x·
1=1 1 1

~ X~
i=l 1

if a o

6Find necessary end sufficient conditions for (B,p,b,q,c,r) E R
such that the inequality

holdsforall X,YEln , n=1,2, ••• where x.y=(x1Yl, ••• ,xnYn)'

I is a fixed open subinterval of R+ = ( 0, (0). If I = R+ the

necessary end suf:ficient condi tiona are known (see Zs. PAles, On

Hölder type inequalities, to appear in J. Math. Anal. Appl.) •

(1 ) is satisfied for x,y E: In· if and only if

(2 ) j (u.v) ~ jb,q(U) + j c r(V) for U,VE(~' ~)a,p ,

( see L. Losonczi, Subadditive Mittelwerte, Archiv der Math. 22

(1971) , 168-174 ) •

2° Suppose now that (1) holds for all x,y E R~, n = 1,2, •••

and let I, be a compactsubinterval of R•• Find the best constant C
such that the inequality

(J) c ~

holds for all x,y E I~·, n = 1,2,... . Several resul ts are known

if p = q = r = 0 (see D. S. Mitrinovic, Analytic inequalities,

Springer-Verlag, Berlin-Heildelberg-New York 1970).

JO Let 'f, ~ be differentiable fWlctions on R. wi th posi tive

derivative and f,g be positive functions on R•• Let further

x = (x1 ' • • • , xn ) E: R~
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M~,g be defined similarly.

Does the inequality

.1 t2 x.y. ~ M ,D,f(X) M lU,g(Y) ,n 1.=1 1. 1. --..: '"'{ T
x,y E R~

imply the existence cf a conetant p > 1 , such that

are replaced by deviation means then in general (4)

( 5) (see my talk: Remarks ori Hölder inequali ty ) •

end 'f ,\11 are twice

( 5)

holde, where 1 + ! = 1 I:f feu) = geu) =p q •

differentiable then (4 ) implies (5) • If in (4) M 'f,~ , M 't',g

does not imply

15. Remark.

L. Losonczi

Coneider the system consisting cf the inequality

\fn(X) ~ gex)

(with the n-th iterate of~) and cf the equation

't'(g(X) = g(,+,(X»

cf commuting functions. Here g is 8 self-mapping cf an interval (O,a] ,
continuous and strictly increasing, °< gex) < x in (0,8) ,

g(8) = 8 end gcx) N xP , p > 0, as X---4J.O+. The problem reeds

as .follows: 4It
Given a continuous solution ~ cf the .system with the prcperty

l/n
'fex) N xP find '8 continuous n-th iterative root 'f cf g
~n(X) = g(X) in [O,a] , majorizing ~ and enjaying the same 8SymptO­

tic property as ~doe8.

For n = 2 the problem has been settled by E. Turdza (Compa­
rison theorems for a functional inequality, General Ine~ualities I,
p. 199-211). Same result has recently been obtained, for an arbitrary
n, by M. Czerni fram Krak6w.

B. Choczewski
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16. Problem. Let X be an ordered topological vector space and
let A be a linear operator in X. Let us assume that the sequence
Anx i8 convergent for every x € X. Let K be the set of all solu­
tions cf the inequality

A x ~ x X EX •

. What are conditions for the equality

x = K - K

to be satisfied ?

D. Brydak

Compiled by R. Ger <Katowice)
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