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The Third International Conference on General Inequalities
was held from April 26 to May 2 at the Mathematisches Forschungs-
institut Oberwolfach. Only two of the three chairmen of the con-
ference, Prof. E.F.Beckenbach (Los Angeles’, Prof. M.Kuczma (Ka-
towice) and Prof. W.Walter (Karlsruhe), were able to 2ttend. Prof.
Kuczma is seriously ill and his usual stimulating scientific con-
tributions were badly missed. As usual, Prof. R.Ger (Katowice)
served extremely well as a secretary of the Conference.

The meeting was attended by 39 participants from 12 countries.
It was opened by E.F.Beckenbach, who presented the good news that
the next conference on General Inequalities has tentatively been
set here in Oberwolfach for the week of May 8-14, 1983,

Many branches of mathematics and its applications were repre-
sented, such as functional and differential inequalities, convexity
and its generalizations, inequalities in functional analysis, in
particular in sequence spaces, applications to geometry, complex
variables, probability theory and economics. Classical inequalities
continued to be a steady source of the new ideas and methods. Spe-
cial emphasis was placed on majorization and optimization technigues.

which play such an important role in economic and industrial appli-

~cations.

The exchange of ideas was especially fruitful in the Problems
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sl Remirss seasions.

The viesw was shared by a1l porticipanis Lhat the mos! harmonig
and stimulatiag atmounhere prevailed, resulting in many fruifful
scientifis discasszions,

In closing remurks W.Walter expressed the gratitude of 211 par-
tizipznts for the excellant workiag conditions in the Tausitute and
for the hospitzlly of its leaders and staff. )

‘ &y (oeelec, bt
E.F.Beckenbach ‘

W.Walter

The abstracts of the talks, the remarks and the problems follow
(separately) in chronological order of presentation.

R. REDHEFFER: Easy proofs of hard inegualities

A few inequalities, of general interest, are proved by methods
which are perhaps shorter than those sometimes used. The talk is,
in part, expository.

R. J. NESSEL: On uniform boundedness principles with rates

Let X be a Banach space, Y a normed linear space, and UcC X
a linear subspace with seminorm | lU. Consider the intermediate
spaces Uc X, c X, X,:= {fe x; K(t,£;%,U) = 0(w(t)) , t—>
where the K-functional is defined for fe& X, t > 0 by

k(t,£;%,0) := inf{llf-gllx+t|glu; ge v}

eand w 1is a modulus of continuity satisfying t/w(t) = o(1) , t-—>0+.

Let 1lim Y = O monotonely.
n—r oo

Theorem: For X,Y,U,X,,w ,{y as above let {Rn}c [x,Y]
be a sequence of bounded linear operators of X into Y and suppose
that there exists {hn} C U such that

-1
llhnllx<c1 ’ ,hnl Us 02‘{11 s

It Rnhn[l Y> 03 “Rn“ [x,Y] .
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- If for every fe X, one has [|[R fll , = o(1), n—> oo, then the
operator norms necessarily satisfy the growth condition

wCp ) Il R It [x,v] = o(1) .

The method of proof essentially consists in the familiar gliding
hump method, but now equipped with rates. The present approach sim-
plifies and unifies the discussion of the sharpness of error bounds
in various areas of analysis. Explicit applications are given to nu-

. merical guadrature, multipliers of uniform convergence, and to the
numerical solution of properly posed initial value problems.

F. FEHER: Exponents of submultiplicative functions and function
spaces

1fL_ (1< p< co) is the Lebesgue space of real valued, mea-
surable functions with the usual norm, then it is well known that the
number p plays en important role in connection with properties such
as reflexivity, uniform convexity and separability. On the other hand,
quite a lot of generalizations of Lp spaces are known such as Lorentz
spaces, Orlicz spaces, Zygmund spaces.-A naturally arising question
therefore is, whether it is possible to assign also to these more
general spaces numbers which would correspond to the number p in the
Lebesgue case. The purpose of this talk therefore is, tirst to give
a brief survey on the different attempts, which were made in litera-
ture in order to define such numbers. In the second part of the talk
it is shown, how all these numbers can be obtained from one basic

. principle on submultiplicative functions.

K. ZELLER: Erweiterung des Mittelwertsatzes von Riesz

Der Mittelwertsatz von M. Riesz spielt eine wichtige Rolle in
verschiedenen Gebieten der Mathematik ( Fractional Calculus, Limi-
tierung, Funktionalanalysis; Bosanquet, Wilansky, Beekmann u.a.) .
Leider gilt er nur fir den Exponentenbereich (-1,0]. Hier wird
gezeigt, dap der Satz sich in geeigneter Weise ( Mittelung ) auf
den Bereich (0,00) erweitern léft. Ein Beweis beruht auf ent-
sprechenden Positivitatsaussagen uUber Summen von Binomialkoeffizien-
ten.
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J. ACZEL: Functional equations and inequalities in "rational group
decision making" ( Joint work with Pl. Kannappan, C. T. Ng and <
C. Wagner)

A fixed amount s is to be allocated to a fixed number m ( > 2)
‘of competing projects. A group of n decision makers, each make re-
commendations, allocating, say, x %5 = (xil’”"xin) to the i-th
project, in order to establish the "consensus" allocation fi(;i) .
We only suppose that f-l(_g) = 0 ( "consensus of rejection” ) and
prove that each f; is the same weighted arithmetic mean.

This result may be surprising since so little has been suppos
But the fact that the whole amount s should be allocated, gives
X, = 8= (s,...,s)#z : (%) =8 which can be written
1=
as a fm)cuon_al equation. This is still not enough, but the inequali-
ties 0< £,(x,) (<s8) do the trick (%;> 0; i=1,...,m ).
The cases m £ 2 are also completely solved.

I. FENYO: An_ error estimate for approximate solutions of operator
equations

Let (A, Nl A) and (B, |l IlB) be normed spaces and consider
the equation

) Mx =r¢ (feB)
where M, is a given linear operator. We approximate this by
(2 Ny =g (geB).

Also N is supposed to be linear from A to B. If we suppose

a) N1 exists '
by TH-r(w- <y

then (1) has a solution and for the difference of the solutions of
(1) and (2) the inequality

“Nﬂ(‘;(' MILI N ells | ¥ (f-s)“
- Bt awr-wll

holds. Special iinportant situations are discussed.

||X'}'||Aé
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R. GER: Almost approximately additive mappings

The functional inequality of approximate additivity was first
considered by D. H. Hyers ( On the stability of the linear functional
equation, Proc. Nat. Acad. Sci. USA 27 (1941) , pp. 222—224) . He
proved that to each function f mapping & given Banach space E into
an another Banach space E’ and satisfying the inequality

[ fex+y) - £x) - feppll<e , x,y€ E,
there corresponds an additive function €: E——E’ such that
I fcx) - éxfi<e , xe E.

This kind of problem has been later investigated by many authors.
During the preceding meeting on General Inequalities ( Oberwolfach,
1978 ) J. Rétz presented some nice results of that type in a very
general setting ( c¢f. Proceedings of the Second International Con--
ference on General Inequelities, Edited by E. F. Beckenbach, ISNM 47,
pp. 233-251).

Answering a question of L. Reich we present & result about the
behaviour of functions satisfying the approximate additivity inequa-
11ty almost everywhere with respect to an axiomatically given family
of "small" sets ( almost approximately additive functions ) . Our con-
siderations are carried on under assumptions similar to those adoptec
by J. R&tz in his paper quoted above. '

Z. PALES: Hdlder and Minkowski inequality for homogeneous means
depending on two parameters

Let a,pe R, x = (x,l,...,xn) € '.IRI: and
1

a
}J_L'. a+p i’- p
X X3 a#
=1 1/ =1 1] 1
P i p -
exp [; xi1°gxi/1___1 xi] , &a=0.
We investigate the following inequalities:
1 + ...+ + ..
) %,30(51 ) Ek)p0< ux\,a‘(!q)pl ]%’ak(lk)pk ’

( 7_‘1v'>"’?_(k€mn , ke W ) s

o

+

2) Y,a (zy- ... 'xk)po < %,al(ll)m Tt Mn,akcxk)pk ’

o®

( 2y--0x €], kKEeN )
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and their inverses. We give necessary and sufficient conditions
concerning the parameters (ao,po) s see (ak,pk)emg, ke IN
for 1) and 2) to hold.

L. LOSONCZI: Remarks on Holder and Minkowski inegualities

We consider the following Hélder type inequality

: -
(1) ﬁiii; XY < Mo Moy (x = (Xyyee0rX ) € Rx_: ,
Y= (o) €R2 5 n=1,2,.00)

where F,G are differentiable deviation functions on R, = (0, ) a’
MF M are the correspondlng deviation means ( for the definitions
see Z Daréczy, Uber eine Klasse von Mittelwerten, Publ. Math. Debre-
cen 19 (1972) 211-217; —— , A general inequality for means,
Aequationes Math. 7 (1972) 16-21).

If (1) holds then there exist homogeneous deviation means

MF1’ MG such that

1
1 n
n g;. Xi¥i < MF1(X) MGl(y) < Yp(x) My ( x,y € R, ;
n=1,2,... ).
The deviation functions Fy»G, have the form Fl(u,v) =v f1(-“71) ,
GI(u,v) =y g1($) » 1,wE R, , where :t‘1,g1 are increasing convex

functions which, apart from a translation, satisfy the Young inequa-
lity.

Moo = @7 E—— [ My =

n

If
éh{’(:m EZW(y)
= ¢ ) ®

are quasiarithmetic means where Y, Y are twice difterentiable on R,
and y’ ¥’> 0 then there exists a constant p > 1 such that
’

1 1
1 1 P (1 1
n :4: X3¥3 <( n ii:%xlia) (H :; yg) S Mpe) M)

(x,ye Rn; n=1,2,... holds 1+-‘-=1 .
+ p q

DFG Deutsche
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I. OLKIN: Inequalities: Some applications of majorizetion

Majorization is a partial ordering between.vectors. Because the
class of order-preserving functions is rich, many different inequali-
ties can be generated. In this talk we provide a review of the histo-
ry of majorization and give a number of examples of majorization and
consequent inequalities in matrix theory, probability, numerical ana--
lysis, combinatoric, as well as analytic inequalities.

Ch. WANG: Inequalities and mathematical programming

Extensions of the R-P ( abbreviation of Rado and Popoviciu )
inequalities, which in turn generalize the usual A-G ( abbreviation
of arithmetic and geometric ) inequality, are given. These extensions
are established by suitable equalities. Mathematical programming
problems involving an MIC ( abbreviation of monotonically increasing
convex ) function are also examined.

M. GOLDBERG: Better stability bounds for Lax-Wendroff schemes in se-
veral space variables '

Some classical inequalities are used in order to obtain improved
stability regions for the well-known Lax-Wendroff finite-difference
approximation to the multi-dimensional hyperbolic initial-value
problem

d
Qu(x1 yeeesXg, i)/ Ot g au(xv...,xd,t)/ axj
J:
u(x1,...,x ,0) = £(XyyeeesXg) -

This talk represents Jjoint work with E. Tadmor.

W. EICHHORN: Tax progression and decrease of income inequality

LetIR, be the nonnegative reals. An income tax rate is a function
p:IR*———a-[O,1) that assigns to each gross income b'e eIR+ a real num-
ber p(x) such that x-p(x) 1is the income tax amount. Then
(1 - p(x))x is the income after income tax or net income.

From the ( economic ) policy point of view, an income tax rate
should satisfy the following properties.

(i) Progression: p:IR+-——>-[O,1) is monotonically increasing,
p(x) #Z const.

(ii) Preservation of motivation: Net income is a strictly increasing
function of gross income, that is, x—(1-p(x))x is strictly

Deutsche
Forschungsgemeinschaft ©
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increasing (p:'.IR+——->[0,1)) .

(iii) Decrease of income ineguality: p:]R+—-;-[O,1) shall be such _

that for all income distributions x,,...,X, the inequality
of the distribution of net incomes (1-p(x))X;, ... ,

(1-p(xn))xn is equal or smaller than that of X;,...,X.

Definition (Majorization property; see, for instance, A. W.
Marshall and I. Olkin: "Inequalities: Theory of majorization and its
applications", Academic Press 1979): y = (¥yseees¥p) # 0 satisfy-
ing 0<y;< ... <y, 1is less unegually distributed than

x = (Xy5-.0,% ) # 0 satisfying 0<% < -+o <X if ‘
n k
yi/ZI Y; >in/i: X. tor every k = 1,...,n .
i = = =1 9

Remerks. Note that neither (i) nor (¢ii) implies (1ii) ,
that (i) end (ii) are independent and that there exist functions
p: R,—>[0,1) which satisfy (i) and (ii) .

Theorem. (i) , (ii) == (iii) .

A. CLAUSING: Quasiconvexity and integral inegqualities

Cargo has pointed out the "vertex phenomenon", a feature common
to the proofs of many complementary inequalities. Consider, for
example, the inequality of Wilkins:

2
b_log(b/a) a+b
1 1 (-——Tfi-lL— - 5=
do = S f(x)de 1 ax g =8 2b
0

o] {3 2(b-a) (10%52‘3) _ %) | ’ ‘

which is true for every f in the set K of all concave functions with
values in [a,b] (o <a< b). Here, equality holds if f is a cer-
tain extremal point of XK. § , however, is not a convex function.
Similarly, inequalities of Schweitzer, Kantorovich, Specht,
Cargo/Shisha, Beckenbach, Berwald, Mearshall/Olkin and others can be
considered as stating that a certain nonconvex function & attains its
supremum over some convex and compact set K at an extremal point of
K. We propose a simple, unified proof of these as well as some new
inequalities that is based on two facts:

DFG Deutsche
Forschungsgemeinschaft ©
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(1) The functions & in question are quasiconvex.
(ii) For (1l.s.c.) quasiconvex functions, & boundary maximum
principle holds.
Also, some extensions and limitetions of this method are discussed.

M. LACZKOVICH: A generalization of Kemperman's ineguality

Let f: R—>R be a real tunction and suppose that

1) : o0 < 37 8y £Cxrin
= _ .
holds for every x and for every h > 0, where a; >0 and 2.8 = 1.

Then f is increasing. Also, if
(2) f(x) £ p fx-h) + (1-p) f(x+h)

holds for every x and for every h > O, where O0<p <% , then

must be increasing. These theorems ( the proofs of which use different
methods: number theory and real functions, respectively ) rise the
following general problem: what are the linear inequalities of type

g a;f(x+bsh) > 0
implying monotonicity 7

P. VOLKMANN: Existenz einer zwischen zwei Funktionen v,w gelegenen
Ldsung von Funktionalgleichungen der Form u(@(xl,...,xn)) =
t{’(u(x‘) y see ,u(xn)) , wenn v,w _entsprechenden Funktionalgleichun-
gen _genugen

( Bericht Uber gemeinsame Arbeit mit Herbert Weigel) .

Sei M eine Menge. Zwei Funktionen & : M —»M , ¥ : M°—>N
hei{sen vertauschbar ( ¢ = $& ), wenn :

é(gl(x”,-..,xm),...,‘ll(xm‘,...,xmn))
= ?(Cﬁ(x”,..-,xnn),...,é(x.ln,...,xm))

(x em) gilt.
sei M c {(@ u?)l & : v —u, Y: R —R , ¢ stetig

und in jeder Veriablen ( schwach) wachsend, n = 1,2,... mit

¢9 =946, Yy =y¢ fur (@,‘f), (9,¢) € M . Zuséitzlich

gelte:

(%) Fir ($,¢)e ™ ist @ beziiglich jeder Variablen streng
wachsend oder konstent.
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Satz. Sind v,w; M—>IR mit v W, v(é(xv...,xn)) >
@ (VX e,V D), w(@(xyseaeix)) € @ (WK ,eee,wix))
fir alle (d,¢)e M , so gibt es ein u: M—>R nit v<u<gw ,
u(é(xv...,xn)) = Lp(u(x,l),...,u(xn)) fir alle ($,¢)e r .

Es wird noch diskutiert, wie weit man sich von der einschrénken-
den Bedingung (%) ldsen kann.

J. RATZ: On Lorentz transformations in the plane

Lorentz transformations in R™ have been cheracterized by many

authors and in several ways: 1) as isometries, 2) as mappings
preserving a single non-zero distance, 3) as light cone preserving
mappings.

Our contribution belongs to the third circle of ideas and ex-
hibits a big contrast of the situation in R2 with respect to that
in R (n 3> 3) . All bijective light cone preserving mappings
T: RP—>R°? ere determined, and it is shown what kind of regulari-
ty conditions are used to single out the Lorentz transformations of
the plane RZ. Among these the preservance of a distance inequality
plays a central role.

Z. DARGCZY: Inequalities for deviation means

Let Ic IR be an open interval. The function E: 12—>]R is
said to be & deviation on I if it has the following properties:

(E1) For every fixed value x € I the function y+—>E(x,y)
is strictly decreasing and continuous on I ;

(E2) E(x,x) =0 for all xe I . .

Denote by £(I) the set of all deviations on I. It is known
that for every X = (X;,...,X;) € 1" the equation

ﬁ} E(xy,y) = (¢}
1=

has exactly one solution y &€ I and this solution satisfies the in-
eguality ’

min(x) <y,  mex(x) .

The quantity ¥oi= ’n{n E(;&)is said to be the deviation mean value
2

generated by E € &£ (I) . In the lecture we shall investigate

Forschungsgemeinschaft
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A. W. MARSHALL: Use of majorization and Schur-convexity to obtain
ineguelities

- Majorization can be regarded as a pre-ordering of n-dimensional

real vectors. Real functions ot n arguments that are increasing in
in tne sense of majorization ( i.e., order-preserving functions )
are said to be Schur-convex. These functions &re quite well characte-
rized, and numerous specific examples can be given. The evaluation
of a Schur-convex function &t two vectors ordered by majorization
yields an inequality. A number of inequalities are desrived in this
manner to illustrate the method.

A few generalizations of majorization are also introcuced, to-

‘ gether with the corresponding oréer-preserving functions. Again,

some inegualities are derived by comparing the values &n order-pre-
serving function takes on at two ordered points. The purpose is to
expose a method for deriving inequalities, with specific inegualities
obtained only for illustration. ‘

C. ALSINA: A functional inequality for triangle functions

We study solutions of the functional inequality
(%) T(Fe G,HeK) > Z(F,H)° T(G,K)

where F,G,H and K are arbitrary distribution functions in AT ,
s denotes composition and the unknown binary operation T on A*
is an &-strict triangle function.
The main result is the following

Theorem. If an &-strict triangle function T satisfies (%) then
there exist Ttef and L,ze Lo such that 7T ?ZTt’Lt’ i.e.,

. T(F,G) (x) == sup {Tz (Fay, Gaw) | L Cu,v) = x } )
end T, , L, are detined, respectively, by )
T, (x,y) = ‘Z‘(Ax,Ay) ), L Ca,b) = T(E,, ENVY (1/72) .

Moreover, all qu L operations are solutions of (%) .
1

B. SCHWEIZER: Menger betweenness in ol -simple spaces

Let (s,d,G; ) be the o ~simple space generated by the metric
space (S,3d) and the distribution function G, and suppose o > 1.
Then the point q is Menger-between the points p and r if and only if
p,q,r are distinct and

DFG Deutsche
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) d%(p,q) Hw) + a%(q,r) H(v) < d%*(p,r) HCu+v)

for all u,v » 0, where Hx) = 6~' (1 - G(x'"*)) . We study the
properties of the set B(p,r) of all points q satisfying (%) . We
obtain best-possible upper and lower bounds for B(p,r) . We show
that if (S, ll-1l) is a normed linear space and d(p,q) = llp - qll,
then B(p,r) is convex and p,r are on the boundary of B(p,r) ,
but that this need not be the case when the metric 4 is not derived
from a norm.

R. P. AGARWAL: Some inequalities for a function having n zeros .

Let x(t)e c¢™ [a1,ar] , satisfying

x(a;) = x’(ai) = .. = x(ki)(ai) =0, 1I€£igr,
a‘<az<...<ar,ki>o, r>2, 1=1ki +r=n.
Then n-k
Ix(k)(t)l < c (a. -2a) max | x‘M ()|
' a,<tga,

kK = 0,1,...,n-1 ,
where, if o = min (k1,kr) ,

c . = 1 (Root=-DP"% 7! (oogar) ¥ KM
n,k (n-k)! (n-k)n'k

, k=0,1,..0,0 ,

- k
n,et+k - (n-w) (n-o-k)! ?

c kK=1,2,...,n-0-1 .

The constants C, x are best possible if o = 0; k = O, o« # O . The .
case k # 0O, d-#,o is an open problem.

E. R. LOVE: Inequalities between norms in sequence spaces

Inequalities of the form | ax ||q<c I x IIp , where A is & linear

operator, have received much less attention when x is a sequence in
{p than when x is a function, at any rate since the days of Hardy,
Littlewood and Polya ( HLP) . Interest in sequence cases has however
been reviving, for instance in the work of Johnson and Mohapatra
(1980) .

The best such inequality in HLP is probably Theorem 318 (c) . It

Deutsche
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is however restricted to Q = p ; and it does not seem to include
‘ Hardy ‘s Inequality as a special case. It also impcses iwo monotony
. conditions on the elements an of the matrix A.
I have tried to obtain theorems with looser and simpler
requirements. The main one is ‘as follows.

Theorem. 1f q>p> 1, r’1 =1 -(p-‘ - q'l) , o(t) -is non-

negative, increasing in [0,1) and decreasing in (1,00),

1 n-1 ;A 1 n :
lamléwd(T) if ng m, |8mn|$ Wd(a) ifn>n

o -
' 1

1 r ..,‘ > 1
c = So (% +1)% (0" dt) +(%,)P (Sl %amq dt)q < o0 ,

il AX"q < Cllxllp .

L] B

then

There is also a simpler theorem, like this with q = p and
r = 1 . It includes Hardy’s Inequality, with constant C less than .
18% above the best possible.

D. C. RUSSELL: Interpolation problems in approximation theory

(Jointly with A.Jakimovski)
Let m be a fixed positive integer and x = (xk) xeg @& fixed

strictly increasing real sequence, unbounded at both ends. Suppose
that I" is a semi-normed linear space of functions R—»C , and

P { ] Ve sam, fPer b, del, = e
. } r,m r

For a real- or complex-valued sequence y = (yk) kegz * e define

fe 1p(y; M™x) :k=>f eM™ and f(x) =y , k€.

A unified functional analytic proof gives necessary and sufficient

~ conditions in order that (i) 1IP(y; r'm,x) should have a solution;
(ii) it should have an optimal (extremal) solution, namely & solu-
tion f, with smallest |[f | = . The main requirements are the

existence ot a Banach function space A such that A* 2 through
a Riesz-type Representation Theorem, and the existence of a solid

DFG Deutsche
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AK~-BK sequence space/u, such that gm <N Az /u— , where Sm x is the
] 3

space ot spline functions of degree m-1 with knots at x. The last
requirement involves proving inequalities of the form

A“s“‘/\\é "°‘“/u,€ A"\lslIA for oep ,SeSm’xn./\. .

J. SCHRODER: Shepe-invariant bounds for vector-valued elliptic-
parabolic problems

Let £c ]R® be a bounded domein, u: £ —IR" , G a closed
star-shaped set in r" y Wi O —m ,

Ll + £(x, uex, u’cx)) for xef ,
R's M ux) = ‘
u(x) for x€9X2 ,
(a‘f [u])i = L[uJ = -4, uf, A symmetric and positive defi-
nite. We derive differential inequalities for V¥ which imply that
wx) € Y 6 (xefl ) for each solution u of U u(x) = rex) .

Generalizations: M guasilinear; other boundary terms; estimates
u) € Y00 6 (jg=1,.00,N).

Examples: (a) lux)li< ¥Y(x) , (b) two sided bounds.
Problems: 1) may fi(x,u,u‘) depend on ul; Cxk#1i) 7
(YES in case (a) , FO in case (b)).

2) Is Ay # a4, (it k ) possible ?
(NO in case (a) , YES in case (b) ) . Intermediate results for
other cases.

C. BANDLE: Comparison theorems for second and fourth order elliptic
differential equations

Bounds for the solutions of the Dirichlet problem

Au+ ou+ f(x) =0 in DCIRN , u=0 on 9D are constructed
by means of symmetrization methods. The estimates are sharp and
equality holds for certain radially symmetric problems. Then the
results are extended to A2 u+a Au+bu=1 inD, u= Au on
9D. The basic idea is to write this equation as a system of two
second order equations and to apply the previous results.

Deutsche .
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M. C. READE: Subordination and differential eguations

The basic.idea in this exposition can be expressed best by the
following two examples. (1) Let A,B and C be real constants, with
B»A>0 and C>» 0, and let Htz) = 1 + hlz + ... be analytic in
the unit disc A . If pez) = 1 + pyz + ... 1is analytic in A, if
p(z) satisfies the (Euler) equation '

2

Az° p”(z2) + Bz p'(z)+ C p(z) = H(2)

in A, and if |H(z)] £ M in A, then |p(z)| < ¥ holds in A.

(2) Let s end-t be constants, s >0 , Re t >0 , and let
P(z) = 1 + Pyz + ... De eanalytic in the unit disc A. If Gez) =
=1+ Q2+ ... is analytic in A‘and if Q(z) satisfies the
( Briot-Bouquet ) differential equation

z G'C2)

Q2 + g Ry + ¢

= P(2)

in /A, and if Re P<z) > O holds in A, then Re Q(z) > O holds
in A . ’ . )

These re‘su_l'ts. illustrate the notion of ( Littlewood) subordi-
nation that is at the heart of the results.

These results, and others, are due to P. Eenigenburg, S. Miller,
P. Mocanu and the present author.

W. WALTER: A comparison theorem for difference inequalities

In the study of growth and cecay properties of nonlinear evolu-
tion equations ( in particular hyperbolic and parabolic partial
differential equations ) as t—~oco the following difference
inequality arises ( which is satisfied by an energy expression )

%) sup  ue T < ¢ (140 (ult) - uCten)) o+ gty .
t<sgt+l
Nekao and others have derived theorems about the asymptotic behaviour
of solutions to (%) as t-—»co , using rather complicated method.
The basis of our treatment is the following theorem ( which has
a one-line-proof ) :

Theorem. Let (un) and (vn) be real sequences, Jun =yt

- u, and cfunsfn(unﬂ) ,

fn 1s increasing. Then u, < v, implies u < v, for all n> 1.

cfvn > fn(vnﬂ) for n > O, where

o
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All the results about (%) which are found in the literature
are simple consequences of this theorem. Above that, new results
can be derived which are relevant to evolution equations. Three
examples: Let du(t) = ult+1) - ult) and

c (1+)T Sut) € g(t) - uCt+'*® for t >0,
where C > 0, g > 0, u > O. Then for t-—~00 we have

=0, r<i, melR : gty = 0(t®) =>ut) = o™
o=0,r =0, m>log % : gy = 0€e™) =3 u(t) = 0(e®Y
*®>0, m>0 : Cg(t) = o(eMT B ) 5 ¢ = 0(eBY) .

W. SCHEMPP: Ungleichungen und Symmetrisierung
Das Mitteln Uber endliche Gruppen oder allgemeiner iber kompakte
topologische Gruppen und kompaskte homogene Mannigfaltigkeiten hat
sich als wirksame Methode erwiesen, um z.T. sehr weitreichende
Identitaten und Ungleichungen herzuleiten. Ziel des Vortrages ist es,
. die Wurzeln einiger klassischer Ungleichungen der Approximations-
theorie bis auf den Satz von Maschke iber die Vollreduzibilit&t der
Darstellungen endlicher Gruppen zuriickzuverfolgen und daran anschlie-
Pend einige neuere Ergebnisse der Kombinatorik Uber sphérische
Pléne darzulegen, die ebenfalls mit Hilfe der Littelungstechnik
("Symmetrisierung" ) aus der Ungleichung von Sidelnikov gewonnen
werden konnen.

G. CROSS: On functions with non-negative divided differences '

Let V (F) = Vn(F; X 3%y,+++,% ) be the n-th divided difference

of F with respect to the n+1 points X 3Xyseee, X, ON &N interval
[a,b] . ' -

If the inequality V (F) > O holds for all choices of points
X yXyseeesXy in [a,b] then F is said to be n-convex on [a,b] .

It is shown that if F(x) is n-convex on [&,b] , if F )

exists and is continuous on [a,b] , 0O < r gn-2 , and if F(n-l) +Ca
N 2
is finite, then

Deutsche
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- x
Fao = Gox) + 9 &F(k, RESES LA S0 £ I
k=, '

- where G(x) 1is monotonic increasing on [a,b] , and F(k) L) is
. H
the one-sided Peano derivative of F at a.
The result has applications to approximation theory.

T. F. BANCHOFF and E. F. BECKENBACH: Counterspherical and counter-
circular representations

In 1825, in introducing the concept of spherical image for
‘ studying the geometry of a surface in 3-space, Karl Friedrich Gauss
gave a preliminary treatment of the circular image of a smooth plane

curve. :
" We now introduce and study the countercircular image of a plane
curve with respect to a given point in the plane, to complement the
\
|
|

second-named author ‘s recently defined counterspherical image of a
surface with respect to a given point in space. A principal tool in
the study is the notion of the osculating tube of the curve, a concept
introduced by the first-named author in collaboration with James
H. White.

For space curves, counterspherical images suggested by the Frenet-
- Serret tangent-normel-binormal apparatus are also briefly investi-
gated.

A. KOV_,AEEC: Eine algoritmische iethode zum Nachweis von Ungleichungen

Zum Nachweis einer Reihe klassischer Ungleichungen wird iiber
die folgende Idee berichtet: Kittels eines geeignet zu wéhlenden
Funktionals <:R"—>IR lassen sich die in Rede stehenden Ungleich-

. ungen in der Form T(u) < T(y¥) mit ¥ = v(u) schreiben. Man sucht
nun eine Abbildung &: R°—R" welche den folgenden Bedingungen
geniigt:

(i) z(x) € T(dwx) , zxeR

(ii)  lim P"wr =y .
| n—»00

i Aus (i) und (ii) folgt die erwlnschte Ungleichung sofort vermdge

T 7(&(9))<‘Z(<I>2(1_n) <€ ... £ TP "W L ... cTW.

Ein allgemeiner Satz, der aus diesen {lberlegungen folgt wird zitiert,

DFG Deutsche
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“und an Anwendungsbeispielen illustriert.

Abwandlungen dieses Konzepts gestatten mittels einer bersicht-
lichen Matrizenschreibweise die Erzeugung von algebraischen Ungleich-
ungen. '

D. BRYDAK: Nonlinear differential inequalities

Let us consider the inequality

, -1
() \V‘m(x) > glx, ¥, «.. ’Y(n ) .
Let us assume that the equation .
(2) ¥ = g2,y 37y ®Y)

has n-parameter family F of solutions.
We denote by R(x,y,yl,...,ynq) the first integral of (2) such

that R is increasing with respect to the last variable.
Theorem 1. The function ¥ is & solution of (1) iff the function

nl(x):= R(x, WXy WCX), oee ‘!’(n-”

is increasing.

(X))

Using the first integral method we can prove a generalization
of Polya’s generalization of Rolle theorem. Namely, we have

Theorem 2. Let ¥ be a function which is n times differentiable .
in [a,b] and let W(x;) = y(x;) for i =1,2,...,n+1 , where y is
a solution of (2) in [a,b], x,< X, < «e0 <X .4, %, € [a,b]
for i =1,2,...,n+1 . Then there exists a point ¥e [x‘,xnﬂ:l
such that Y satisfies (2) at - .

B. CHOCZEWSKI: Differentiable solutions of a functionel inequality
with two unknown functions (by Z. Powazka)

A paper by Z. Powgzka from Krakéw is presented.
The inequality is of the form

Q)] ‘I/I(G(x,y)) < F(\i’.l(x),‘{’Z(y)) , X,ye 1

where F: J2—>-J, G: I1°—>I are given functions, and Wi: I—J
i = 1,2 , denote unknown functions. Here I and J are some intervals
of reals. Differentiable solutions of (1) in some classes of
functions are determined.

DFG Deutsche
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B. SAFFARI: Trigonometric polynomials and cross-means

Let f£: [O,1]——->]R be & bounded measurable function with
- 1
S f(x)dx = 0 and f(x)Z O almost everywhere, so that the numbers
0

H:= ess sup f and h:= -ess inf f are positive. For pe IR, let
1

P, yP)P
(%} if p#£o0
Mp(H,h) =
VH-h if p=0 .
Also define the "cross-mean" of order p by
o ’ 3

(h HP + g nP)P .
* (TE'—) if p#0
ME(H,h) = "

H
gith, p H+h if p=0 .

1 1/p

when p > 0, write ¢ llp =(g [ fexr P dx) . While studying real
o]

trigonometric polynomials

n
E : Cp exp 2i‘Ekx
I observed that |l f H < 2Hh/CH+h) = M_,(8,h) end lfll,g /BN =

=M (H h) , with more precise statements for trigonometric polynomials.

Whereupon J. Steinig conjectured that i £ 2(H h) whenever

p\ P'
p2 1. I disproved this for 1< p < 2 , but proved it for p >2 as
follows: One easily observes that, for p » 1, lIf ll <M (H h),

and on the other hand there are several ways of prov1ng that when-

. ever pe IR ,

. (H,h) if 1€p<g2
M;(H,h)

p -2
SMP_Q(H,h) otherwise .

For trigonometric polynomials one obtams, for some values of P :un-
provements depend:mg on the degree. '
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Problems and Remarks

1. Remark (on an inequality for the LP-norm related to uniform
convexity)
Definition. A normed linear space (£, |[7fl) is uniformly convex
when, for any (f) , (g)) in £, we have

(e, Mg i<ty 5 e l—1) =>lr g | —>o0 .

Clarkson proved in 1936 that LP (:= L*(Q), where {1 is a measurable
subset of IR ) is uniformly convex for 1< p < o© . A proof can als.
be found in Kdthe ( Topological Vector Spaces I) .-

For p » 2, uniform convexity comes at once from:

If lI- |l is the LP-norm, p » 2, then for complex valued
f,8 € LP(N):
m le-gi® < 227 {UzhP + Ngh® - hesalP}

For 1< p <2 there is no such simple inequality, and the
method of proving uniform convexity is quite involved.

We furnish here an analogue of (1) for the range 1< p< 2,
which again leads immediately to the uniform convexity of LP in this
case. ‘

Theorem. Let 1 <p<L2, 0< A < 1, £ a measurable subset of
IR. Then there exists positive constant Cp,a such ‘that, for every
f,g € LP(a) , :

1
(2) He-gllPg Co,a {(l—ﬂ)llfllp + AllglP - -2¢ +ag|{P}§P.
1
{S max (1£1P,1g|P) }"EP . .
K¢ )

D. C. Russell ( with A. Jakimovski )

2. Problem (on a functional equation )
Must every f:. —=@ be continuous if
19 H# is a complex Banach algebra ,

h(b) f(a) + gca) £(b) for all a,be S ,

2°  f(ab)

3° g,h are distinct, nonzero homomorphisms from J into G ?

y Deutsche
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Reference
[1] A. wilansky: Subspaces, subalgebras and ideals of codimension
one in complex algebras, J. London iath. Soc. 9 (1974) ,
87-92.

A. Wilansky

3. Remark ( on locally autophorbic topological vector spaces )

Let (K, I-1) be a topological subfield of C. 4 subset B of
a K-vector space is called autophorbic if for all Q) €5€ KnIR,
there exists an s € IN such that QB+ ,Bc sB. A topological
. K-vector space is called locally autophorbic if O has a neighbour-
hood base consisting of autophorbic and circled sets. For a K-TVS
X the following holds:

@ pseudo-normable

a
@ locally convex locally bounded
@ locally autophorbic pseudo-metrizable

Jl/

@ arbitrary

. None of the converses of these implications holds.
For r,s € {1,...,6 } , @Q‘”—-).@ means:
@ holds for X iff X is embeddable into & product of TVS‘s
with property @ .

Acknowledgement: @ == @ was proved and @ Cq__>@
was suggested by Professor V. L. Klee. :

Reference
(11 J. Rétz: On approximately additive mappings, General Inequa-
lities, Vol. 2 (1980) , 233-251, especially pp. 245 ff.
J. Rétz
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4. Remark (on Prof. Agarwal ‘s lecture )

|
|
- i
With respect to the last part of the lecture which deals with . |
the approximate solution of the boundary value problem in question, I
the following inequality concerning contraction mappings in any me-
tric space M can be used: ‘
If T: M—>M satisfies g(Tx,Ty) < 4 Q(x,y) , where .
0 o < 1, then '

?(x,y) < Q(x,Tx) + g(Tx,Ty) + Q(Ty,y) .

- If the middle term on the right is estimated according to the previou
" inequality and the resulting term is brought to the left, then

inequeality
€D Qixy) £ = {Q(.x,'rx) + gCy,Tw}

-follows. This basic inequality can be used in many ways ( for example,
it yields a simple proof of the contraction principle which does not
require the summation of geometric series ) . In the case considered
here, x is the fixed point ( x = Tx), y is the fixed point of a map
™ (y = T'y) , and g(Ty,T*y) £ & . Then inequality (%) gives
Qixy) < 1—5_; .

W. Walter
5. Problem. There are several infinitesimal characterizations of
convex functions. For exemple, a continuous function f is convex iff
B2 £¢t) := 1lim sup [ £(t+h) + £(t-h) - 2f(t)]/{12

h—-0 -
is nonnegative. Guestion: Are there similar infinitesimal characte- ‘
rizations ( of the if and only if type ) for Schur-convex functions ?

W. Walter

6. Remark ( on another application of majorization )

We "know" ( intuitively ?) that the area ( or perimeter) of
a (convex) polygon with n+1 sides, inscribed to a circle, is
greater than that of a polygon with n sides. This, of course, is not
true in general. It clearly is true for regular polygons ( may be
that is all what we "knew" in the first place ).

DFG Deutsche
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Jore generally: Rearrange the (first) polygon so that the
length of its sides decrease. ( This can be done by rearranging the
corresponding central segments, that is, the triangles with the centre
of the circle and the two endpoints of the respective sides as ver-
tices. ) 1f, starting from the same point, the vertices of the first
polygon precede the corresponding vertices of the ( possibly re-
erranged ) second polygon (till they are exhausted ), then the first
polygon has greater area ( and perimeter ) then the second.

Proof: The functions x+—»sin x and x»—sin 2x are concave
qr .
on [O, ’—é] . So their sums are Schur-concave. B

Similer statements ( with "smaller" instead of "greater" ) hold
for circumscribed polygons with the same proof and, if the sides are
small enough to begin with, even for the sum of areas of the inscri-
bed and of the corresponding circumscribed polygons ( now again with
"greater" ) . The latter statement is contained in [1] , the former
ones are in [3] and "almost"™ in [2] . For sums of perimeters of
inscribed and corresponding circumscribed polygons again the state-
ment with "smaller” holds ( not only for small angles ).

References

[1] J. Aczél and L. Fuchs: A minimum-problem on areas of inscribed
and circumscribed polygons of & circle, Compositio iath. 8
(1950) , 61-67.

[2] E. Egervéry: A remark on the length of the circle and on the
exponential function, Acta Sci. Math. Szeged 11 (194€) ,
114-118.

[3] A. w. Mershall and I. Olkin: Inequalities: Theory of majori-
zation and its applications, Academic Press, New York, London,
Toronto, Sydney, San Francisco 1979, Ch. 8 E.

J. Aczél

7. Remark ( answer to Prof. wilansky's question ) .

In connection with W. Walter’s Remark 4, A. Wilansky asked
whether a transformation T: M—I ( (M,g ) - a metric space )
satisfying the condition

(%) Q(x,y) < 'rl—&'{g(X,Tx)'* g(y,Ty)}’ xye M,

where o € [0,1) , hed to be a contraction.

o
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The answer is: no. For, take M =R , (x,y) =lx -yl , x,ye R
and Tx := x + 1 + (1-x)x , x€IR. T is not & contraction, because
otherwise it would have & fixpoint and it has not. On the other hand

e (x-misty-m1) = 5 (Vv G-adm v 1+ G-win) >

Z Ixl + 1yl = Ix -yl , xyelR,
i.e. (%) is satisfied. :
R. Ger

8. Remark. In connection with Prof. Ger’s talk, in which he re- .
minded the problem of stability of the Cauchy’s functional equation
f(x+y) = £(x) + £y inR

as it has been formulated by S. Ulam and then solvedAby D. H. Hyers
in 1941, a recent work by E. Turdza from Krakéw is to be remarked.
The result reads that the functional equations

g(%5¥)= 3 (800 +gy) eand haxy = hao + hay)

are both stable in Ulam’s sense, the last inIR as well as in TR\{0} .
These cases are not covered by recent works by John Baker and co-
authors ( cf., in particular, J. Baker, J. Lawrence, F. Zorzitto,

The stability of the equation f(x+y) = f(x) f(y) , Proc. Amer. Math.
Soc. 74 (1979) , 242-246) .

B. Choczewski

9. Remark. Theorem. Let u(x,y)€ C(Z)([O,aJXEO,b]) , u(x,0) =
u(0,y) =0 forall 0 xga, 0<x< b . Then ‘

anpb apnrbh
n §§ ' [, ! :
() R | acx,y) uxy(x,y)ldx dy £ ¢C oo quy(x,y)l dx dy ,

where

Proof: Since,

X ry ‘
ucx,y) = g S ug,(s,t) ds dt
0 V0
then, on using the Schwartz’s inequality

X py ' 1/2
| ucx,y) un(x,y)l < |uxy(x,y)| (SO SO |ust(s,t.)l2 ds dt) V)E? .
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Integrating the above and applying the Schwartz’s inequality again,
we obtain

apeb a pb 1/2
g g futx,y) u, (x,y)| dx dy < S g xy dx dy .
0Jo i 00

apb 2 Xy 2 1/2
. SOSO luxy(x,y)l (SOSO Iust(s,t)l ds dt)dx dy <

1 X ey 1/2
< %b ('2' SOSO luxy(x9y)l2 dx dy) )

‘ which is same as (1) .

R. P. Agarwal

“10. Problems. (i) Can the constant C in (1) (see Remark 9

above) be replaced by %9 ?

(ii) Find the best possible constant for which
(1) (see Remark 9 above ) holds.

R. P. Agarwal

11. Remark ( answer to R. P. Agarwal’s question (i))

The choice u = xy + 6@ shows that the constant C in Agarwal’s
inequality must exceed %’-. Here we assume only that ¢ satisfies the
boundary conditions, and

ngi éxydxdy=o, §1S’(Wéw+é)dxdy >0 .
o VYo

ovYo

. Such a @ is readily constructed, and & —»0+ gives a contradiction.

UFG

With Wolfgang Walter it was found that the choice &(x,y) =
= h(x) h(y) , h(0) = h(1) = 0 gives ’

3+ 13
C ) _Tﬂ ab N
when £ is optimized.
R. Redheffer
12. Problem. Assume that (M,¢) is a metric space, o€ [0,1)

and T ies & transformation of M into itself. If Q(‘I‘x,l‘y}s Q@ (x,y) ,
X,y € M, then, as R. Redheffer said,

Q(M,Ty) € &Q(xY) < %a(g(x.rqucy,'ry)), %,y € I

Deutsche
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(see slso Remerks 4 and 7) . The question is: does

(1) < %5 (g(xmo + gly,m))

imply
ey £ 75 (g(xm)+Qly,1y)) 7
A. Wilansky
13. Remark. This is -8 short proof for the following

Theorem. Let T: X—>X be a contraction on a compact metric
space (X,d) . Then T has a fixed point 'xo and, for every xe€ X,
lim T™x = S S
n—»o

Proof: Consider T: X—»IR' defined by Z(x):= d(x,Tx) .

7 is continuous, hence, since X is compact, it has a point of mi-
nimum, say at X,
The assumption Tx)) > O 1leads to a contradiction:

2
Tx) = dlx,,Tx,) > d(Tx,,Tx,) = T(Tx,) (1x,e xt) .

Thus Tx, = X, - With this X, define 7: X—TR" by

T(x):= d(xo,Tx) . Since X is compact there exists a sequence
n

: k

(n.) such that p:= lim T

k’ke IN k—300

X exists. Assume '2(1))> 0 ;

this leads to the following contradiction

0, ~
@i lim (%) = 1im 2(T Ex) = E(p) > 2C1p) = $( 1 1im T Kx)
n—-oo k—o k—>00 )
A ' +1 A
=li.m'Z'(Tn.k x)=1lim T(Tx) = o .

k—»o00 n-—»o00

Thus ‘E’(p) = 0 , which means lim Z(™x) =0 , 1.e. X, = lim ™% .

. n—»oco n —»o0
(The 1imits mentioned exist since the corresponding sequences are
monotone decreasing and bounded by 0) .

A. Kovadec

o]

14. Problems. 1 Let a,pe R, x= ( XyreearX ) E R?_ and
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1
(/g \ b
=) if a#o0
n
PR
% i=1
M X =
a,p( )
- xg 1n X3
exp if a=20
P
X
\_ i=1 1

Find necessary and sufficient conditions for ( a,p,b,q,c,r)e€ R6

such that the inequality

QD) Ma’psx-y) < My (X M Ly)

holds for all x,y € ", 1,2,... where x.y = (x1y1,...,xnyn) ,
I is a fixed open subinterval of R, =(0,00). If 1= R, the
necessary and sufficient conditions are known ( see Zs. Péles, On
Hdlder type inequalities, to appear in J. Math. Anal. Appl.) .

1)

n=

is satisfied for x,y€ I" if and only if

2) Jp,qtw) + j. v) for u,ve (%, %)

ja’P(u.V) < Cc,r

(see L. Losonczi, Subadditive Mittelwerte, Archiv der Math. 22
(1971) , 168-174 ).

2° Suppose now that (1) holds for all x,y € Ri‘, n=1,2,¢..
and let I be a compact subinterval of R_. Find the best constant C
such that the inequality

MaLp( X+y)

(3) c £

M (x) Mc,r(y)

b,q

holds for all x,y € I?’ , n=1,2,... . Several results are known

if p=q=r=0 (see D. S. Mitrinovié, Analytic inequalities,
Springer-vVerlag, Berlin-Heildelberg-New York 1970).

30
derivative and f,g be positive functions on R . Let further

-1 :(;l £x) 9 (xp

i_,-: £(x;)

Let ¢,y be differentiable functions on R_ with positive

M‘P’f(X) = le ’ x:(.x17"')xn)€ RI:

Deutsche
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and M be defined similarly.
Y,g

Does the inequality
1 i : n
4) o &= XY < M q’f(x) MW,S('Y) ’ X,y € R,
imply the existence of a constant p > 1 , such that

1

) AL < (R R)P (F598)% < M uy g

o

= = i=1

1

holds, where + i 1. If fcu) =g =1 and ¢,y are twice

o

differentiable then (4) implies (5) . If in (4) M ¢,f Mv,g

are replaced by deviation means then in general (4) does not imply
(5) (see my talk: Remarks on Holder inequality) .

L. Losonczi

15. Remark. Consider the system consisting of the inequality

\Vn(x) < g
(with the n-th iterate of ¥) and of the equation
Y(gx)) = g(wx)

of commuting functions. Here g is a self-mapping of an interval [0,&] ,
continuous and strictly increasing, 0< g(x)< x in (0O,a) ,
gca) = a and gx)w xP y P>0, as x—>»0+ . The problem reads

as follows: .
Given a continuous solution WV of the .system with the property
1/n

Yex) v xP find a continuous n-th iterative root Yof g :

;pn(x) = g(x) in [0,&] , majorizing ¥ and enjoying the same asympto-

tic property as VY does. .
For n = 2 the problem has been settled by E. Turdza ( Compa-

rison theorems for a functional inequality, General Inegualities I,

p- 199-211 ) . Same result has recently been obtained, for an arbitrary

n, by M. Czerni from Krekéw.

B. Choczewski

o
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16. Problem. Let X be an ordered topological vector space and
let A be a linear operator in X. Let us assume that the sequence
APx is convergent for every x € X. Let K be the set of all solu-
tions of the inequality

AxgL x , xeX.
what are conditions for the equality
_ X =K -K
to be satisfied 7

D. Brydsek

Compiled by R. Ger (Katowice)
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