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Die Tagung wurde von den Herren Professoren Dr.W. Gasc~utz (Kiel)

und K.W. Gruenberg (London) geleitet. Im Mittelpunkt der Vorträge

und Gespräche standen neue Entwicklungen der Theorie· der endlichen

und unendlichen Gruppen sowie der Darstellungstheorie.

Vortragsauszüge .

H.B.J.T. ALLENBY:

Petency

In the first part cf the lecture it was observed how the concept

cf 'potency' (a strang residual finiteness condition, first defined
explicitly in connection with investigations concerning certain

.1-relator graupe) had q':li te quickly appeard to become a pr6perty
worthy cf investigation in its own right in the areas of solublee groupe and fini te groups.

An attempt was then made to indicate the plan of a proof, not very
difficult in concept but rather involved in detail, of the potency
cf cy~cally pinched one relator groups,that 1s of groupe which are
generalized free products of free groupe with an infinite cyclic
Bubgroup amalgamated.

ZVI ARAD:

Powere and Products of conjugacy classes in simple groups

We consider problems of covering a group G by apower or product of
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conjugacy classes cf G , for example -- determining the least

number m such that Cm = G for all non-trivial conjugacy classes C
of G (this number, called the covering number of G , exists if G

is finite, si~ple and non-abelian).
Covering problems for special families of groups, especially the

groups A1 ' were studied by j • Brenner et ale in aseries of papers "
wi th 'emphasis on classes C such that C2 = G • Covering problems also

arise from the direction of model theory and universal algebra. It

is on this background that Dur interest in the subject began • •With Herzog ·and ~Stavi westudy the following aspects- and- ramifications
o.f covering problems: Bounds on the covering number and related

invariants of Iinite simple groups, covering theorems for other types

of finite groups and for some infinite groups with finitely many
conjugacy classes, the situation for particular families of groups

(we have recently proved a conjecture of Brenner that the" covering

number of A1 ' n ~ 6 , is precisely [~J. We also proved that the
covering number of Sz(q), is precisely 3), theorems on the product

of two conjugacy classes, with applications to the theary af fac­

torizations of finite graups, and the development of counterparts
to the ccvering theorems in the framework of universal algebra.

A.Do ASAR:

On a problem cf Kegel end Wehrfitz

D.H. Kegel and B.A.F. Wehrfitz, after solving the Cernikov Conjecture

on locally finite graups which satisfy the minimum condition on

subgroups, raised the following question in their book Locally Fin~

Graups. Question,(V.1). Let G be a locally finite group and i be an

involution of G such that CG(i) is Cernikav. Does G then have a

locally soluble subgraup of finite index? Since none of the known

simple graups has an involution with this property the answer was
anticipated to be positive. Indeed the answer in "YEStt and the

structure of G is contained in the following theorem.

THEOREM. Let G and i be given as in the above question. Then G has
aseries cf normal subgroups

1 ~ OG ~ M < G
such that G/M is fini te, M/OG is a divisible 2-group· and OG is a
soluble group such that [OG,iJ' is Cernikov.
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H. BASS:

Automorphisms of groups and of alg~braic varieties

We study the following properties of a group j-'

(HF) r is residually finite

(VTF) r is virtually torsion free, ie. has a torsion free

subgroup of finite index.
Note that (VTF) implies',that the finite subgroups of r have bounded

orders. Let F be a field, V a finite dimensional F-module, and ~ a

~finitely generated subgroup of AutF(V). Then it is weIl known that

~satisfie8 (HF) and, if char(F) = 0 , also (VTF). We generalize this

by allowing V to be any algebraic variety over F and AutF(V) the

group of automorphisms of the.variety V •
Let r' be a finitely generated group. Then Hom.-( r,GLn(F» is naturally'

an affine variety, which we denote ~("). GLn(F) acts on it by

conjugationj the quotient variety Sn ( Ji) = Hn ( I' )/GLn (F) parametrizes

isomorphism classes of semi-simple n-dimensional representations

of j' • The group !tut ( ") acta on Rn ( [1 ), and induces an action of

Out ( r) on S (r). When these actions are fai thful we can deduce (HF)
n .

and (if char(F) == 0) (VTF). This applies for example to free groups

and to surface groups.

F.R. BEYL':

The Schur multiplicator of SL(2,l!m).

Theorem 1. The Schur multiplicator of'·'SL(2,Z/m) is Z/2 if 41m and

vanishes otherwise.

eCorOllar~. SL(2,Z/4) is efficient in the sense of D.B.A. Epstein
by virtue of the presentation <A,B A4' = :84 = 1 (AB)3:= B2>,~

Theorem 2. The Schur multiplicator of PSL(2,~/m) = SL/Center 18

f
(Z/2)d for 4 I rnj

d 1 ' where d is the No. of odd prime factors in m •
(Z/2) + for 4 I m

These results partly confirm and partly refute an assertion of

Mennicke [Invent.Math.i (1967), 202-228] according to which the

multiplicator of SL(2,~/m) vanishes for all m • We note that the

original reasoning of Mennicke can be repaired as to give the same

conclusion aß before, viz. that 8L(2 ,~[l]) has the Congruence Sub-p
group Property. The latter point was further clarified in discussions

with Professor Mennicke at the conference.
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F.E. CANNONITO:

Algorithms for Solvable Groups

This lecture reports an joint werk with C. Boumslag and C.F. Miller,

111.

The main Theorem proved is

Theorem 1. There i8 an algorithm. which decides if an arbitrary

~inite~~ _presented solvable group is pelycyclic. •

group s in the '1"1.2.. o-c.... . (nilpot ent of cl ass 2-by-abeli an) •

As an immediate consequence, we see we can effectively recognize when

a finitely presented solvable group is a) polycyclic, b) 6upersolvable,

c) nilpotent, d) abelian, e) cyclic, f) finite 'or g) trivial.

The proof of the Theorem depends on the following two propositions

of independent interest.

Proposition 1. There i8 an algorithm which decides if an arbitrary

finitely presented right aP-module M , where P 16 a polycyclic group,

ie finitely generated as an abelian group.

Proposition 2. The wordproblem is solvable for finitely generated

nilpotent-b~-polycyclicgraupe which satisfy Max-n.

Proposition 2 has the following corollories of note.

Corollary 1. The word problem 18 solvable for finitely presented

•Corollary 2. Let G be a finitely generated locally finitely presented

solvable group. Then G has solvable word problem.

K.W. GRUENBERG:

Decomposition of relation modules

A survey cf the present state of knowledge concerning dire·ct surn

decompositions of relation modules was given and the following two

new results stated and their proofs sketched:
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(A) If S i8 a 2-generator simple group end S G ~ Aut S , if the

prime graph of GiS in connected and GiS is not cyclic, then the

relation cores of Gare indecomposable.

(B) If G ---»H and the prime graph of H i8 connected and

dG(c:J) = dH(;' ), then the relation cores of Gare indecomposable.

F. GRUNEWALD:

~ Decideability in Alßebra

The talk was areport on recent work of Dan Segal and myself on

decideability questions in arithmetic and algebra. The sim of our

efforts was an effective version of reduction-theory. Some ef the

resulting theorems are:

1) The isomorphism problem fo~ finitely generated nilpotent graups

1s effectively solvable.

2) The isomorphism problem for finite dimensional R-algebras is

effectively solvable.

3) The conjugacy problem for arithmetic graups i8 effectively

solvable.

H. HElNEKEN:

~ Finite subnormal subgroups and their nilpotent residue

If A 18 a subnermal subgroup of a finite group G and B i8 its nil­

potent residue, then there i8 anormal subgroup L of A such that L

i8 also normal in LG which i8 equal to BG

Generalization of this statement leads to statements on the structure

of groupe all of whose finite subsets ef elements are contained in

finite (locally) subnermal subgroups.

(joint work with P. Schwittek)
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TI.F. HOLT:

Ende of Locally Finite Groups

Let G,A be groups, let ÄG be the group cf functions G ---> A and

AG the subgroup of functions having finite support G acts on AG

(and AG) by the rule fg (h) = f(hg- 1 ) (g ,h c G, f e: ÄG). Observe that

the semidirect product GJAG- is the wreath product AVlrG t and G] AG 18

the restricted wreath product. We shall pr~ve the following two

theorems. •
Theorem 1. If G"is uncountable locally finite, then all derivations

d : G --> AG are inner. In particular, if A is abelian, then

H I (G,AG} = 0 t and so G has one end.

[Remark. If G 18 countable and locally finite, then

IH'(G,AG) I IAI}(D .]

Theorem 2. If H ~ G wi th H countably fini te and G locally fini te, and

the derivation d : G ---> AG satisfies d(H)sAH , then d i8 inner.

B. HUPPERT:

Same remarks on the Lorentz-group

Theorem 1. Let V be a K-Vector space (charo k ~ 2) of finite

dimension with asymmetrie, bilinear, regular sealar produet (.)••

Suppose ind V > 0 , If G is a linear mapping of V into V preserving

isotropie, then G is a similarity.

Theorem 2. Suppose V as above with K =fR •

a) If ind V is odd, G has areal eigen-value.

b) If dirn V i8 even, ind V odd and det G = 1

value with isotropie eigenveetor.

G has areal eigen-

Frorn Theorem 2 follows easily a complete elassification of the

Lorentztransformationo
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A. KERBER:

Charaktere endlicher Gruppen und. Teilbarkeitsprobleme

If nGrn , Sn := symmetrie group o~ degree n t G .- a finite group,

D : G --> GL(V) an ordinary representation of G on V t Di an ordinary

irreduei ble eonsti tuent of ~ D wi th character :5 i and dimension fi ,

the following defines a character of Sn :

O J:\ J) - . 1 .:'h" J) . a. ( ., )
X .ü n. .~ (TI) • _ I ~ I 2- S 1 ( g-) I ~ ( g 1) 1

g 1=1

( ci (';;-) .- no • of i-cycles in lT E' Sn) • For D1 := identity representat:Lon

we put
~~ ll;,.1).,

1 .2Si (gn) •ci,n .- .{' «1 •.. n» = TIIT
g

Theorem. Given n.E:: N and a conjugary class C~ G , then the number of
J

ksolutions (g1, ••• ,gk)G G of

n 1 nk
g1 •• ·gk G C

18 equal to (if k L 2)

IG I "2 (ill)k-2( T! c. ) wi (g-1), any gf::- C ,
f

i
J 1,n j

and hence divisible by IGI gcd (!Ql)k-2
f i

(For further details and results see~' 5.3 in the book by James/Kerber

(in print) and the joint paper with B. Wagner in Archiv der Math.)

J.C. LENNOX:

Nearly maximal subgroups of finitely generated soluble groups

M 18 a nearly maxiffi&subgroup.if a group G if M is maximal with

respect to having infinite index in G. Near splitting techniques

are used to prove the
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,Theorem. A finitely'generated soluble group G i8 finite by nilpotent ~­

if and only if ~very nearly maximal subgroup M of G has normalizer

of finite index.

Related characterizations of nilpotent by finite and finite by

supersoluble groups are discussed.

Corollary.-A finitely generated soluble group G i8 finite by nilpotent

if' and only if
G/HG fini te ===.) I G

M-a subgroup of G ~-

F. LEVIN:

BI finite.

Automorphism groups of-certain one-relator groups

Common paper with Don Collins: We determine the automorphism groups

in terms.of generators and relations, of groups of the form

-1 r raG = <x,ylx' Y = y > , r,s ~ 2 • A aide result is that where r

and s have the same prime divisors, then the group i8 also hopfian.

Further, we determine the autormophism group of the automorphism

group in the latter case. In particular, Aut(AU~ G) turns out to be

an extension of Jnn(Aut G) by a cycle cf order two.

P.A. LINNELL:

Decomposition cf augmentation ideals and relation modules

Let G be a group and ~ its augmentation ideal. I will be concerned

with the question of characterising the groups G for which ~ has

a nontrivial decompositionj that 18 we may write ~ U tPJ V as

aG-modules with U ~ 0 ~ V • The starting point for this research is

the following result.

Theorem 1. If HO(G,~G) = H'(G,aG) = 0 , then ~ is indedomposable.

It 10 weIl known that HO(G,aG) = 0 if and only if G is infinite.
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Now a celebrated resul t due to .Stallings states that if G i8 fini tely

generated, then H'(G,~G) ~ 0 if and only if we can write

G = A*FB or G = A*F,O with F finite and A ~ F ~ B • Thus it is

particularly relevant to consider the problem for when G i8 the

fundamental group of a graph of groups with each edge group finite

and each vertex group satisfying Ht (G,2G) = ° .
The same techniques can also be used to characterise groups for

~ which the minimal relation modules decompose. The results here are

not BO good; one reason i8 that th~ groups for which H2 (G,aG) ~ 0

have not been classified. One result we do have is

Theorem 2. If G 1s a finitely generated nilpotent group, then its

minimal relation modules.are indecomposable.

J. MENNICKE:

Linear groups over complex guadratic number fields

Es wurde über Zusammenhänge zwischen linearen Gruppen vom Typ SL2

über komplexquadratischen Zahlkörpern und Verteilungen von Klassen­

zahlen berichtet.

R.E. PHILLIPS:

Finitely generated subgroups cf wreath products

Let G be any non-Abelian group and C an infinite cyclic group. The
jI

unreatricted wreath product W = G Wr C has 2 0 pairwise non-embeddable

2-generator subgroups. If B is any infinite k-generator group (k 2 2)

and G has a class 2-nilpotent subgroup, then W = G Wr B also has 2 0

pairwise non-embeddable 2-generator subgroupso
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Using this result and ether knewn constructions it is easy to

produce large classes ef pairwise non-embeddable, 2-generator groups

Gwhich have prescribed properties; a partial list of such properties

is (1) p-groups, (2) groups ef small exponent (3) residually finite.

The results pertaining to (3) make essential use ef recent work

of J.S. Wilson [Math. 20' 174, 149-157 (1980)].

J. POLAND:

On a clas8 of res'idually fini te groups

A group G is calles "potent" iff for every x in G and every positive

integer n (dividing the order of x if this order is finite) there

is anormal subgroup N of G of finite index in G such that xN has

order prec~sely n • Every group which is residually-finite-p for all

primes p i8 potent·,.and every potent group is res~dually finite. We

outline what is presently known about how the elass cf potent g~oups

sits between these two elasses, comparing their properties. The

topics discusses are: eloaure operations, the position cf relatively

free groups, of polycyclic greups, of linear groups, of abelian~by­

nilpotent groups, and which finite groups lie in these classes.

K.W. ROGGENKAMP:

The isomorphism problem and units in group rings of finite groups

If HG is the group ring of the finite group G over the cummutative

ring R with identity, we denote by U(RG) the units in RG , and for

a two-sided ideal I the congruence subgroup of U(RG) with respect

to I is [ }VI (HG) = 1 + X E- U(RG) , x GI.

In particular for gR the augmentation ideal
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are the normalized units. If there is a homomorphism ~ : V(RG) --> G ,

split by the natural injection G --) V(RG), we way that V(RG) i8 split

Apart from interest eo, ipso, a splitting af V(RG) has a severe impact

on the famaus isomorphism problem: l?oes RG = RH imply G = H • As one

result, for example, if G 1s a p-group and R an integral domain of

characteristic zero with pR * R , then if V(RG) is split and

~ RG = RH then G ~H • The situation i8 more difficult in characteristic

p , but we "are able to prove

Theorem I: Let..f!., = 2/pli' and 1't- a fini te dimensional nilpotent "_-algebra

with

(i) 'Tl. (p-1) = 0

.(ii) for x ,y in the centre of 'Jt. , xy = 0

Then if G = l1+n, n G'1't. , -ft-G = It.H implies G='H •

This Theorem extends the only positive result previously known for

modular group algebras: If G i8 p-group of expone.nt p and class of

nilpotency 2 , then G 1s determined by a/paG • (Passi-Sehgal 1972)~

For graups other than p-groups !t.t 1s known (Cliff-Sehgal-Weiss 1981)

that V(2G) 1s split if G 1s metabelian and G/G' is odd (and counter­

examples by us show the condition on GIG' is necessary)~ Though for

~ metabelian groups a splitting of the units ooeurs rather frequentlyp

the behaviour of simple groups is quite different~ We have obtained

the following result for groupe with all Schur indices 1 (for example,

the alternating groups) and suspect it is true in general~

Theorem I1: If G is simple and not isomorphie to PSL(n,q) for some

integers n > 0 and prime power q , then the map G => V(G) is not split.

The proof of this uses an extension of Bass-Milnor-Serre's congruence

subgroup theorem by Prassad~
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G. ROSENBERGER:

On certain discrete subgroups of pSL(2,e)

Eine Untergruppe der PSL(2,~) heisst elementar", wenn je zwei Elemente

unendlicher Ordnung mindestens einen· gemeinsamen Fixpunkt haben. Die

Klassifizierung der elementaren diskreten Untergruppen der pSL(2,e)

ist seit langem bekannt.

Sei nun A,B ePSL(2,tl:) und G = <A,B> nicht elementar. e
Ist sogar G~PSL(2,lR},- so -lässt sich nach Ergebnissen vonN. Purzitsky __

und G. Rosenberger algorithmisch entscheiden p ob G diskret ist oder

nicht; als Folgerung ergeben sich einfache notwendige und hinreichende

Bedingungen für die Diskretheit von G • R.J. Evans und andere haben

kürzlich Bedingunge~ angegeben, unter denen G diskret ist, falls

wenigstens Sp A, Sp B, Sp ABGIR • Der folgende Satz zeigt nun p dass

sie in Wirklichkeit keine neuen Ergebnisse erzielt haben:

Seien A,E e-PSL(2,~) mit Sp A, Sp E, Sp ABt: R ; und sei G = <A,B>

nicht elementar. Ist G diskret, so ist G in pSL(2,e) konjugiert zu

einer zweielementig erzeugten Fuchssehen Gruppe G~ PSL( 2 ,IR). In+sbe­

sondere iat G diskontinuierlich.

P. SCHMID:

Theorem B of Hall-Higman Revisited

Applying Greenla theory of vertices and sources p J. Thomson described

an elegant approach to the celebrated Theorem B of Hall-Higman. We

extend and complete this from the point of block theory. The crucial

result i8 the following p obtained in joint work with W. Knappo

Theorem B~ Let G be a finite p-solvable group with 0 (G) = 1 and withp

a cyclic Sylow p-subgroup (x) of order pn ) 1 • Clearly
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n-1
Q = [0 ,(G),xp ] then i8 a nontrivial normal subgroup of G •

~ .
Suppose G has a p-block B of defect a , say , containing a faithfull'

kG-module V over some field k cf characteristic p • Then the degree

of the minimal.polynomial of x on V either is d

3 and a = ? •

Tbe latter happens only if the following holde:

(a) In ease p = 2 the integer q = 28 _1 18 a Meraenne prime, and Q

i8 a nonabelian special q-group.

~ (b) If p i8 odd, either B i8 of defect a = 1 or p

Moreover, p 1s a Fermat .prime and Q .ie a nonapel1an special 2-group of

order larger than (p8_1 )2 •

Of course, this applies to the original situation of Theorem B •

.(There x 18 aasumed to be any p-element, Bay cf order pD , in some

p-solvable group Go with 0p(Go ) = 1 • Let H = 0p,(Go ) and G <x>H

If Vo 1s a faithfull kGo-module, consider the indecomposable summands. n-1
V of (VO)G for which H/CH(V) 1s not centralized by xP • Observe that

n-l
(H,xP ] acts faithfully ort the direct sum of these summande.)

R. SCHMIDT:

Affinitäten von Gruppe~ ,

~ Sei ~ eine 1-Affinität der Gruppe G auf die Gruppe ~ , d.h. eine

bijektive Abbildung von G auf ~ , die Untergruppen auf Untergruppen

und Restklassen nach einer Untergruppe auf Restklassen nach 'deren
.- - G'"

Bildgruppe abbildet. Für x,YG G sei a(x,y) = (yÜ) (x~) (xy) und

sei schlieselich A = <a(x,y) I x,ye G> • Dann gilt:

(1 ) A i Z(tr) = Z(G)U •

(2) A iat eine Torsionegruppe mit p-Komponente A ~ Zn' n6Noui"Cb} •
p P

Ist ferner Rleg(6"") =[gE- G I (xg)Ö = xr;'gü' und (gx)(j'" = gUxcr' für alle

x G} und Go = n Reg(tr), so gilt:
1-Aff von G

                                   
                                                                                                       ©



- 14 -

(3) Jedes Element unendlicher Ordnung von G liegt in Go •

(4) Go ist eine charakteristische Untergruppe von G , und GIGa ist

':I -abgeschlossen für jede Primz8.hlmenge oe;' •

(5) Sind g ,h p-Elemente aus G \ Go ' so i·st <g> f) <h> ~ 1 •

Ist insbesondere Z(G) = 1 oder G eine endliche perfekte Gruppe, so ist

jede 1-Affinität vo.n·G ein Isomorphismus.

D. SEGAL:

Nilpotent groups cf Hirsch length 6

1. The equivalence cf the classification of nilpot'ent torsion-free

groups of class 2 with the classification of certain bilinear mappings.

2. In the case of Hirsch length. 6, the equivalence of this classifica­

tion with that of binary quadratic forms over 7 , using a sort of

Pfaffian. Consequences for the theory of nilpotent groups.

u. STAMMBACH:

Same remarks on the cohomolcgy cf a finite groups with simple

coefficents.

Let G be a finite group with p/lGI and let A be a simple module in

the principal block of kG where k is the field of p elements. e
Gruenberg has asked the question, whether it can happen that

Hi(G,A) = 0 for all i l 1 •

Bven for p-solvable groups the answer to the question is not known.

For groups Gwhich are extensions by a p-group of a group of p-length

one Thomas D. (Zürich) has recently shown,·that the answer is negative.·

In his proof D. uses some remarkable results on the spectral sequence
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of a group extension (*) oE -> P -» P!E where P i6 a p-group

and E i8 an elementary abe~ central subgroup of P • (i) The

cohomology ring H*(P,k) contains a copy cf k[y" ••• ,ynJ, where

Y1' ••• 'Yn i8 a basis of E • (ii) If Q 1s a p-group acting on the

extension (*) and if the simple Q-module A appears in H*(P/E,k) then

i tappears in H* (p, k) " also.

e S .E. STONEHEWER:

Projectivities of Groups

The fol~ow1ng Theorem has been.proved recently by Rips:

1. Let H4 G with IG:HI = p(prime) and suppose that ther~ is a

projectivity (i.e. lattice isomorphism) from G to a group G (Denote

the image of U ~ G by Ü ). Then IG : HI = q (prime). Moreover if

H..p G "' then there are subgroups K l L of G wi th H" K = L<J G = HK ,

IR : Llzq , p ,= q oder p I (q-l), K<:\G , IG : KI = r (prime),

r I (q-l) and L<2 G • (A second and shorter proof has been giyen

independently by Zacher.) Many long-standing questions about projec­

tiv1ties can now be answered. For example in 1976 Stonehewer proved

that if M 18 a modular subgroup of a soluble group G with

eUG:M) ~!(CCb)' then M<lG • As a corollary of this result and.1 it 1s

easy to prove.

2. Let N<J G wi th GIN ~ CQ') ~ and let G be lattice-isomorphic wi th G •

Then Noe; G • Using work by Gross on quasinormal subgroups, i t is also

possible to prove.

3. Let N~ G with GIN non-periodic and let G be lattice-isomorphic

wi th G • Then N<Z 2 G and N modulo i ts core ·in G is abelian. Another

immediate corollary of 1 i8

4. Suppose that there i8 an index-preserving projectivity fram G
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to Ci and let H <1 G wi th IG: H I prime. Then H4 G • There are many ether

corollaries ef this type.

B.A.F. WEHRFRITZ:

Broupe whose irredueible representations heve finite degree

"For a given field Flet de F denote the class of all groups G for

which every irreduzible FG-module has finite dimension over F. 4It
This talk we describe for an arbitrary field Fall the soluble

~F-groups. There are five very different cases a) ehar F = 0 and

F algebraically closed or real closed, b) ehar F 0 but otherwise

F Dot aa in (a), c) ehar F > 0 and F algebraically closed but not

~ocally finite, d) ehar F > 0 and F neither algebr~ieally elosed

Dor locally finite, e) F loeally finite. In the first four cases

our descriptions is complete. In ease e) there remains a gap between

our necessary end sufficient conditions.

H. WILLEMS:

Verticee cf irredueible modules in a p-seluble group

By weIl known results of Brauer and Green, eaeh defect group D cf

a p-Block B of a finite group G satisfies the following two condititll

(i) D Pt' P* where P i8 a Sylow p-subgroup of G and x GeG(D),

(ii) D 0p(NG(D»

Tbe subject of this talk i8 concerned with an extension of these

properties to vertices of irreducible FG-modules where G is a finite

p-soluble group and F a field of eharaeteristic p > 0 • Examples show

that in ease of arbitrary finite groups no extension i8 available.
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J.S. WILSON:

Abelian subgroups of polycyclic groups

Same theorems were discussed relating the structure of a polycyclic

group G to the structure of its Abelian subgroups.

Theorem 1. If all subnormal Abelian subgroups of G have torsion-free

rank at most n then so do all Abelian subgroups of G •e Equivalently, if r embedsin a polycyclic group G , then it also

embeds in the Fitting subgroup Fitt G of G •

Theorem 2. If all subnormal Abelian subgroupsof G have torsion-free

rank at most n , then all subnormal Abelian.subgroup of G/Fitt G

bave torsion-free rank at most n - 1 •

This bound is attained, but only for graups with very restricted

structure.

Corollary 1. Under the hypotheses af Theorem 2, the torsion-free rank

of G is at most ~·(n3 + 3n - 2).

Corollary 2. Under the hypotheses cf Theorem 2, G has a finite by

torsion-free nilpotent by torsion-free Abelian subgroup cf index

bounded by a function of n •

An example was discussed which illustrated same ideas occurring in

the proof and the precise degree to which Dirichlet's units theorem

18 involved.

H. ZIESCHANG:

Dn same subgroups cf the modular group

The subgroup of Z * ••• *Z which are generated by elements of finiten 1 nk
order are classified, and if i8 described a method to determine all

those subgroups to .a given index. To each subgroup a "reduced tt system
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of generators is constructed by Nielsen's methode This system is

bijectively determined by the subgroupo

St.J. PRIDE:

Epimorphisms of Groups

Let G be a homomorphic image of the free group F • Two maps f,f' lie

in the same T-system if f' = fj' f~ for some cpGAut F, J-c Aut G • Let,

fi(ie I) inc~ude a set of representatives for the T-systems, and le

N
1
. = Kerf .• Define a category P by: the objects are the Ni ' and

Cf' 1

Ni~ Nj 18 a map if <pe Aut F and Ni <p f N.j • Then G i8 hopfian if

and enly if ~ i6 a greupoid. To compute the objects of p one roust

compute the T-systems ef G • In recent years several techniques have

been developed for doing this when G is on HNN group or an amalgamated

product. Rere I will discuss a new technique whieh applies when G is

a two-generator small concellation graupe The technique can be used

.ta abtain a description of all the two-generator subgroups of any

finitely presented graup sat1sfying a suitable small cancellation

condition. Ta help compute the maps in ~ I will diseuse a very useful

fune.tor fram ~ to a category associated wi th a eertain 11e algebra.

Uaing this functor it 18 possible te establish the hopficity of mi
groups. Finally, I will show how this werk is related to computin

the automorphisms ef a group, and in determining whether or not twa

group8 are homomorphic images of eachother.

Berichterstatter: Karsten Jahnsen
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