
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n 9 s b e r ich t 2111981

Kommutative Algebra und algebraische Geometrie

10. 5. bis 16. 5. 1981

Die Tagung stand unter der Leitung von E.Kunz (Regensburg) ,

H.-J .Nastold '(Münster) und L.Szpiro (Paris).

Ziel der Tagung war es, Fragen und Methoden aus dem Bereich der

kommutativen Algebra und der algebraischen Geometrie darzustellen

und insbesondere die sich aus beiden Gebieten gemeinsam ergeben­

den Gesichtspunkte zu diskutieren.

Folgende Themen fanden besondere Aufmerksamkeit:

Raumkurven, VektorbUndel projektiver Varietäten, Deformation von

Sinqularitäten, Homologie lokaler Ringe, das Syzyglenproblem.

Das Interesse an der Tagung läßt sich nicht zuletzt an der großen

Zahl ausländischer Gäste ablesen, davon u.a. 10 aus Frankreich,

10 aus Nord- und Südamerika, 5 aus Skandinavien und 2 aus Japan.

Die aktive Mitwirkung von R.Hartshorne, M.Hochster, W.Fulton und

A. van de Ven verlieh der Tagung besonderes Gewicht.

VortragsauszUge

L. AVRAMOV

Invariants of pseudo-reflection groups acting on local rin~s

Considering a finite group of automorphisrns G of a noetherian

Ioeal ring R, the question arisestoestablish connections between

rinq-theoretic properties of Rand of RG• In the case of polynomial
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rings (over fields of say, charaeteristic zero), a particularly

simple invariant theory eharacterizes the groups generated by

pseudo-reflections: a classical theorem of Chevalley, Shephard

and Todd assertsthat this property is equivalent to the fact

that the 1nvariantsform a polynomial algebra. In the Ioeal case,

a pseudo-reflect1on g 1s defined.by the conditions:

(a) gEH = GT(m) = {g E Glg(x)-x E m for all x E R} and

(b) E(g) has n-l eigenvalues equal to 1, where E : H

is the canonical rnap, and n = dimk (m/m2).

Theorem. Assume the following.conditions are satisfied:

•
(a) IRI 1s invertible in ki (b) H 1s generated by pseudo­

reflections: (e)' for any ~ E Ass(R), the inertia subgroup GT(~)

1s trivial. Then the following hold:

i) R has a normal basis over RG , i.e. R ~ RH[H] as RH[H]-modules:

ii) R = R/mGR = R/mHR is astriet complete intersection (strict

meaning gr R is a graded c.i.)m

1ii) The different D(R/RG) = D(R/RH) is characterized by the

where ~ is the set of pseudo-reflections contained in G, and

following equalit1es:

D(R/RG) n .Ir = nOt
~ is-H-stable and hEP-h

-mHR ~ fr •
~h 1s the ideal generated by {h(x)-x!x ER}.

As a corollary, under the hypotheses of the theorem, one sees

that RG is Cohen-Macaulay of type t (resp. Gorenstein, cornplete

intersection) if and only if R has the corresponding property.
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L. BADESCU

Rational and non-rational seraIls, ample divisors and applications

Let B be a smooth projeetive eurve over an algebraieally elosed

field k of ehar. zero, and E a veetor bundle of rank ~ 2 over B.

Denote by Y = P(E) the projeetive bundle assoeiated to E. One

discusses the following problem: if X is a smooth projeetive

variety eontaining Y as an ample divisor, determine explicitly

the structure of X. The most difficult case is when E has rank 2,

i.e. when Y 1s a surface. One shows that there ex1sts an exact

~
sequence of veetor bundles over B of the form 0 ~ VB F ~ E' ~.O,

where F is an ample vector bundle and E' = E ~ L for a suitable

L € Pie(B), such that X 1s isomorphie to P(F) and Y ~~(E') is

embedded in X via ~, provided that Y f~1 xp1. Separately one

determines all XiS containing p1 xp1 as an ample divisor. As an

applicatio~ of these results, one extends to arbitrary dimensions

the following theorem of Sommese - van de Ven: if F 1s a smoeth·

surface and L is a very ample line bundle over F, then L e wF is

generated by its global sections exeept for some partieular

situations which can be enumerated. This application 1s due to

~ P.lonescu.

J. BINGENER

Deforrnations of Kähler manifolds: An algebraie proef of the

Koda1ra-Spencer theorem

In 1960, Kodaira and Speneer showed that Ioeal deformations of

Kähler manifolds are Kähler, using deep results from the elliptic

theory. We generalize this result to the singular case, in the

following form:
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Theorem. Let f : X ~ S be a proper holornorphic map and sES be

a point such that X s is a Kähler space. If the natural homornorphisrn

H2 (X ,m) ~ H2 (X ,Vx ) 1s surjective, f is weakly Kähler in s.,s 5 S

In particular, the nearby fibres xs ' then are Kähler spaces. A

somewhat weaker version of this result was announced without proof

by Moishezon some years ago. He also showed that the condition on

n2 (xs 'Vx ) cannot be dropped. - Our proof uses only a suitable ...
s

'-generalization of Grauert's comparison theorem for a certain class

of non-coherent sheaves.

M. BRODMAN~

Local Cohomology of Rees-Rlngs

Let (R,~) be a noetherian loeal ring. Assurne that the loeal

cohomology modules Hi(R) are finitely generated,whenever i ~ t-1.

(t €m). Then there is a natural number v such that'for each sequence

x 1 , ••• ,xt € ~v which 1s regular on Spec(R) - {~} we have

(w1th I = (x" ••• ,xt » :

{

[H~(R)]O

n~I) (~(I» = 0 O<i~min(2,max(t,dePth(R/H~(R» ~
-1 1-1 •

@ [H~ -(R)]., p <1 ~ max(t,depth(R/H~(R» =: 1: •
j=-i+2 )

Moreover H;~;:(~(I» is not finitely generated. Thereby ~(I) stands

for the Rees-algebra, ~I) for its homogeneous maximal ideal. If U

15 an R-module, [U]j stands for the graded ~(I)-module concentrated

as U to degree j.

This applies to "Maeaulayfication". Moreover we get new characteri-

sations 'cf Buchsbaum-rings in terms of blow up at parameter systems.

Let t > 1, L = (x 1 ' ... ,xt - 1 ). Let D~be the functor of~-transform:
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D14t- =~ Horn (if\,n,.). Then D-m(d{(L» = G D1IV(Ln » is a (module-)
n n>O

finite algebra over ~(L) and it holds-

. 10 , i ~ min(3,t')
H~(L) (D~(tR(L» = -1 i-1e [H1{.(. (R)]., min ( 3 , t ') < i ~ t'.

j=-i+2 J

t ' +l
Moreover H~(L) (D~(~(L» i5 not finitely generated.

Using Flenners local version of the Bertini theorems we get:

Let R be normal,. excellent and of dimension d > 2. Assume that

Spec (R) - {1kt} is CM. Then there i8 a natural number v such that

for almost each partial system of parameter x"" ••• ,xd - 1 E ~

Proj (ß{C / (x 1 , ••• ,xd - 1 ) , » is CM and arithmetically normal.

(In fact, this holds for a generic partial system of parameters

vx" ••• ,xd _ 1 € ~).

D. BUCHSBAUM

(A report on joint work with K.Akin and J.Weyman.)

Schur functors and complexes

Definition of Schur functors and Schur complexes. Applications

to resolutions of powers of the ideal generated by the minors

of maximal order of a sultably generle matrix, and the submaximal

minors of the generic matrix.

R.-O. BUCHWEITZ

Exactness and Rigidity

Let BE (a,b,e ) be the Buchsbaum-Eisenbud variety of complexes
k r"r2

<P <P
over k, ka~kb~kc with rk CPi ~ r 1 • Let H(a,b,c) the variety
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obtained from BEk(a,b'b~ ) by adjoining the so ~alled multipliers.a, -a

Hochster had shown that H(a,b,c) is generic for modules of projective

dimension two and Betti-numbers a,b,e.

Theorem. Let k be a field.

,) BE (a,b,e ), r,+r 2 = b is rigid (i.e. admits no non-trivial
k r"r2

deforrnations) except for b = a+e, r
1

a, (in which case it is

a cornplete intersection)

2) H(a,b,c) is rigid for a+e ~ b+1

abc .
3) BEk ( ',;,) is rigid, except for those obvious cases where the

singular locus is generically a complete intersection.

E.D. DAVIS

Affine curves on which all points are set-theoretic eomplete

intersections

(joint work with P.Maroscia)

Fbr an affine curve (absolutely reduced and irreducibl~) over a

field k, let SCI denote the property of the titlei and let WSCI

denote the following weak form of that property: The removal of

a finite number of simple points results in a SCI curve.

If char k = 0 and k = k, then (Murthy-Pedrini): WSCI ~ SCI ~

•

e·
rational and nonsingular. This talk eonsiders the relaxation of

these hypotheses with a view toward determining the singular

(W)SCI curves. Since in any case the eurve is SCI if k cW ,
. p

we assurne the ground field is not of this form. Our main observation

i5: WSCI ~ normalization i5 WSCI and: (1) all singularities are

geometrically unibranchi (2) if char k = 0 and the curve has

5ingularities, then [k:IDJ < ~. With this result and the help of

all singular {W)SCI curves.
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D. EISENBUD

Normal Bundles of Rational Space Curves

(joint work with A. van de Ven)

Let Sn be the 4n-dimensional family of-smooth rational eurves of

d . JP3 . h 4egree n 1n ~' W1t n > •

Theorem. If C,E Sn then the normal bundle Ne of C splits as

e Ne ~ (912n-1-a) @ CJ(2n-1+a),

with 0 < a < n-4. If we write Sn,a for the spaee of all C with

splitting as above, then Sn.o is an open set in Sn' and for

1 < a < n-4, Sn,a is an irredueible variety of dimension 4n-2a+l.

Certain parts of the above result"have also been obtained by

Chione and Sacchiero.

E.G. EVANS

The Syzygy Problem

Let R be a regular loeal ring containing a field and let M be a

kth syzygy of rank less than k, then M is free. The proof proeeeds

by consider1ng the ideals. 0M(x) = {fex) If E Hom(M,R)}. On the

one hand in the minimal counterexample the height of 0M(x) is

less than k for every x E M-m M. On the other hand if M is any

kth syzygy and x € M-m M, then the height of DM(X) 1s at least k.

This latter step requires the existence of maximal Cohen-Macaulay

modules over R/OM(x). Hence the need for the field. ~ corollary

is that if M 1s a vector bundle on ~n which is not a sum of line

bundles and of rank k < n, then one of the cohomology groups

i
H (D(m» * 0 for some < i < k-l and some m.
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G. FALTINGS

Eichler-Shimura Theorems for hermitian loeally symmetrie spaees

Suppose Xo = G/K is a hermitian symmetrie spaee (G = semisimple,

K = max.compact), r c G is discrete and torsionfree, X = r~
o

If V = V(A) is an irreduzible G-module, we construct aresolution

o .. ~ .. W(A)" e W(w (A +1 ) -1) ... • ••
l(w)=1

of V by coherent homogeneous sheaves. Hence we obtain a spectral

sequence

Hq(X, e W(W(A+p)-p» .. HP+q(X,y) = Hp+q(r,V(A»
l(w)=p

If X is compact, this spectral sequence degenerates.

·H. FLENNER

Relative ~-Sheaves

Let f : X ... Y be a morphism of complex spaces and 7, ~ coherent

~x-modules such that q is ~y-flat and the support of ~ or of ~

15 proper over Y. Then it was shown: Locally in Y there exists

a complex P·of free coherent 0 y -modules bounded below such that

there are natural isomorphims

&aet~(l=',q @ f·(N» ~ Hq(p· ~J{) e
for all coherent ~y-modules x. Here ~i(-,-) denotes the relative

~-sheaves i.e. the cohomology of the complex Rf*R~(-,-).

Moreover the complex p. and the isomorphisms are eompatible with

base change. Under additional hypothesis this result has been

shown by Banica/Putinar/Schuhmacher. The idea of the proof 1s

quite simple. Rewriting the isomorphism in the language of

derived categories, it suffices to look for a complex~· such that
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Rf.R~~X (S,!N (8 f· ()(» ~ R:1eomy (jt. ,J() •

If J( 19 the dualizinq cornplex K~ on y one obtains:

Rf.Ratbm.-X (1',~ (8 f* (K~» ;; Rdl'amy (M,K~) •

Duallzing this we get

~. ==- Rdfumy (Rf.R'JeomX <1',OJ ® f* (K~» ,K~) ,

~ and it can be shown, that this complex satisfies the assertion.

w. FULTON

Solutions of algebraic equations

(A sampling of appllcations of the intersection theory developed

with R. MacPherson)

Theorem 1. Let X be smooth over a field k, V" ••• 'Vr irreducible

subvarieties of X, m = dirn X - ~cod1m(V1'X) > o. Then there are
r

m-dimensional subvarieties W of n Vi and 1nteqers I so that
a 1=1 a

the cycle ElaWa represents the intersection class V1 ••••• Vr •

Each m-dimensional component of nV
i

occurs with coefficient

equal to the intersection multiplicity. If TX 19 generated by

its section, one may take all I a > o. For X =~n, each irreducible

~ component Z of nVi contributes a cycle to ~IaWa whose degree

18 ~ deq(Z) •

Corollary 1. For any subvarleties V1 , ••• ,V of ~n, if Z1, ••• ,Zt
r t r

are the irreducible components of nv., then r deg Zi < n deg V .•
1 1=1 j=1]

Corollary 2. If m=O, X complete, and all finite extensions of k

have order apower of a prime p (e.q k=m), and P1 , ••• ,Ps are

1so1ated points of nV i with intersection multiplicities 1" ••• ,1
8

,

s
and if deg(V1 ••••• Vr ) - ~ Ii[k(Pi):k] is prime to p, then nV ii=1
contains k-rational points distinct from P1' .•. 'Ps.
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Theorem 2. X sIDooth /k, P E X, V1 ' ••. 'Vr irreducible subvarieties·
A ,..

of X meeting properly only at P. Let X, Vi be the blow-ups of X'Vi

"at P, E c X the exceptional divisor. Then

•• Vr is the

/'\ A

( , ) v , ••.•• Vr = e p (Vi) ••••• e
p

(Vr) + V1· • Vr
.I' /'

(2) If z" ••• ,Zt are the 1rreducible components of V, n••. n Vr '
.I' 1\ t

then V, ••••• Vr ~ L deg Zi.
1=1

(Here ep(Vi ) is the multiplieity of Vi at P, V, ·
A A

interseetion number of v" ... 'Vr at P, V,. • Vr 15 the degree
A 1\

of the intersection class of V
1

' ••• 'Vr -a well-defined class on E-

deg Zi is the degree of Zi as a subvariety of E =~n-l).

Forrnula (') can be proved for arbitrary regular loeal rings, and

one may strengthen Serre's eonjeeture to ask if (2) is also valid

'in this· generality.

A. V. GERAMITA"

The Ideal of Forms Vanishing at a Finite Set of Points in~n

Let P" ••• ,Ps be points of ~n(k), k = k, and let

Pi" tf> i c k [xo ' • • • , x n ], I = &" n. • •n&'s' A = ·k (Xo ' • • • , X n ] /1.

The general problem 1s: Find v(I), the minimal number of

generators of J. •
Write A = r Ai and XCi) = dimk Ai. Consider the growth (for fixed

1=0
5) of X: If XCi) = i+', 0 ~ i ~ s-', XCi) = 5, i ~ 5 (the

slowest poss1ble growth) then this is .equivalent to saying:

P" ... ,Ps lie on a line in~n. If XCi) = min(s,(i~n», Vi ~ 0

(the fastest possible growth) then we say P" .•. ,Ps are in

generic s-position.

Proposition: If P" ••• ,Ps are in generic s-position in ~n and

-- d~~ lea;t- i~t~ge~-~-;-ch·-th~t~(d~n~) -> ·s -the;;- 1i I -: I
d

Gi I
d
:,- m- :-.-:
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(as above) ~hen I d * (0) and I = (Id,Id+,). If 5

then I = (ld) and v(I) = «d-1)+ri).
n-1

( (d-1 ) +n)
n

In general, (for P" ••• ,Ps in generic s-position) if we set

W = subspace of I d +1 generated by I d then v(I} = dimkld + dimk (Id +1/W).

lf ~ 1s an irred.curve in ~n+1 (k) with a singularity at the origin

(of multiplicity =s) and ~ c R = k[xo' ••• 'xn ] be the ideal of r.
Let M = (xo, ••• ,Xn ) and (~,m) the loeal ring, at the origin, of~,

and suppose gr111,..(0) = k[xo ' ••• ,xn ]/fl n••• n cPs = I •. Let &i ~ Pi E ]pn.

Theorem (w/Orecchia) If Pl' ••• 'Ps are in generie s-position then

v (cP~) = v (I) •

From these observations i-t is possible to give a new proof for

the existence of prime ideals in k[x,y,z), of ht. = 2, requiring

(even locally) large numbers of generators.

We suppose that dimkw (as above) should be ngenerically" as large

as possible ie. dimkw = min«n+l)dimkld,dimkld+l).

Theorem (w/Maroscia) This last 1s true for n=2, ie. for points

in JP 2.

J. GIRAUD

Improvement of Grauert Riemenschneider Vanishing Theorem for a

normal surface

Let f : X ~ Y be a desingularisation of anormal surface. Let Ei

be the irreducible components of the exceptional divisor. For

a line bundle L on X, we write L ~ 0 if deg(L!Ea ) ~ 0 for any

Eo · One ean prove the existence of [L] = ra o
Ea , aa E ~, such

that L(-[L]) « 0 and [L) minimal for this property. Then we have
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that (i) [L] ~ 0 implies H~(X,L) = 0, (ii) [L] ~ 0, implies

f.(L) is reflexive, (ii1) [KX-L] ~ 0 implies R'f.(L) = o. ­

Out of this one can deduce a managable formula for the genus

of a Weil divisor on anormal surface.

s. GRECO •Weak Normality and Hyperplane Sections

(joint work with C.Cumino and M.Manaresi)

An algebraic variety X 15 said to be weakly normal (WN) if

whenever f : X' ~ X is a morphis~ and a homeomorphism, then f

~s an 1somorph1sm.

Theorem. Let X C~~ be a locally closed WN subvariety ofP~,

where k 15 a field of characteristic zero. Let

FO, ••• ,Fn € k[Xo' ••• 'Xn ] be farms of the same degree and put

Y = V(Fo, ••• ,Fn ) n X and A = (Ao, ••• ,A n ). Let FA: rAiFi = O.

Then there is a non empty open V c k n such that for all A € V

FA n (X-Y) 15 wN.

G.-M. GREUEL

On the topol09Y of deformations of isolated singularities

(joint work with J.Steenbrink)

We prove the following theorem, conjectured by J.Wahl:

Let Xo be (the germ of) anormal, isolated, smoothable singularity

and Xt the Milnor fiber of a ~moothinq, then the first Betti number

b 1 (X t ) is zero.

Examples show that ", (Xt ) need not be zero and that the hypothesis

-- - -- -- of-norma-l-ity -is-necessary-;- - -
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. i ....., 'V (!)
Our proof uses the fact that bi(Xt ) = d1m~m (Xo,Ox/o(Xo ) ~ X)

~ n 0
where X ~ X 1s aresolution of the sinqularity of X, the tqtal

f """ -1 .
space of the smoothing X ~ 0, s.t. Xo = (fon) (0) is a reduced

divisor of smooth components with normal crossings. The result

follows by carefully analyzing the spectral sequence converging to

the hypercohomology. Another conjecture of J.Wahl says that if Xo

~ is anormal, smoothable, Gorenstein surface singularity with

good ~·-action then b
2

(Xt ) = ~im of .the smoothing component of

the semiuniversal deformation of Xo over which X t lies. We prove

this under the additional assumption that .n~ ~ the module of
o

Kähler differentials, has no torsion.

R. HARTSHORNE

Cohomolo9Y of a general instanton bundle

(joint work with A.Hirschowitz)

We prove the following

Theorem. For cl = 0, c 2 > 0 or for cl =-1, c 2 ~ 6, c 2 even,

there exlsts a rank 2 vector bundle t in p3 with ehern classes

Cl and c 2 which has natural cohomology, i.e. for each n E ~,

at most one of the form groups Hi(ten» is nonzero. The bundle i .

i5 necessarily stable.

In the ease cl = -1, c 2 = 2,4, there are stable bundles, but

none with natural eohomology.

The proof involves studying the deformation theory of the unstable

torsion-free sheaf Co = ~(-a) e 0y , where Yo 1s a disjoint union
3 0

of lines (resp. conics) inP , and a = 2 (resp. 3) if cl = 0

(resp. cl = -1). The key point 1s in establishing certain properties

of lines and conies in sufficiently general ~Position in W3 •
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R. HARTSHORNE

Existence of space curves of all degree and genus predicted

by Halphen

This talk i5 areport on the new preprint of L.Gruson and

C.Peskine, "Genre des courbes de liespace projectif,II".

In this paper they prove the existence of an irreducible rton­

3singular curve C ~p for any degree d and genus g satisfying

1o < g ~ 6 d(d-3)+1. The proof involves studying curves on cubic

and quartic rational surfaces inp3.

Außerhalb des eigentlichen Programms b~richtete R.Hartshorne

noch in informeller Weise über "Stable reflexive sheaves and

space curves".

M. HOCHSTER

Direct summands, the syzygy problem, and associated graded rings

derived from integrally closed ideals

Several questions related to the Ioeal hornologieal eonjecture

were discussed. Several forms of the direct summand conjecture

were given, including the impossibility of solving 4It
t t n t+1

x x = r y x in a loeal ring with system of parameters
1 ••• n 1=1 i i

x 1 , ••• ,xn • The idea of the proef that the equation

n b
x~ ••• x~ = r Yixi cannet be solved for n > 3 unless alb> 2/n

1=1
was sketched. This involved studing an associated graded ring

graded by the nonnegative rational numbers. A proof that the

direct summand conjecture implies the Evans-Griffith syzygy

theorem was given.
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F. ISCHEBECK

Binary Forrns and Prime Ideals

The following theorems are known:

a) Let K be a global fieId, f E K(X] separabel. There i8 an

infinity of valuations v, such that f splits into linear factors

over Kv •

b) Let k be a non algebraically closed field, A an integral

-1
affine k-Algebra. The ring n A~is of the form S A.

A/~=k

c) Let X be anormal m-variety. Neglecting all prime divisors,

which have not· "many" real points, one gets a "smalI" divisor

class group CR(x) (a quotient of C(X». This CR(X) is a

~/2-vector space.

A common method to prove such results is given.

w. LUTKEBOHMERT

Rigidity-theorem for Mumford curves

Let k ~ ~p be a discrete valued p-adic fleld with valuation ring

V. A Mumford curve S over k 15 a non-singular., complete, algebraic

curve over k which has an uniformisation S = Qr/f where

r c PGL(2,k) is a discontinuous, finitely generated subgroup

without elements of finite order, nr C p1(k) the set of ordinary

points of r. To a Mumford curve Sone can associate a graph ~(S)

which is isomorphie to the eoincidence graph o~ the components

of Cs where C ~ Spee V is the stable curve with generic fibre

Co Sand special fibre Cs • Let ~(~) the set of Mumford curves

with canonical graph~. By a theorem of Gerritzen ~g(~). can

set-theoretically be deseripted as a quotient of an analytic
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polyhedron ~g(~) c k 3g- 3 by a finite group operation, the

automorphism group of the graph~.

Theorem 1. ~g(~)/Aut(§) is the coarse module space for Murnford

curves with eanonical graph ~.

Theorem 2. Let n : X ~ S be a family of Mumford curves of genus

-19 ~ 1, i.e. n proper, flat and Xs = rr (s) Mumford curves of genus

9 for all s € S. If S is a Mumford curve minus finitely many 4It
points and p > 9+1, then the family must be eonstant:

Xs ~ Xt for all a,t E S.

Conjecture. Theorem 2 is true for all.n.s., complete, algebraic

curves 5?

H. MATSUMURA

On p-basis

The followlng "Conjecture of Kunz", which remained unsolved for

10 or 15 years, was solved very recently by Kimura-Niitsuma.

"Let R be a regular loeal ring of char. p > 0 and 5 a regular

Ioeal subring containing RP = {aPla E R} such that R i5 a finite

S-module. Then R has a p-basis over S."

.This amounts to proving the following very eoncrete statement: 4It
(+)"Let k be a field of char. p, and consider an intermediate ring

P . P
S between kOX1, ••• ,XnO and kDXJ' ••• 'Xn~. If S is regular then

(after change of variables) S 1s of the form

kOX1'···'Xr'X~+1'···'X~O."

The proof depends heav1ly on papers by Harper (TAMS vol. 100,1960)

and Yuan (ibid. 1970) and uses Lie algebra of derivations.

The polynom1al analogue of (+) is mueh harder and has been proved

-only- ion -dimension-~- 2 (Ganong).- --
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L. MORET-BAILLY

Peneils of abelian varieties

(joint work with L.Szpiro)

Let C be a eomplete smooth eurve over a field. We study the pairs

(A,L) where A i5 an abelian seheme over C of fixed relative

dimension g, and L 1s a relatively ample invertible sheaf on A,

with fixed relative degree of prime to char(k). Let E be the

relative Lie algebra of A over C. Then:

(1) deq E < 0 and lf deq E = 0, then A ~ C is isotrivial.

(2) the set of (A,L)~ with qiven d,g, and deq(E), 1s a limited

family

(3) 1f ehar(k) 0 then (9-9
0

) (1-q) ~ deg E ~ 0 where 9
0

is the

dimension of the fixed part of A, and q genus of C.

The main tools in the proof are the relative Riemann-Roeh theorem

for A S C, and the fact that after a finite etale base change,

f.(L) becomes isomorphie to V 9M where V i5 free and )Kis an

invertible sheaf. A corollary (due to Raynaud) states that

(in char. p > 0) if ~ is an abelian seheme over C whose fibres

are all ordinary abelian varieties, then A i9 trivial.

J.E. ROOS

Recent results about the homology of loeal rings

Let (R,.) be aloeal, eommutative noetherian ring with residue

field k = R/~and let ExtR(k,k) = {Ext~(k,k)}i>O be the Ext-groups

of R, equipped withthe Yoneda product which makes ExtR(k,k) into

a graded conneeted algebra. Indeed, Ext~(k,k) i5 even a Hopf algebra,

whieh i8 the enveloping algebra of a eertain unique graded Lie
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algebra G = @ G.• It seems difficult to determine those G' s
i> 1 1.

that can occur here, but if ~3 = 0, and if A is the subalgebra,

generated by Ext~(k,k) in Ext~(k,k) = B, then A 1s also a Hopf

algebra, which is the enveloping algebra of another unique

graded Lie algebra n = e ni , and those n' s that occur here
i>1

are exactly those finitely presented graded Lie algebras, that

can be presented by generators in degree 1, and relations in 4It.
degree 2. (called (1,2)-presented Lie algebras), and R can be

reconstructed from n. In fact, A and Bare closely related:

If we introduce B(Z) = r dimkBiezi (often called the Poincare­
i>O

'Betti series of (R,~), and often denoted by PR{Z», and similarly

A(Z), we have

1:
i>O

so that A{Z) and B(Z) are rational (or transcendental) at the

same time. Also, one can e.g. show (graded Tor's)

so that a minimal set of generators of B = Ext~(k,k), contains

generators'of degree 1, and extra generators, corresponding to

A
a basis of Tor3 {k,k)*+1.

It follows that if we can construct (1,2)-presented graded Lie •
algebras n with e.g. CA U(n), the enveloping algebra of n)

Cl' A(Z) transcendental or (2) Tor~(k,k).(Z) I: dimkTOr~(k,k)iZi
i>O

transcendental, then we obtain:

C1 ) loeal rings (R,'YA-) with PR (Z) transcendental, and

(2) loeal rings· (R,~) such that ExtR(k,k) has a minimal set of

generators {~i}i>1 with 1: zdeg t i transcendental.
i >1
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Such eonstruetions ean be made, usinq the theory of extensions

of graded Lie algebras, giving e.g.:

k[X1,X2,X3,X4'XS]
(*) R = 2 2 2 2 3 ("'4 = (X 1 ' • • • , Xs ))

(X1,X2'X3'X4'X1X2'X3X4'X1X3+X2X5+X4XS'~ )

as an exarnple of (1) ewe c~uld also take x~ as a relation in (*).

Then we get a slightly different example, and it is not neeessary

tIt to divide with ~3).

( •• ) A Ioeal ring eS,m) with Hilbert series 1 + 27z + 210z 2

giving an example of (2). [A "loop spaee n variant of (*.) qives

a negative answer to a question of Lemaire [4]].

There are also Gorenstein rings (with m4 = 0) having transcendent

PR(Z)'s, but it should also be remarked that no examples of Ioeal

domains or of local ri~gs of the form kUX 1 , ••• ,Xnl] / (monomial) are

known for which PR(Z) is transeendental. A study of the deformations

of the Ioeal rings (*), (*.), and their variants, is probably

difficult, but perhaps rewarding.

[1] D.Anick, Thesis MIT, 1980, [2] R.B~gvad (Univ. of Stockholm)

Paper subm. to Math.Scand., [3] C.Jacobsson (Univ. of Stockholm)

Paper subm. to Math.Seand., [4] J.-M.Lemaire, Springer Lecture

Notes 196, p. 114-120, [5] Löfwall-Roos, Comptes rendus, 290, 1980,

p. 733-736, [6] Löfwall-Roos (tc appear). [7] J.-E.Roos, Springer

Lecture Notes, 740, p. 285-312, 1979. [8] J.-E.Roos, Homology of

loop spaces and of local rings (to appear in Proc.18th Scand.

M., Birkhäuser 198?). [In [8] a historical survey is given,

indicating the important role played by Anick's paper [1].

After [8], the papers [2] (Gorenstein rings) and [3] (Lemaire's

problem) have been written.]
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Ch. ROTTHAUS

Completions of excellent rings

We sketch the proof of the following theorems:

Theorem 1. Let A be a noetherian ring with geometrically regular

formal fibres. Let I be an ideal in the Jacobson radicalof A,

such that All is quasiexcellent. If A ~ m, then A is quasiexcellent

Theorem 2. Let A be a finite dimensional universally catenarian tIt
ring with A ~ ~. Let I be an ideal in the Jacobson radical of A

such that

.(i) A is I-adieally complete

(ii) All i9 exeellent.

Then A 18 exeellent.

J. SALLY

Hilbert functions of Ioeal Cohen-Macaulay rings

Let (R,~) be a d-dimensional loeal Cohen-Macaulay ring of

multip11city. e. Let grR denote the associated graded ring

R/.$ ./~2 $ .~ •• and let "R(n) denote the Hilbert funetion

HR(n) = dimR/~.n/~n+1. If the embedding dimension v of R is 4It
e+d-1 (it is always true that v ~ e+d-1) then grR is Cohen-

Macaulay and HR(n) = (n~~~2)e + (n+~-2) for all n ~ 0 if d > O.

We sketch the proof of the following

Theorem. Let (R,~) be a d-dimensional Ioeal CM ring of embedding

dimension v e+d-2, e > 3. Assume that type R * e-2. Then

depth grR ~ d-1 and if x" .•• 'Xd is any minimal reduction of~,

'*'4 = 1t.,}. Furthermore, i f depth grR = d -, ,

HR(n) = (n+d-,2)e - (n+d-
3

5) for d > 0 and n ~ 3. If depth grR = d,
n- n-

- -- -- - - - ---- +d~2- --- - ~+d-=--3- - -- - - - - - -- - -
HR(n) = (D ,)e + (n ) for d > 0 and n ~ 2.n- n
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A. SIMIS

Some results on symmetrie algebras

(joint work with W.Vaseoncelos, J.Herzog, J.F.Andrade)

Let R be a noetherian ring, M a feg R-module with (generic) rank.

Given a presentation Rm ~ Rn ~ M ~ 0, we have SeM) ~ R[X" ••. ,Xn]/J.

(S(M) symm.alg. of Mi J ideal of linear forms derived from ~).

Proposition. rk(~) - to(~) + 1 ~ grade(J) ~ rk(~), where

to(~) = inf{t ~ 1 Igrade Is(~) ~ rk(~) - s+1 Vs ~ t}.

(Appendix: grade(J) rk(~) ~ to(~) ,) .
Some applications follow:

Proposition. The following are equivalent:

(i) J 18 a complete intersection

(ii) ~ i5 injective and grade It(~) ~ rk(~) - t+1, 1 ~ t ~ rk(~).

Proposition. J = (t j ), l j = a,j + a 2jx2 + ••• + anjXn , j=1,: •• ,m,

m ~ n. Let ~ = (aij ). Then:

grade It(~) ~ m-t+1, 1 < t < n ~ J is a complete intersection

Proposition. Let R be Cohen-Macaulay loeal, I c R an ideal of

ht > O. Let N eRbe aperfeet ideal. If SeI) is Cohen-Maeaulay

then the following are equivalent:

(i) SeI/NI) is Cohen-Macaulay

(ii) V(Ip ) < ht(P/N) + 1, all primes P ~ N

(N.B. v(-) minimal # generators of - ).

R.Y. SHARP

Cohen-Macaulay properties for balanced big Cohen-Maeaulay modules

Let M be a module over the (commutative, Noetherian) loeal ring A.

If M 1s a big Cohen-Macaulay module with respect to some system
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of parameters for A, then in general one cannot expect,M to have

all the properties of finitely generated Cohen-Macaulay A-rnodules.

This talk was concerned with balanced big Cohen-Macaulay modules:

M 1s a balanced big Cahen-Macaulay A-module if every system af­

parameters for A 1s an M-sequence. Hochster has shown that A

possesses such a module if A contains a field as a subring.

In this talk itwas explained why many of the "classical"

praperties of finitely generated Cahen-Macaulay modules have

analogues for a balanced big Cohen-Macaulay A-module M. In

particular, the following results and theories were described:

(i) for all M-sequences a" ... ,a i , the set Ass(M/(a" ••• ,ai)M)

is finite and dirn A/~ = dirn A - i for every

-<sE ASS(M/(a" ••• ,ai)M);

(il) a satisfactory theory of depth (with respect to M) can be

developed:

(iii) with the aid of the (possibly proper) subset Supersupp(M)

{~E Spec(A) : ~j(~,M) * 0 for same j ~ O} of Supp(M), we

can introduce the M-height (htMCL) of a proper ideal JJt., of A, .

and prove that htM~= depth(~;M).

A Cousin complex characterization of balanced big Cohen-Macaulay

modules was also presented.

B. ULRICH

The torsion of the module of differentials

General estirnations for the length of a module respectively of

the torsion of a module with finite homological dimension over

a one-dimensional loeal Cohen-Macaulay-ring are given by rneans
- - ... -~

of eertain ideals defined by determinan-ts~-As-an- a-ppllcatlon -we -- -
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L

proof in same eases a eonjeeture due to R.Berger: Let R be a

reduced Ioeal ring of an algebraie or algebroid curve over a

perfeet field k, let edim(R) its embedding dimension, deR) its

deviation and D(~) its module of differentials.

Theorem 1." If edim(R) < 3 or deR) < 3, then D(~) i5 not torsion
k

free iff R is not regular.

• Theorem 2. " If edim (R) < 4 or d (R) ~ 2, then R is not rigid iff

R is not regular.

W.V. VASCONCELOS

Approximation Complexes

(joint wor~ with J.Herzog and A.Simis)

We diseussed eertain differential graded algebras derived from

a double Koszul complex. They oceur in the eomparison between

the symmetrie Sym(I) 'of an ide~l I and its Rees algebra ~(I).

One ofits optimal uses depends on information on the depth

properties of the homology modules of the ordinary Koszul complex

associated to I. For instance:

Theorem. Let R be a Cohen-Macaulay ring and let I be an ideal.

Assume: (a) The homology modules of a Koszul complex associated

to I are Cohen~Macaulay modules; (b) For each prime ideal P ~ I,

I p can be generated by height (P) elements.' Then Sym(I) = R(I)

and Sym(I/I 2 ) = grI(R) and both algebras are Cohen-Maeaulay.

Furthermore, if R 1s Gorenstein, then grI(R) is also Gorenstein

(R(I) may not be such).

The framework of this theorem also allows for other applications,

in particular to the questions of Cohen-Macaulayfication and

linear resolutions.
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K. WATANABE

Rational singularities with k*-action

Let R = (±) Rn be anormal graded ring f.g over k = R
o

(a field)
n>O

(eh k = 0). Then, by Demazure, R ~ e HO(X'C?x(nD», where
n>O

Pv -
X = ProjeR) and 0 ~ -- ·v. «pv,qv) = 1,q > 0) is a rational

qv v

coefficient Weil divisor which satisfies the condition: •°ND 15 an ample Cartier divisor for sorne N > 0, integer."

Then we have H;eR) ~ @ Hi - 1 (X'(?x(nD» (i ~ 2).
i nE~

R : C-M. - H (X'~x(nD» = 0 (0 < i < dirn X, n"E E).
qv-1

R Gorenstein M R : C-M and K + ~ .---- ·v s aD for same a E ~.
x qv

If we define the integer a(R) by a(R) = max{nl (H~(R»n * ol (d=dim R),

we have

Theorem." R 19 a rational sinqularity 1ff R satisfies the following

conditions. (1) R is C.-M. (2) Spec(R)-{m} has rational singularities

(3) aIR) < O. (This theorem was also proved by Flenner).

We prove th1s by using Boutot's theorem, which 1s a consequence

of Grauert-Riemenschneider vanishing theorem. Also, we can get

same eonditions concerning the condition (2) of the Theorem •

•
Berichterstatter: R.Waldi
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Als Preprint haben ausgelegen (außer den Preprints, über deren

Inhalt in Vorträgen berichtet wurde):

M.BRODMANN

W.BRUNS

D.FERRAND

G.M.GREUEL

J.HANSEN

J.HERZOG

K.H.KIYEK

Blow-up and Asymptotic Depth of Higher Conormal

Modules

The Eisenbud-Evans'Genera11zed Principal Ideal

Theorem and Determinantal Ideals

Trivialization de modules projectif. La methode

de Kronecker

On Deformations of Curves and a Formula of Deligne

Sinqularities under Projection

Approximation Complexes and Proper Sequences

Anwendung von Ideal-Transformationen

M.MARTIN-DESCHAMPS/R.LEWIN-MENEGAUX: Surface de type general

dom1nees par une variete fixe

X.LANGMANN

H.LINDEL

J.E.ROOS

Treufiacher Limes noetherscher Ringe

On Proje~tive Modules over Polynomial Rings over

Regular Rings

Homology of Loop Spaces and of Local Rings
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