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Tagungsbericht 2W/1981

Reversibilitdt und Dualité&t

31.5. bis 6.6.1981

Tagungsleiter: K.L. Chung (Stanford)
H. Féllmer (Zirich)
M. Nagasawa (Ziirich)

Zentrales Thema der Tagung war die Rolle von Zeitumkehr und Dualit#t in
der Theorie der Markoffschen Prozesse und in einigen ihrer Anwendungen.
Auf der theoretischen Seite Me iber verschiedene neuere Entwicklungen
vorgetragen, insbesondere lber Exkursionstheorie, terminale Verteilungen,
Potentialtheorie Markoffscher Prozesse mit mehrdimensionalem Parameter,
Reversibilitst chne Dualitit.

Bei den Anwendungen ging es vor allem um Zeitumkehr und unendlich dimen-
sionale Diff\xsionsprozesse in der Populationsgenetik, um den Zusammen-
hang von Reversibilitit und Gibbs-Verteilungen bei der Zeitentwicklung
von unendlichen Teilchensystemen und um stochastische Variationsprinzi-
pien. Neben den 28 Vortrigen gab es informelle workshops lber Prinzipien
der Zeitumkehr, Uber Randwertprobleme in Verbindung mit der Feyrman-Kac-
Formel und tber die Anwendung reversibler Diffusionsprozesse bei der

Modellierung von Mesconen.

Forschungsgemeinschaft

o



DF Deutsche
Forschungsgemeinschaft ©



ot

UFG

Deutsche

Vort auszl

REVERSIBILITY WITHOUT DUALITY

- J. Azéma, Paris

One studies relationships between additive functionals, measures, and h-
transforms when there don't exist duality hypothesis. Also, the recurrent
case is discussed.

THE ASYMPTOTIC BEHAVICOR OF THE EMPIRICAL PROCESS OF BROWNIAN MOTTION

E. Bolthausen, Berlin

BEmpirical measures of recurrent continuous time Markov processes seem to
have a similar or even better asymptotic behavior than the empirical
measures of independent random var:Lables. This 1s made precise in the case
of Brownian motion on the d—d:mens:.onal 'I‘orusT Let & ,ttzo, be this
process and if A is a Borel subset of i , let ut(A) =.Efo 1A(Cs)ds.

In dimension d=1 e has continuous density with respect to Lebesque
measure SL , the local time. Then, as t+=, t(l -1) converges weakly in the
space of contmuous functions to the process 2(B(x)- f B(y)dy), XET

where B is the ordinary Brownian bridge. Furthermore a.s.

(m) (l -1) is relatlvely compact as t+ «» and has a suitable set
of limit pomts.

In dimensions d>1 similar statements can be proved in suitable Sobolev spa-
ces of generalized functions.

PROBLEMS OF REVERSING

Kai Lai Chung, Stanford

A brief review of reversing in Markov chains and in Brownian motion is
given. A general Hunt process having a finite lifetime z can be reversed
from ¢ to yield a natural reverse which is left continuous and has the
moderate Markov property (Chung and Walsh). This implies an analytic duality
which is not quite the same ‘as classical duality (as discussed by Getoo‘f).
When the latter duality is assumed the reversal leads to Nagasawa's formula.
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Question 1: what does the natural reverse add to the structure of the pro- t
cess? Question 2: can we use true reversing to solve various problems ‘
clearly or unclearly involving reversing? For instance, can the last exit
decomposition for the equilibrium potential be obtained in this way, as
suggested by the physicist's notion of reversibility? A most challenging
example is the Kellogg~Evans theorem in potential theory which became
Hunt's Hypothesis (H). All known probability proofs of this result use
some form of reversing. Why? and what is the natural condition for its
validity? By contrast, Hunt's Hypothesis (B) has a reverse formulation due
to Azéma. Finally two elementary problems of reversing in Brownian motion

are mentioned.

LEVY SYSTEMS FOR CHUNG PROCESSES
E. Ginlar, Evanston

The theory of Chung processes does not fit in the extensive theory developed
for "standard" or "right'" processes because of the intricate discontinuity
properties of the sample paths of the former. Although it is possible to
transform a Chung process into a nearly Hunt process, the required Ray-
Doob-Meyer-Knight compactification enlarges the state space, so that one
loses the charm of the original discrete state space. Qur objective is to
illustrate another path for treating Chung processes without changing the
state space. This involves using Lévy's ideas combined with the powerful
tools developed for regenerative systems by Maisonneuve and Meyer (to cite
only the principals). One is able to obtain a Lévy system fairly quickly,
and using it, one can give various last exit-first entrance decompositions ‘
with greater ease than has been possible before.

TOWARD A POTENTTAL THEORY FOR SEVERAL MARKOV PROCESSES

E.B. Dynkin, Ithaca

. Iir Xt = (X“:,,...,X;;‘n) is a family of time-reversible Markov processes, then
a class of measures M on the product of the state spaces with the finite
energy integral can be used as a starting point for a potential theory. We
call B a .mull set if p(B) = 0 for all u€M. We construct a Dirichlet space

Deutsche
Forschungsgemeinschaft ©




i
f

L UFG

Deutsche

Forschungsgemeinschaft

as a completion of the set of potentials £, (x)= fe(x,y)udy (g(x,y)=g! (4,y")
g“'(x",y") where g' is the Green's function for X).

An element h of the Dirichlet épace H is called regular if Euh(xt) +u(h)
as t+o for all p€EM.

A class of harmonic functions associated with the family Xt is introduced
and the Dirichlet problem for this class is solved for a certain class of
domains. The main tool are additive functionals of the family X which
correspond to all u€M.

TRANSITION FUNCTIONS AND MARKOV-PROCESS MEASURES

M.P. Ershov, Essen -

The two questions were discussed:

1) Given an initiai distribution and a Kolmogorov-Chapman transition function,
does there always exist the corresponding Markov-process measure?

2) If not always, under what possibly weak conditions there is such a measure?

These questions were considered in a joint paper by A. Wakolbinger and M.
Ershov.

The answer to question 1 is "no" (A. Wakolbinger constructed a negative
example). A positive result was formulated in terms of the existence of a
"weak" disintegration for three-dimensional distributions (determined by the
initial distribution and transition function) with respect to the two "outer"

time-points.

STOPPED DISTRIBUTIONS FOR MARKOV PROCESSES IN DUALITY

N. Falkner, Columbus

Let X, X be standard Markov processes 'in“duality. Assume that semipolar sets
are polar and that the resolvents are strong Feller. Let p be a measure such
that wU is sigma finite and let v be another measure. If uU>vU and if there
exists a set C such that for every polar set Z, v(Z) =u(ZnC) then there
exists an (Tt )-stopping time T such that uPT= v (and conversely). Here

(Tt ) is the usual completion of (TS ), where T: =o(Xg: 0<s<t).

At the time of my talk, I had assumed that X was continuous on [0,%) and
without holding points. I thank Joe Glover for helpful discussions which led
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to the elimination of these unnecessary hypotheses. After further dis-

cussions with Joe and Michael Sharp, I am quite optimistic that the strong
Feller hypothesis can also be dropped.

DUALITY WITH RESPECT TO SPACE REVERSAL
H. Féllmer, Zirich

let (Xt) be a Markov process with semigroup (Pt) on same state space E, and
let C be a convex class of functions on E which admits an ‘integral re- .
pnesentation in terms of probability measures on some space 17:, i.e.

= {f K(-,y)u(dy)|lup.m.on E}. If C is invariant under (P,), then we can
introduce a dual process (X ) with semigroup (P ) on E via the relation
PK(-,y)(x) = [ K(x, z)P (y,dz)

We consider in particular the case K(x,y) = I{x>y} with some partial order—
ing on E and give applications to some infinite particle systems with an
ordered state space at each site.

STATIONARY MEASURES OF REVERSIBLE PROCESSES IN DIMENSIONS ONE AND TWO

J. Pritz, Budapest

We consider interacting diffusion processes in de of - type

ax = Cp (x)dt+c (x)dW kGZ
where Wk is a fam:.ly of J.rxdeperrlent Wiener processes. If UV(X) is an inter-
action and Hk = ¥ UV(X) then such processes are formally reversible with

respect to Glbbsvmxe(aswes w:l.th interaction UV if

Ck == exp(Hk(X))axk(c (x)e)(p(-Hk(X))) .
Using a reversing and coupling technique involving free energy we show that
under same natural regularity conditions every stationary measure is a Gibbs
state, at least if d<2. Earlier results by Holley-Stroock and by Fritz are
improved in the sense that the restriction ok(x)' = c(xk) is removed.

DUALITY, REVERSIBILITY, AND EXCURSIONS

R.K. Getoor, San Diego

The basic assumptions and notations for a pair of standard processes X and
X in duality relative to a 6=finite measure £(dx) = dx on a Lusinian-state -
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space E were recalled. Some extensions of these were then noted.
Especially important being the notion of a dual density p(t,x,y). The re-
lationsship between this concept of dual density for X and X and the
ordinary duality of space-time processes over X and Xis explained. Of
particular importance is the fact that if X and X have dual density, then
so do (X,T) and (X,T) where T and T are dual terminal times-(X,T) being X
killed at T. )
The main results have to do with excursions from a closed optional homo-
geneous set M which under the present assumptions has the form
M= <t>0: (X X )€T} .
where T € Ex&, Then the dual of M, M, is defined by
W= oo (X,_,X.)€T)
where T = {(x,y): (y,x)€T}. Let R be the debut of M and R the debut of M.
Then R and R are dual terminal times and we let g(t,X,y) be the dual
density for (X,R) and (i,ﬁ). if (*PX,B), resp. (*f’x,ﬁ), are the Maisonneuve
exit systems associated with M, resp. ﬁ[,’then one defines kernels
Qg (ax) = *P[X, €dx; t<R] = q*(t,x,y)dy,
Qrax) = *PYIX, €dt; t<R] = G*(t,x,)dy.

Finally let v=vg, G:Gé be the bi-measures associated with B and B. The

following formulas are of interest. If x€ E(R) = regular pts for R, then
P*[R€dr,X,_€dy,X €dz] = a*(r,y,x)dr v(dz,dy), and for all x
*Px[Rédr,XR_Gd’y;XRE dz] = n (r,x,y)dr v(dz,dy) where '
n(r,x,y) =/q*(s,x,2)3*(r-s,y,2z)dz

independent of s, 0<s<T. i

The main result is the construction of measures Px,l,y on s governing the

law of the excursion conditioned to start at x, and at y, and have length

L. If f,x,l,y denotes the dual object then rQPx,E,y = };y,l,x, where rg is

the reversal from % operator. Applications of these measures to various

particular excursions were given. More generally it is possible to write

the law governing the excursion straddling an arbitrary stopping time in

terms of appropriately conditioned versions of the Px,z,y.
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MARKOV PROCESSES WITH IDENTICAL LAST EXIT DISTRIBUTIONS

J. Glover, Rochester

Let X and Y be two transient locally Hunt Markov processes. If X and Y
enjoy the same last exit distributions from bounded open sets, then Y is
equivalent -to a time-change of X by the inverse of a strictly increasing
continuous additive functional. This result can also be interpreted (with
natural auxiliary hypotheses) as a statement in potential theory involving
equilibrium measures.

BIRTH TIMES, DEATH TIMES AND DUALITY
M. Jacobsen, Kopenhagen

For Markov chain paths with finite lifetime, there is an obvious definition
of the dual T for any given randam time t. Based on concrete examples in
this setup, a general definition of T is proposed for T optional or co-
optional. With this definition T is cooptional, optional, coterminal,
terminal for t optional, cooptional, terminal, coterminal respectively.

One reason for introducing duals of random times, is that they may help
understand better the striking duality in appearance between the results
characterising regular birth times and regular death times for a given
Markov process.

TIME REVERSAL IN INFINITE PARTICLE SYSTEMS
H. Kinsch, Zirich

A discrete time Markov chain on an infinite product space is considered. It
is supposed that the transition kerne P(x,.) is a product measure for fixed

'x and that points far away interact weakly. Then we prove that an equi-

libriun u is Gibbsian iff the reversed process f’(z,.) is Gibbsian for all

z. In the reversible case P = P, the local specifications of u can be
directly expressed by P, but reversibility occurs only for very special P.
In the non-reversible case, a complicated equation is given which de-
termines in principle P and then also the local specifications of u. Some
examples where P(x,.) is again a product measure, but different from P(x,.),
are discussed, but this also happens only in few situations.
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SOME ANALYTICAL, RESULTS ON THE ORNSTEIN-UHLENBECK PROCESS

P.A. Meyer, Strasbourg
(joint work with D. Barrey)

For simplicity, consider the one-dimensional 0-U semigroup P, , defined as
follows on L2(1_.|) (p is standard Gaussian measure on R) =
= }:aK HK (normalized Hermite polynamials)
-Kt/2

then P.f = iake He
If ffdu=0, i.e. a =0, we may define the "Riesz potentials"
ay

€ = —_—
Rf -.2 kEHk for Re(e) > 0

It isn't difficult to see that R® is bounded from P to 1P for 1<p<e. On
the other hand, the following results are known.
Gross logarithmic Scbolev inequality (J. Funct Anal. 1975)

’2 maps L2 into L°logL

Félssner' s extension (TAMS 1975)
1/2 n 2
maps L log L into L log1 L for n€Z
The gener'al result can be shown to be
R5+m maps P 1ogaL into Lplog psL
for 630, 1<p<o, a €ER, n€R.

BALAYAGE FOR DUAL PROCESSES

J.B. Mitro, Cincimnati

For a pair of Markov processes in duality, the relationship between exit
systems is inireéﬁigated us.ing an auxiliary process, defined on a random
time interval, in which the original processes may be embedded. For a given
closed hamogeneous set M with associated exit system (*P,B) it is possible
to describe a corresponding homogeneous set M (for the dual) and then ob-
tain what might be called the "dual" exit system (*P,B). However, in genéral
B and B are not dual additive functionals in the classical sense (i.e., embed
into a single randam measure for the auxiliary process). We describe how B
and B may be constructed from the random measure Iye dt (where M embeds

both M and M) via "adapted a-balayage" for the auxiliary process.
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- TIME REVERSAL IN POPULATION GENETICS

M. Nagasawa, Ziirich

In Population Genetics (especially in the theory of evolutién) it is
important to compute (or "predict") the past history of a (mutant) gene
(e.g. the age of an allele) given the present gene frequency, besides the
prediction of the future (e.g. extinction or fixation of an allele). In
1975 Maruyama-Kimura presented a formula, which enables us to calculate
the past history. Their idea was formulated in terms of the so called

diffusion approximation, but their paper contains some ambiguous arguments. '

One trial to make their arguments clearer was reported based on a paper by
Nagasawa-Maruyama, Adv. Appl. Prob.11(1979), 457-478, in which time re-
versal of diffusion processes is exploited.

MONKEYS LIVE EVERYWHERE

. Nagasawa, Zirich

Based on a story of monkey populations which I reported two years ago, an
application was explained: If we assume that excited monkeys are running
in a meson, we can calculate the mass spectrum of mesons (especially with
spin 0 and 1); © R n 5 Ny 0 w,...,J/ID, Xs WseeesYseo . This is a part of
Jjoint work with K. Yasue (Geneva).

ITERATIONS OF MAPS OF THE UNIT INTERVAL

C.J. Preston, Bielefeld

Some recent results of Singer, Guckenheimer and Misiurewicz were presented ‘

concerning the iterates of continuous functions mapping the unit interval
back into itself.

ENTRANCE AND EXTT BOUNDARY FOR ORNSTEIN UHLENBECK PROCESSES

U. Résler, Gottingen

There exists a lot of literature on Martin boundary, but only a few examples
of Markov processes with continuous time and space where the Martin boundary

is known. This lecture is an attempt to give an example and to find some
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2 (a (ty +a (t) x )d’c+b(t)dw
in R a is a mea.surable vector, al, b are measurable matrices. Besides
existence assumption we assume nondegeneracy, i.e. det b(t) #0 for all te€R.
For these processes we can find all minimal harmonic' (also time dependent )
functions, the Martin exit and entracne boundary, and a description of the
bounded harmonic functions. A geometric meaning is given for that part in
the boundary, which com'eéponds to bounded harmonic functions, more pre-
cisely to the support of the measure u on the Martin boundary, which re-

. presents the function identically 1 in the integral representation.

. d
PROCESSUS DE DIFFUSICON ASSOCIES AUX MESURES DE GIEBS SUR RZ

G. Royer, Paris

We consider the following infinite system of stochastic differential
equations:

X, = s+B-éf(¢ X + 2¢' &, x))as

,vss
where uEZ , £ is a function on Zd belonglng to a space E of functions of
moderate growth, BY is a family of independent standard brownian motion;
the "interaction" ¢, u is a system of fuf;l.grglons on R and R respectlvely,
whose prototype is: ¢ a polynomial bounded below, ¢ (X,y) l(X-y)
if u,v are nearest neighbours in Zd, ¢u,v=0 othemse. We show that the
equation defines a diffusion process with values in E whose invariant and
reversible measures are exactly the so-called Gibbs measure on E. When

inf(¢")>0 there is a unique invariant measure.

I ONE-DIMENSIONAL DIFFUSIONS AND THEIR EXIT SPACES

P. Salminen, Abo

Consider a one-dimensional transient diffusion on an interval with a and b

as left- and right hand end point, respectively. Both boundary points are
assumed to be killing boundaries. The exit space (= the minimal part of

_the Martin compactification) of this process is the closed interval [a,b].
Denote the minimal functions with ky, vy € {a,b].

In this paper an explicit expression for the lifte-time distribution of

a ky-process is obtained. In the case both a and b are natural boundary
points this distribution is closely connected with the last exit distributions
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of the ka- and kb—processes.v The behaviour of a ky-process at the point
of the convergence (i.e. at the point y) is explained via a limit pro-
cedure in an instantaneous jump diffusion (jump occurring at the point y).

Further, the time-reversal properties in the ka- and kb-processes are
examined and a new, direct proof of D. Williams'time reversal theorem is
given.

ANOTHER LOOK AT ENERGY FOR DUAL PROCESSES

M.J. Sharpe, La Jolla

Let u(x,y) be the ,potehtial kernel density for a pair of standard pro-
cesses in duality. We examine various notions of energy related to the
kernel li, aiming to explain the nature of the difficulties caused by lack
of symmetry, unpredictable lifetimes, Martin boundary issues and the like.
The work is joint with R.K. Getoor.

INFINITE DIMENSTONAL DIFFUSION PROCESSES OCCURRING IN POPULATION GENETICS

T. Shiga, Tokyo

The purpose of my talk is to describe the wandering phenomena for the
continuous time Ohta-Kumura model..

<

I . vk
Let X = &x={x } xn302xn—1,-2’n x <=Vik>1}

n’ n=e’
-—C0

Denote by {x(t), Px}xex the diffusion process on XO generated by
o

L=% Z ,%x“ wn,m-xm)Dan Y Z;'(xmi Xy T 2xn) Dn ‘

and define the empirical mean process ;c(t)=2nxn(t) and the empirical centered

e w_ n . W oo =
random distribution process ut-r}:lxn(t)é mx(t)} e <u,f> 1;lf(n x(t)xn(t).
Then we can show the following

1°
is recurrent and the law of iterated logarithm holds.

%(t) behaves similar to Brownian motion as t+ «. In particular, %(t)

11°3Jv: 1-dim symmetric prob. distribution. s.t. -

lim = Su =y P -a.s. (‘v’xEXo)
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COMPARABLE MARKOV-PROCESSES

M. Sieveking, Frankfurt

Consider Feller semigroups Pt R Qt on a state space X.
Definition kr%ﬁwPVQtaéwuﬂchmmMeﬁvﬁ%)ﬁtmm
- 1
exist constants vy, ¢ s.th. _P 'fotECPyt (0st<T). P, Q are called
camparable (Pt~Q t) if there is ¢>0 such that
1 r o« <
=P dt<sQ.dt <c/P_dt
co t -Gt - TG ¢t
Theorem 1 (Arousson-Serrin ...) If X=R", P, Q. transient with elliptic

operators in divergence form thenVT < P 80O,

Conjecture The same is true with R replaced by an open bounded set with
smooth boundary. )

Theorem 2 (Hueber, Sieveking) If XcR" bounded open with smooth boundary,
and Pt; Qt are smooth with elliptic differential generator having HS1lder
continuous coefficients, then Pt~Qt’

ELECTRIC NEIWORK THEORY APPLIED TO MARKOV CHAINS

J.L. Snell, Murray Hill

Results of Peter Doyle are discussed. Consider a random walker on a graph
who moves with equal probability along available edges. Griffeath con-
Jjectured that the probability, starting at 0, of reaching a set S before
returning to O (escape to S) decreases if edges are removed. Doyle proved
this by the observation that the probability of escape to S equals the
current that flows from i to S in an associated electric network. Removing
edges means replacing resistors by infinite resistors. This increases the

‘effective resitance between 1 and S and decreases the current flow (escape

probability). Here the existence of energy (reversibility) and the fact
that current flows to minimize energy dissipation is used. What is the
corresponding probability proof?

A walk on an infinite graph is recurrent or transient according as the
resistance to infinity is infinite or finite. Shorting decreases resistance
to infinity and cutting increases it. The dual techniques, introduced by
Rayleigh, are used to show that random walks on " reasonable" graphs are
recurrent in two dimensions and transient in three or more.

.
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Non- campact simply connected 2-dimensional Riemann surfaces are parabolic
or hyperbolic according as Brownian motion on the surface is recurrent or
transient (Kaufmann). Equivalently; according as resistance to infinity of
the surface, considered as a conductor, is infinite or finite. Shorting
and cutting leads to dual criteria for the surface to be of parabolic or
hyperbolic type.

CANONICAL EVOLUTIONS FOR SPIN SYSTEMS
© W.G. Sullivan, Dublin

On the state space {-1,-!»1}N we consider a certain family of Markov
transition functions PS with generators {Ge(x,y)' 850} such that GB(x,y)=0
unless x,y satisfy {j: xJ.#yJ.} {i,i+1} for some i€N.and x, SV 417

i1 %5417

and the nonzero terms are chosen in such a way that the Markov chain uB

with Sx d =0 and Sx u d =(1-i"8)/(1+1"®) is a reversible invariant
distribubiol for P For these evolutions we find .
B
uB Pt —_— uB for Bl <1, 82 > 0;
1 2
—> £(8,+6_) for By >1,8,¢1
5 s, for B, 8, > 1, 8, # &,

DUALITY AND MARTINGALE PROBLEM

A. Wakolbinger, Ziirich

We discuss the following question: Does duality of two operatorsz 5 éé.
(defined on a subset D of the bounded continuous functions of some polish
space) imply duality of the Markov families (Px), (f’x), which we assume
to be solutions of well-posed martingale problems w.r. to  resp. <€ .
For & = {t (case of "reversibility") and a locally compact state space
this has been investigated recently by Fukushima and Stroock with the help
of Dirichlet forms. In case of infinite dimensional diffusions we can get
a p051t1Ve answer in case of € = §£ , if the dynamic P is a weak limit of
the "local dynamics with frozen initial conditions outs:Lde" Concerning
the general question mentioned at_the beginning we get an affirmative = _
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s answer at least under the following conditions:
D is weakly dense in Ll(p); Pu is invariant;
f(XL_t) is a Pu-semjmartinga.le with abs. continuous compensator (L

constant).
X
&=
J.B. Walsh, Vancouver
. We introduce the model of electrons and holes moving in a semi-conductor

as a physical model of dual processes, one process being the motion of
the electrons, the other, of the holes.

We derive some of the standard results of duality theory, using two
tools: h-path processes, and reversibility. We use the knowledge of )é;_
to get same knowledge about the excessive function h, where X: is the
h-path transform of X. Among these resuits is the balayage formula for
potentials. We give a heuristic explanation, in terms of the physical
dual processes introduced above, of why the dual kernel enters into this
formala.

STOCHASTIC CALCULUS OF VARIATIONS

K. Yasue, Geneva

The ordinary calculus of variations is extended to include certain

continuous semimartingales. Let X, DX and DX be a continuous semi-

martingale,its mean forward derivative and mean backward derivative, re-
. spectively. Then a stationary point of a functional

J = E(fgL(X(t),DX(t),D,X(t))dt) defined on a certain class of continuous

semimartingales is given by the one that satisfies the Euler-Nelson

equation %-D%-D*%’i= 0 for glmost every t. As an application, we

have the following probabilistic representation of a solution to the

Navier-Stokes equation, 3u/3t + u grad u - div grad u + grad p = 0,

div u = 0, with vanishing initial condition u(x,0)=0:

u(x,t) = E(fg{% (DX(s))z-p(X(s),s)}ds{ X(t)=x), T>t>0. Here X is a diffus-

ion process with uniform distribution which makes the function

Ts() = EUG B (0K(£))2 -p(X(£),£))dt) stationary.

Berichterstatter: H.R. Kinsch / A. Wakolbinger (Ziirich)

Deutsche
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