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Reversibilität und Dualität

31.5. bis 6.6.1981

Tagungsleiter: K.L. Chtmg (Stanford)

H. FölJmer (Zürich)

M. Nagasawa (Zürich)

Zentrales 'Ihema der Tagung war die Rolle von Zeitumkehr und Dualitä.t in

der Theorie der Markoffschen Prozesse und in einigen ihrer Anwendtmgen.

Auf der theoretischen Seite wurde über verschiedene neuere Entwicklungen

vorgetragen, insbesondere über Exkursionstheorie , tenninale Verteilungen,

Potentialtheorie Markoffscher Prozesse mit mehrdimensionalem Parameter,

Reversibilität ohne Dualität.

Bei den Anwendtmgen ging es vor allem um Zeitumkehr und l.U1endlich dimen­

sionale Diffusionsprozesse in der Populationsgenetik, um den Zusammen­

hang von Reversibilität und Gibbs-Verteilun~n bei der Zeitentwicklung

von unendlichen Teilchensystemen und um stochastische Variationsprinzi­

pien. Neben den 28 Vorträgen gab es informelle workshops über Prinzipien

der Zeitumkehr, über Randwertproblerne in Verbindung mit der Feyrnnan-Kac­

Formel und über die Anwendung reversibler Diffusionsprozesse bei der

ModelIierung von Mesonen.

                                   
                                                                                                       ©



.... 4t...;:1

~ ':~ ~ '5

•

•

                                   
                                                                                                       ©



- 1 -

.,;,t Vortragsauszüge

REVERSIBILITY WITHOur DUALITY

J. Azema, Paris

One studies relationships between additive funetionals, measures, and h­

transfonns when there dontt exist duality hypothesis. Also, the reeurrent

ease is discussed.

TEE ASYMProI'IC BEHAVIOR OF THE EMPIRICAL PROCESS OF BROWNIAN MarlON

E•. Bolthausen, Berlin

Empirical measures of reeurrent eontinuous time Markov' proeesses seem to

have a similar or even better asymptetic ~ehavior than the empirical

measures cf independent random variables. This is marle preeise in the ease

of Brownian motion on the d-dimensio~l ToIUST
d

• Let ~ t' t>O, be this
1 t -

process and if A is a Borel subset cf T
d

• let .~t(A) =·t~ lA(~s)ds.

In dimension d=1 ~t has eontinuous density with respeet to Lebesque

measure l
t

, the Ioeal time. Then, as t-+ (x), t ( 2.
t
-1) converges weakly .in the

space o~ continuous functions to the process 2(B(x)- f B(y )dy), x E Tl ,

where' B is the ordinary Brownian bridge. Furthermore 'T
1
a.s.

<Vn/loglogp') (i.
t
-1) isrelatively compact as t -+ 00 and has a suitable set

of limit points.

In dinensions d>l similar statements can be proved in suitable Sobolev spa­

ces of generalized functions.

PROBLEMS OF REVERSING

Kai Lai Chung, Stanford

A brief review of reversing in Markov ch§ins and in Brownian motion is

given. A general Hunt process having a finite lifetime 1; can be reversed

from 1; to yield a natural reverse wmch is left continuous and has the

moderate Markov property (Chung and Walsh). This implies an analytic duality

which is not quite the same· as classical duality (as discussed" by Getoor).

When the latter duality is assumed the reversal leads to Nagasawa 's fornnila.
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Question 1: what does the natural reverse add to the structure of the pro- ~

cess? Question 2: can we use true reversing to solve various problems

clearly or unclearly in~olving reversing? For instance, can the last exit

decornposition far the equilibrium potential be obtained in this way, as

suggested by the physicist t s notion of reversibility? A most challenging

example is the Kellogg-Evans theorem in potential theory which became

Htmt 's Hypothesis (H). All' known probability proofs of this result use

same form ef reversing. Why? and what is the natural' condition for its

validity? By contrast , Hunt I s Hypothesis (B) has areverse fOrnD.llation due e
to Azema. Finally two elementary problems of reversing in Brownian motion

are mentioned.

IEVY SYSTEMS FüR CHUNG PROCESSES

E. <;inlar, Evanston

The theory of Chung processes does not fit in the extensive theory developed

for "standard" er "right" pracesses because of the intricate discentinuity

properties of the sample paths of the fonner. Although it is possible to

transform a Chung process into a nearly Htn1t process, the required Ray­

IX>ob-Meyer-Knight compactification enlarges the state space, so that one

loses the charm of the original discrete state space. Gur objective is to

illustrate another path for treating Chung processes without changing the

state space. This involves using Levy 1 s ideas combined with the powerful

tools developed far regenerative systems by Maisomeuve and Meyer (to cite

anly the principals). One is ahle to obtain a JAvy system fairly quickly,

and using it, one can give various last exit-first entrance decompositions e
with greater ease than has been possible before.

IDWARD A ParENTIAL THEORY FüR SEVERAL MARKOV PROCESSES

E.B. Dynkin, Ithaca

If Xt = (Xt04 , ... ,X;1'\) is a farnily of time-reversible Markov processes , then

a class cf measures M on the product cf the state spaces with the finite

energy integral can be used as a starting point for a potential theory. We

call Ba. -null set if lJ (E) = 0 far all lJ E M. We construct a Dirichlet space
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as a eornpletion of the set of potentials f n (x)= ~g(x,Y)lJ(d~) (g(x,y)=gi (x\y1)

g....·(x~,yl'l) where g' is the Green's funetion for X).

An element h of the Diriehlet spaee H is calle<l regular ifEllh(X
t

) -+-lJ (h)

a.s t +0 for all lJ EM.

A elass of harmonie functions assoeiated with the farnily Xt is introdueed

and the Diriehlet problem for this class is solved for a eertain elass cf

domains. The main tool are additive funetienals cf the family X which

eOITespond to all lJ E M.

TRANSITION FUNCTIONS AND MARKOV-PROCESS MEASURES

M. P. Ershov,. Essen

The two questions were discussed:

1) Given an initial distribution and a KoJmogorov-Chapman transition function,

does there always exist the cOrTesponding Markov-process m.easure?

2) If rot always, under what possibly weak eonditions there is such a m.easure?

These questions were considered in a joint paper by A. Wakolbinger and M.

Ershov.

The answer to question 1 is "no" (A. Wakolbinger eonstructed a negative

example). A positive result was formulated in tenns of the existence of a

"weak" disinte~ation for three-dimensional distributions (determined. by the

initial distribution and transition runetion) with respect to the two "outer"

time-points.

SWPPED DISTRIBurIONS FüR MARKOV PROCESSES IN DUALITY

N. Falkner, Coltnnbus

Let X, X be standard Markov processes in duality. Assume that semipolar sets

are polar and that tne resolvents are strang FeIler. Let lJ be a measure such

that lJU "is sigpla finite and let v be another measure. If lJU ~ vU and if there

exists a set C such that for every polar set Z, v (Z) =lJ (Z "C) then there

exists an (Tt )-stopping t:im.e T such that lJPT = v (and canversely). Here

(Tt ) is the usual completion of (fo ), whereS"°t =a(X: O<s<t).
t S --

At th= time of my talk, I had assumed that Xwas continuous on [O,t) and

without holding points. I thank Joe Glaver far helpful discussions which led
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to the elimination of these urmecessary hypotheses . After further dis­

cussions with Joe and Michael Sharp, I am quite optimistic that the strang

Feiler hypothesis can also be dropped.

DUALITY WITH RESPEGr TO SPACE REVERSAL

H.. Föl1mer) Zürich

Iet (Xt ) be a Markov process with semi.group (Pt) on seme state space E, and

let C be a convex class of functions on E which admits an -integral re- e
presentation in tenns cf probability measures on SOIIE space E, i.e.

e :' {J K(· ,y)l,1(dy)llJ p.m.on E}. If C i$ invariant under (Pt)' then we can

introduce a dual p~c~ss (Xt ) with semi.group (Pt) on Evia the relation

PtK(- ,y)(x) = r K(X,Z)Pt(y,dz).

we consider in particular the case K( x,y) = I {x>y} with sorne partial order­

ing on E and give applications to seme infinite- particle syst6ns with an

ordered state space at each site.

STATICNARY MEASURES CF REVERSIBLE PRCCESSES rn DlMENSIONS ONE AND rrwo

J. Fritz, Budapest

Zd
we consider interacting diffusion processes in R of .type

d
~ = Ck(x)dt+ok(x)dWk , kE~ J

where W
k

is a family of indeperrlent Wiener proc~sse5. If tV(X) is an inter-

action and ~ = L tV(X) then such processes are fonnally reversible with

respect to GibbsV~asure5 with interaction tV if
1 a 2 .

Ck =2 exp(Hk(x)a~(ak(x)e~(-Hk(x))).

Using a reversing and coupling t~chnique involving free energy we show that

wder sare natural regularity conditions every stationary measure is a Gibbs

state, at least if ~~1. Earlier results by Holley-Stroock and by Fritz are

improved in the sense that the restrietion 0k(x)" = o(~) is removed.

DUALITY 2 REVERSIBILITY 2 AND EXCURSIONS

R.K. Getoor, San Diego

The basic assumptions and notations for a pair of standard processes X and

-- i induality -relative -tc a . 6~finite measure~(dx)= -dx -on a-Lusinian~state-

e
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space E were recalled. Same extensions of these were then noted.

Especially irnportant being the notion of a dual density p (t ,x,y ). The re­

lationsship between this concept of dual density for X and Xand the

ordinary duality of space-time processes over X and Xis explained. Of

particular irnportance is the fact that if X and Xhave" dual density, then

so do (X,T) and (X,T) where T and T are dual terminal t:inies-(X,T) being X

killed at T.

The main results have to do with excursions f'rom a closed optional hano­

geneous set M which under the present assumptions has the fonn .

M = <t>O: (Xt_,Xt ) E f}

where r Et xl. Then the dual cf M, M, is define9. by'

M=" {t>o: (Xt_,X
t

) E f}
where r = {(x,y): (y,x) E r}. Let R be the debut of M and Rthe debut of M.
Then R arrl Rare d'ual terminal times and we let 9.( t ,x,y) be the dual

density for (X,R) and (X,R). If (*pX,B), resp. (*px,B), are the Maisonneuve
. .... .

exit systems associated with M, resp. M," then .one defines kerneIs
x

~(dx) *p [X
t

E dx; t<R] = q*(t,x,y)dY,

'~(dx)" = *PX[Xt Edt; t<R] = q*(t,x,y)dy.

Finally let v=v
B

' v=v:§ be the bi-measures associated with B and B. The

following formulas are cf interest. If xE E(R) = regular pts for R, then

P*[REdr,~_Edy,~E.dz]= q*(T,y,X)dr v(dz,dy), and for all x

*pX[R E dr,~_ E d'y;~ t dz] = n (r ,x,y)dr ~(dz,dy) where

n(r ,x,~) = f q*(s ,x,z )q* (r-s,y,z )dz

independent of s, -O<s< r .
. . x i Y .

The In8.lll result is the construct~on of measures P , , on s goverrung the

law of the excursion conditioned to start at x, and at y, and have length
....x i y x R. y :...v R. x

1. Ir p , , denotes the dual object then r R,P " = Y'" , , where r R. is

the reversal from R. operator. Applications of these measures to various

particular excursions were given. More generally it is possible to write

the law governing the excursion straddling an arbitrary stopping ti.rre in

terms of appropriately conditioned versions of the px,t,y.
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MARKOV PROCESSES WITH IDENTICAL LAST EXIT DISTF.IBurroNs

J. Glover, Roehester

Let X and Y be two transient locally Hunt Markov processes. If X and Y

enj oy the same last exit distri~utions from bounded open sets, then Y is

equivalent·to a time-changs of X by the inverse of a strietly increasing

eontinuous additive functional. This result can also be interpreted (with

natural auxiliary hypotheses ) as a statement in potential theory involving

equilibrium measures.

BIRrH TIMES, DEATH TIMES AND DUALITY

M. Jacobsen, Kopenhagen

For Markov chain paths with finite lifetime, there is an obvious definition

of the dual T for any given random time T. Based on eonerete examples in

this setup, a general defim.tion of T is proposed for T optional or ca­

optional. With this definition T is cooptional, optional, coterminal,

terminal far T optionBJ., cooptional, tenninal, cotenninal respectively.

One reason for introducing duals of random times, is that they mayhelp

understand better the strildng duality in appearanee between the results

characterising regular birth times and regular death times for a given

Markov process.

TIME REVERSAL IN INFINITE PARrICIE SYSTEMS

H. Künseh, Zürich

A discrete time Markov eha.in on an infinite product spaee is eonsidered. It

is supposed that the transition kerne P(x,.) is a produet measure for fixed

. x and that points far away interaet weakly. Then we prove that an equi­

librium u is Gibbsian irf the reversed proeess P(z,.) is Gibbsian rar all

z. In the reversible case P = P, the loeal specifications of }.J can be

directly expressed by P, but reversibility occurs only for very special P.

In the non-reversible case, a complicated equation is given whieh de­

termines in principle P and then also the Ioeal specifieations or }.J. Same

examples where P(x,.) is ag3.in a product measure, but different from F(x,.),

are diseussed, but this also happens on1y in few situations.
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S(]v'lE ANALYTICAL RESULTS ON THE ORNsrEIN-UHLENBECK PRCCESS

P.A. Meyer, Strasbourg

(joint work with D. Barrey)

For simplicity, consider the one-dimensional O-U semigroup Pt' defined as

follows on L
2

(1.l) (~ is standard Gaussian measure on IlR) = if

f = r~ ~ (n0nna.?-ized Hermite polynomials )

then Ptf = L~~-Kt/2~

If ffdu=O, i.e. aa=o, we may define the "Riesz potentials"

Re:f = I ~H for Re(e:) ~ 0
kE: k

It isn't difficult to see that RE: is bounded from LP to LP far l<p<oo. On

the other band, the following results are known.

Gross lOgarithmic Sobolev inequality (J. Funct. Anal. 1975)
R1/ 2 maps L2 tnto L210gL

Feissner's extension (TAMS 1975)

R1 / 2 rnaps L2l0g~ into L210gn+lL for n E :z
Tl'le general result can be shown to be

e:+in po..... . P a+pe:R maps L log L ~ta L log L

far 'e:~O, l<p<oo, Cl ER, n ER."

BALAYAGE FüR DUAL PROCESSES

J.B. Mitra, Cincinnati

Fbr a pair of Markov processes in duality, the relationship between exit

systems is investigated using an auxiliary process, defined on a random

time interval, in which the original processes may be embedded. Far a given

closed homogeneaus set M with associated exit system (*P,B) it is possible

to describe a corresponding homogeneous set M (far the dual) and then ob­

tain what might be called the "dual" exit system (*P,B). However, in general

B and Bare not dual additive functionals iri the classical sense (i.e., embed

intö a single. randan measure for the auxiliary process). We describe how B

and Bmay be constructed from the random measure ~~ dt (where ~ embeds

both M and M) via "adapted o.-balayage" for the auxiliary process.
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TIME REVERSAL IN POPULATION GENEI'rCS

M. Nagp..sawa, Zürich

In Population Genetics (especially in the theory of evoluti6n) it is

important to compute (or "predict") the past history of a (mutant) gene

(e.g. the age of an allele) given the present gene frequency, besides the

prediction of the future (e.g. extinction or fixation of an allele). In

1975 Maruyama-~a presented a fOrnRlla, which enables us to calculate

the past history • Their idea was formulated in terms of the so called

diffusion approximation, but their paper contains seme ambiguous ar~nts. e
<ne trial- to make their arguments clearer was reported based on a paper by

Na.gp.sawa-Ma.ruyama, Adv. Appl. Prob.l1(1979), 457-478, in which time re-

versal of diffusion processes is exploited.

MONKEYS LIVE EVERYWHERE

M. Na.gp.sawa, Zürich

Based on a story cf monkey populations which I reported two years ago, an

application was explained: Ir we asSUDe that excited rnonkeys are running

in a meson, we can c~culate the mass spectrum of mesons (especially with

spin 0 and 1); nO, n+, n, p, w,.~.,J/w, X, W, ... ,y, •• ,. This is apart of

joint work with K. Yasue (Geneva) .

ITERATIONS CF MAPS OF THE UNIT INTERVAL

C.J. Preston, Bielefeld

Seme recent results of Singer, Guckenheimer and Misiul"ewicz were presented e
concerning the iterates cf continuous functions mapping the unit interval

back into itself.

ENrRANCE AND EXIT BOUNDARY FüR ORNS'IEIN UHLENBECK PROCESSES

u. Rösler, Gött~n

There exists a lot of literature on Martin boundary, but only a few examples

cf Markov processes with continuous time and space where the ,rlIartin boundary

is known. This lecture is an attempt to give an example and to find some

~~~i_c .~@ing. _Co~~q.e~ th~_p~ces_s ~t ~s ~_so~~t~0!1 __of__
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o 1
dxt = (a (t) +a (t) x

t
)dt+b.(t )dW

t
- .J1 o. ab t 1 ·-dm.K • a 15 a measur le vec or, a , b are measurab~e matr1ces. EeS:l es

existence assumption we assume nondegeneracy, i.e. det b(t) #0 for all tER.

For ~hese processes we ean find all rnin:ima:l harmonie' (also time dependent)

f\mctions, the Martin exit and entracne boundary, and a description of the

bounded harmonie functions. A geometrie' meaning is given far that part in

the boundary, which corresponds to bounded harmonie functions, more pre­

cisely to the support of the rneasure lJ on the Martin boundary, which re­

presents the funetion identically 1 in the integr-al representation.

d
PROCESSUS DE DIFFUSION ASSOCIES AUX MEsURES DE alBES SUR r

G. Royer, Paris

We consider the following infinite system of stochastic differential

t
~ = ~u+BUt-t f (4) t.(~) + L ~, (xu ,Xv) )ds

o. s v#U U,v s s

wrere u eZd, E; is a function on Zd belonging to aspace E af functions of

moderate growth, BU is a family of independent standard brownian motion;

tte ninteraction" , 4>, 4> is a system of functions on R and R respectively,
U,v from 2

whOse prototype is: <t> a polynomial bounded below, ep (x ,y) =t(x-y) ,

if u,v are nearest neighbours in Zd, 4> =0 otherwis~: vWe show that the
U,V:

equation defines a diffusion process with values in E whose invariant and

reversible measures are exactly the so-called Gibbs measure on E. When

inf(<p rt ) >0 there is a unique invariant rneasure.

ONE-DIMENSIONAL DIFFUSIONS AND THEIR EXIT SPACES

P. Sa1minen, Abo

Consider a one-dimensional transient diffusion on an interval with a and b

as left- and right hand end point, respectively. Both botmdary points are

asSlUlled to be ldlling bOlIDdaries. The exit space (= the minima.l part of

. the l"\artin canpactification) of this proeess is the closed interval [a,b].

Denote the minimal functions with k , YE [a,b] .Y .
In this paper an explicit expression for the lifte-time distribution cf

a ky-process is obtained. In the case both a and b are natural boundary

points this distribution is closely connected with the last exit distributions
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of the k - and k -processes. The behaviour of a k -process at the point. a ~. y
of the convergence (i.e. at the point y) is explained via a limit pro-

cedure in an instantaneous jump diffusion (jump occurring at the point y).

Further , the t ime-reversal properties in the k
a

- and \ -processes are

examined and a new, direct proof of D. Williams' time reversal theorem is

given.

ANarHER LOOK AT ENERGY FüR DUAL PROCESSES

M.J. Sharpe, Ia Jolla

Let u(x,y) be the .potential kemel density far a pair of standard pro­

ceS5es in duality. We examine various notions of energy related to the

kernel u, aiming to explain the nature of the difficulties caused by lack

of symnetry, unpredictable lifetimes, Martin boundary issues and the like.

The work i5 joint with R.K. Getoor.

INFINITE DDV1ENSIONAL DIFFUSION PROCESSES OCCURRING IN POPULATION GENErICS

T. Shiga, Tokyo

The purpose of iny talk is to describe the wandering phenomena far the

continuous time Ohta-Kumura model._
oe

Let X = {x= {x }oe : x > 0 Lx = 1 ,
o n n=oo n~' n

-00

Denote by {xCt ), P } E X the diffusion process on X generated by
x x 0 0

L = ~ I Lx (ö -x)D D· + y t· (x 1 + x - 2x ) D
n m n n,m m n m n n+ n-l n n

•

•and define the empirical mean process x(t )=Lnx (t) and the empirical centeredn
randam distribution pracess ~~=LXn(t)Ö{n_x(~)}' i.e. <~~,f>=If(n-x(t)xn(t).

n n
Then we can show the following

10 x(t) behaves similar to Brownian motion as t ... 00. In particular, x(t)

i5 recurrent and the law of iterated logarithm holds.

11° 3 \): l-dim synnnetric prob. distribution. s. t.

. 1 t w
lim· - f~ d => V P -a.s. '(ix E Xc)
t~ tos s(weakly) x

___ . ~ ,~of ~s_essen~i~ly_~a~e~~n.~he_d~~ met~~s-=- ~~__. _~ ~ __ . _
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COMPARABIE MARKOV-PROCESSES

M. Sieveldng, Frankfurt

Consider Feller semigroups Pt' Qt on astate space X.

Definition For O~T~oo Pt' Qt are called F comparable CPt' TQt) if there

exist constants y. c s. th. ~ P+t ~~~ c Pyt (O~t~T)· Pt' Qt are called

cornparable (Pt NQ t) if there is c>O such that

! r P t dt ~ j Qtdt ~ c j P tdt
Co 0 0

Theorem 1 (Arousson-Serrin ... ) If X =R
n

) Pt' Qt transient with elliptic

operators in diver~nce fo~ then 'VT < 00 Pt T~
Conjecture The same is true with!fl replaced by an open bounded set with

smooth boundary.

Theorem 2 (Hu~ber, Sieveking) If X c Rn bounded open with smooth bounclary,

and Pt; Qt are smooth with elliptic differential generator having Hölder

continuous coefficients, thenPtl'J~.

EIECTRIC NEIWORK THEORY APPLIED TO MARKOV CHAINS

J •L. Sne11, Murray HilI

Results of Peter Doyle are discussed. Consider a random walker on a graph

who moves with equal probability along available edges. Griffeath con­

.jectured that the probability , starting at 0) of reaching a set S before

returning to 0 (escape to S) decreases if edges are removed. Doyle proved

this by the observation that the probability of escape to S eQuals the

current that flows from i to S in an associated electric network. Removing

edges means replacing resistors by infinite resistors. This increases the

.effective resitance. between i and S and decreases the current flow (escape

probability) . Here the existe.nce of energy (reversibility) and the fact

that current flows to minimize energy dissipation is used. What is the

corresponding probability proof?

A wall< on an infinite gr'aph is recurrent or transient. according as the

resistance to infinity is infinite or finite. Shorting decreases resistance

to infinity an.d cutting increases it. The dual techniques, introduc~ by

Rayleigh, are used to show that randorn walks on ff reasonable rr graphs are

recurrent in two dimensions and transient in three or more.
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"Non- campact simply connected 2-dimensional Riemann surfaces are parabolic

or hyperbolic according as Brownian motion on the surface is recurrent or

transient (Kaufmann). Equivalently, according as resistance to infinity of

the surface, considered as a conductor 3 is infinite or finite. Shorting

and cutting leads to dual criteria for the surface to be ef parabolic er

hyperbolic type.

CANONICAL EVOLurIONS FüR SPIN SYSTEMS

\Al.G. Sullivan, Dublin

On tl'E state space {-l,+l}N we consider acertain family of Markov

transition "functions P: with generators {Gß(x,y): B!O} such that G8(x,y)=O

IDlless x,y satisfy {j: x.#y.} = {i,i+l} for same iEN.and x.=y. l=-x. l=-Y.
J J 1 1+ l+ 1

arrl the nonzero terms are chosen in such a way that the Markov chain U
ß

with JX.d =0 and Cx . lx.d =(1_i-8)/(1+i-ß) is a reversible invariant
1 ~ J 1- 1 ~

distributia~ for P~. For theseßevalutiens we find

62
~ß Pt -----> ~ß far 81 < 1, 82 ~ 0;

1 2

DUALITY AND MARTINGALE PROBLEM

A. Wakolbinger, Zürich

We discuss the following question: Daes duality cf two operators ~ , i
(defined on a subset~ of the bounded cantinuous functions of some polish

space) imply duality cf the Markov families (Px )' (Px), which we as~ume

to be solutions ef well-posed martingale problems w.r. toU resp. ~ .

Fbr CJ =~ (case cf "reversibility") and a locally compact state space

this has been investigated recently by Fukushima and Stroock with the help

of Dirichlet fanns. In case of infinite dimensional diffusions we can get

a positive answer in case ofr:L = i. , if the dynamic P is a weak limit of
. x

the "Ioeal dynamics with frozen initial conditions outside". Concerning

_thegeneral quest ion. mentioneo._at_ t.he_beginning _w.e_~t _an affinnatiye~ . _
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answer at least under the follO\ring conditions:

2) is weakly dense in L
1

( lJ ); P is invariant;
. 1..1 .

f(~_t) is a P}.J-semimartingale With abs. continuous compensator (L

constant) .

x
.k.

J .B. Walsh, Vancouver

We introduce the model of electrons and holes moving in a semi-conductor

as a physical model cf dual processes , one process being the motion of

the electrons, the other, of the holes.

We derive sorne of the standard results cf duality theory, using two

tools: h-path processes , and reversibility. We use the· lmowledge of ~_

to get sone lmowledge about the excessive function h, where ~ is the

lr-path transform of X. Arnong these results is the balayage forrnula for

potentials. We give a heuristic explanation, in tenns of the physical

dual processes introduced above,' of why the dual kernel enters into this

fornn.l1a.

S'IOCHASTIC CALCULUS OF VARIATIONS

K. Yasue, Geneva

The ordinary calculus of variations is extended to include certain

continuous semimartingales. ·Let X, DX and D*X b~ a continuous semi­

martingale ,its mean .forward derivative. and mean backward derivative, re­

spectively. Then a stationary point of a functional

J = E(f~L(X(t),DX(t),D*X(t))dt) defined on a certain class of continuous

semimartingales is given by the one th9.t satisfies the Euler-Nelson

t . aL aL aL 1· t .equa ~on ax - D aD X- D*aDX =0 for aJmost every t. As an app lca lon, we
* .

have the following probabilistic representation of a solution to the

Navier-Stokes equation, du/at + u grad u - div grad u + grad p = 0,

div u = 0, with vanishing initiai condition u(x,O)=O:

u(x,t) = E(f;{~'(DX(s))2_p(X(s),S)}dS! X(t)=x), T>t>O. Here X is a diffus­

ion process with uniform distribution which makes the function

JNS(X) = E(f;{~(DX(t))2_p(X(t),t)}dt) ·statiorlar'J.

Berichterstatter: H.R. Kün5ch / A. Wakolb~r (Zürich)
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