
'~

"it.
'1~ l

I
t

~

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 1/1982

Formale Methoden und Mathematische Hilfsmittel

für die Softwarekonstruktion

4.1. bis 8.1.1982

Die diesj~hrige Tagung aber "Formale Methoden und Mathematische

Hilfsmittel für die Softwarekonstruktion" stand unter der Lei-

tung vor'

M. Pau I

H. Langmaack

(München).

(Kiel) ~ E. J. Neuhold (Stuttgart) und

--.....,
',;

Neben Fragen der Sprachübersetzung~ Datenbanksystemen und ab­

strakten Datentypen standen vor allem Probleme der Programmve­

r{fikation und Definition kommunizierender Systeme im ~ittel­

punkt des Interesses. Im Bereich der axiomat1schen Semantik

dominierten Fragen der (relativen) Vollständigkeit und der Er­

weiterung der Verifikationsregeln auf Prozeduren und 'kommunizie­

rende Prozesse. 8ei den konkurrierenden Programmsystemen kon­

zentrierte~ sich die Arbeiten außerdem a~f die for~ale Defini-
- .,

tion und Beschreibung. Insgesamt läßt sich eine Aussicht auf

eine Konvergenz gewisser verschiedenartiger Begriffsbildungen

und Auffassungen erkennen. Weitere T~g~ngen die~er Art können

im Sinne dieses wünschenswerten Prozesses nur begrUBt we~den.

 ©

2

K·. R. Apt .. Paris

D. Bj6rner .. Lyngby (Dänemark)

C. Böhm .. Rom

w. Brauer, Hamburg

M. Broy .. MÜnchen

E. M. Clarke, Cambridge, MA.
v. Claus, Dortmund
A. B. Cremers, Dortmund

O. J. Dahl .. Oslo

w. Damm .. Aachen

J. B. Dennis .. Cambridge, MA.

P. Oeussen .. Karlsruhe

J. Eickel .. München

G. Gaos .. Karlsruhe

D. Harel .. Rehovat (Israel)

C. A. R. Haare .. Oxford

G. Hatz .. Saarbrücken

K. Indermark .. Aachen

N. D. Jones .. Aarhus

P. Kandzia .. Kiel
M. Karpinski .. Edinburgh

Vortragsauszüge

u. Kastens .. Karlsruhe

I. O. Kerner, Dresden

F. Kröger, München

H. Langmaack, Kiel

P. Lauer, Newcastle-upon-Tyne

J. Loeckx .. Saarbrücken

O. Mayer .. Kaiserslautern

A. Meyer, Cambridge, MA.

B. Möller, MÜnchen

E. J. Neuhold .. Stuttgart

M• Ni va t' .. Par i s

E.-R. Olderog .. Kiel & Oxford

M. Paul .. München

G. Plotkin, Edinburgh

J. E. Stoy~ Cambridge, MA.

S. Takasu, Kyoto

B. Trakhtenbrot .. Tel-Aviv

J. V. Tucker, Leeds

H. K. G. Walter, Darmstadt

M. Wirsing, München

K. R. Apt: Fair termination revisited

(Work done jointly with A. Pnueli and J. Stavi)

A proof method for establishing the total correctness of nonde­

terministic programs under the assumption of fairness is pre­

sented. The mathodmakes use of auxiliary delay variables which

count down to the instant in which a certai~ action will be sche­

duled. It can be applied to progr~ms allowing nested do~loops

in contrast to the previously suggested methods which only a1­

lowed non-nested loops.

 ©

t.

3

D. Bj6!irner:' Software architectures & programming systems. design

on the didactics of a methodology

The structure of a Software Development Methodology was out­

lined and argued in terms of the corresponding c~mposition of a

larger_(set of) textbook(s) which the speaker is currently writ~

ing: following introduction parts on denotational semantics bas­

ed on "software abstraction principles" are parts on the "for~

mal description of programming concepts". "implementation tech­

niques" and the application Df the above implied techniques to

"programming language linguistics and the development of the in­

terpreter- and compiler processors", "data base models and their

data base management systems" •."parallel-. or process-oriented

sy~tems and their monitors", and "applications software". The

main thrusts are: (1) that mathematical semantics definitions

be the way in which software architectures be specified and the

basis from ~hich implementations be "derived", and w.r.t which

correctness ~e argued; and (2) that such techniques are .uni­

formly applicable acrass systems- and application programming

areas# thereby pre-empting much·of the material hitherto classi­

fied as exclusively or particularly belonging to specific such

areas.

c. Böhm: The purpose of unit-lists in functional programming

A new set of primitives for Combinatory Logie and Algebras is

suggested. which enables us to construct an algebraic nation of

finite linear sequences of combinators. It "turns out that the"

nation of unit-lists is powerful enough. together with the prim­

itives. to express (with almost no change) all the basic coneepts

of Functional Programming. In particular, 'this approach ena­

bles us to eliminate the "condition" and the "apply-to-all" con­

structs.

 ©

4

w. Brauer: On modular specification and implementation of

abstract data types

('Joi nt ·wark wi:t"h o. Schoett, Hamburg/Edi nburgh)

starting from considerations of practical programming needs and

habits some proposals are made concerning the canstruction of

programs by decomposition into modules and their separate imple­

mentation. A farmalization of the nation of module is given,

the idea is to distinguish between the surrounding of a module

(the given sorts and functions) and the (new) sorts and func- ~)~

tions it defines such that semantically a modu.le is a function

associating to any interpretation of the surrounding, an inter­

pretation af the new sarts and functions. A corresponding na-

tion of specification using first order logic 1s given. A

rather general notion qf implementation is defined: an imple­

mentation must anly have the same observable behaviour as a mod-

el of the specification. All these notions are farmulated witn-

in the fr~mework of partial algebrasJ the inte~pretation of

tenn equations with terms possibly having no value is defined

according to Russels theory·of descriptions it coincides

with P. Burmeister's treatment of E-equations (FCT' 81, LNCS

117). Two homomorphism criteria are given to show that a (sep­

arate) implementation is correct and that a system of separate .

implementations of the components of a decomposition of a spec­

ification is an implementation of the whole specification.

Moreover. it can be shown that a system of concrete. programmed

modules satisfies the homomorphism criterion if each module
accesses data values of new sorts of other modules only by ac- .-. .

cess functions declared in these modules.

The diploma ,thesis by O. Schoett .on whic~ this fact is based

appeared as a technical report of the Department of Informatics,

Hamburg University.

 ©

5

M. Broy: Variations on fixed point theory for nondeterminism

and concurrency

For an applicative programming language that inc~udes recursive

definitions of nondeterministic functions and systems of expres­

sions communicating by streams a fixpoint-based mathematical S8­
mantics is given. The lenguage comprises straightforward non­

detenninstic choice and l..-avoiding ambiguity operator. lt allows

to represent networ~s of stream processing" nondeterministic· func­

tions. Ta overcome the problems of the powerdomain approach for

giving a. correct meaning for this language several partial order~

ings are used in combination for characterizing the intended

fixed point leading to a fully abstract mathematical semanties.

E. M. Clarke: Effective axiomatizations of Haare logics

For a wide class of programming languages P and expressive

interpretations I, we show that there exist sound and re­

latively complete Haare logics for both partial correctness

and termination assertions. In fact, under mild assumptions on

P and I we show that the assertions t~ue in I are un~formly

decidable in the theory of l(TH(I») iff the halting problem

for P is decidab~e for finite interpretations. Mareover, the

set of true termination assertions is uniformly r.e. in TH(I)

even if the halting problem for P is not decidable for finite

interpretations. Since total correctness assertians criincide

with termination assertions f'or ~eterministic pragramming lan­

guages, this last result u~expeetedly suggests that good axiom

systems for total eorreetness may exist far a wider spectrum of

languages than is the ease for partial correctness.

 ©

6

v. Claus: Mathematical methods for decompilation

The decompilation deals with the translation from- lower level to

higher level programming languages. e.g. decompilatian from As­

sembler to PASCAL. There are straightforward methods to embed

lower level languages into higher ones. however the main problems

are the deteetion of high level struetures in primitive programs

and the handling of eonflicts.

The decompilation of control structures will be described by a ~.
set of transformations acting on the underlying graphs. In the

ease that the destination language has PASCAL-like contral struc­

tures the kernel set of these transformations are shown to have

the Church-Rosser-property. The problem. how to structure un­

structured structures. leads to several results which are impor-

tant for praetical implementations.

Reference: Hecht & Ullman. SIAM JfC. 1972 (Flow Graph Reducibi­

lityl. B. Baker. J ACM 1977. 98-120 (An algorithm

for structuring flowgraphsl. several master thesis

at the University of Dortmund.

A. B. Cremers: Program prototyping in the data space machine

(Joint work with T. N. Hibbard. Pasadena. CA.)

A data space is a formal model of an abstract machine. and con- .~
sists of a transition system on which an information structure

is imposed. The full class of data spaces. as defined in our

previous publications. is clearly beyond any computable syntax.

We have identified a subelass of the data spaces. ·the ttcontext­

free" ones. which include all the abstract machines we know about

and which are within the reach of a syntax. 'The "data space

mathine" isa syntactic embodiment of context-free data spaces:

It can be used for program prototyping in the sense of con­

structing highly conceptual. problem oriented executable models

of data spaces. Two realizations of the data space machine have
bee-n- built -whi~ch are now -be{ngused -in -nontri~iai ~p-pli~~ti~~n~ ~ -

 ©

'~

•

7

o. J. Dahl: Partial corectness semantics of communicating

seguential processes

A simple extension of conventinal Hoare l~gic is.defined for

CSP programs. The system is based on the idea of introducing

communication histories as additional program variables. A

slightly more complicated version of the system i5 shown to be

complete a5 weIl as consistent.

w. Damm: On veryfying higher type procedures

(Joint work with B. Josko)

Since Clarke's wark on incompleteness results for PASCAL it has

been conjectured, that the ·sublanguages ofALGOL 68 with only

finite modes and without global variables has a so~nd and rela­

tively complete Haare-style proaf-system. However, since pro­

gram-trees of such programs are highly non-regular, it follows

from the work of Langmaack and Olderog that new proof-rules are

needed to deal with such languages.

"The crucial observation to obtain a complete proof systems is

that the proof of a procedure ca 11 P (r l' ~ . r m) can be ob­

tained by proving first correctness formula for the actual par­

ameters and proving the.procedure P separately. The new proof

rule then guarantees, that a correctness formu la for P cr 1 ' r m)

can be obtained by substituting the pre-and post-conditions of

the actual ·parameters into the pre- res~. post-conditian af P.

This demands an extension of the assertion language by allowing

higher order predicate. variables. The net effect of this proof­

rule is, that a proof of a camplex call {p} P(Qm)·· .(00) {q}

with Qj of functional level j is eventually reduced to

"simple" proofs of correctness formula {f} P' {f"}, where P'

is a.procedure identifier and f, f' are such higher-type formu­

la. hence to a regular proof tree. Applying the classical recur­

sion rule gives a finite proof-tree.

 ©

8·

P. Oeussen: An exercise in verifying programs: partial correct-

ness of recognising and of parsing algorithms

An intuitively given algorithm for recognising (and parsing)

languages is verified by using Dijkstra's weakest preconditions

and by using Hoare's derivation rules.

In both cases a finite ehoice operator had to be considered,

first by deriving its weakest preconditons equal to that of ~.

Dijkstra's if-construct, secondly by presenting a Hoare-rule

for this operator.

As a by-product of the verification a neeessary and suffieient

condition for the partial correctness of the algorithm is obtain­

ed. which fact is of importance because from that algorithm

all types of parsers can be obtained by suitable refinements.

J. Eickel: Data structured programming

Certain classes of programs Ce.g. compilers or editors) allow

the global control structure to be generated from a formal de­

scription of the da ta structure by using standard routines.

This approach is based on a special case of Jackson's prineiple

and is used in compiler generating systems. It allows to intro­

duce very high level language constructs in special purpose lan­

guages and is reflected in Henke's method of function extension

in algebraic semantics.

These connections having been pointed out the problem of improv­

ingefficiency and removing nondeterminism in programs by merely

transforming the data type .definitions is discussed. This trans­

formation is independent of particular problems and' consists es­

sentially of an efficient Greibach-normal-form-transformation.

Finally the relation with a unified app~oach to parser generating

algorithms is shown.

 ©

•

••

9

G. Goos: Systematic Code Generation

Code generation is the transformation of a sourca program ex­

pressed as a structura trae into a sequence öf abstract machine

instructions. The transfonnation consists of the steps storage

mapping l tree transformation and target attribution, code se­

lection. It is shown how storage mapping can be achieved by a

strafghtforward set o{ algorithms independent of how this step

i5 integrated into the remaining steps. The necessary tree

transformations and target attribution depend on the desired

degree of optimazition and on the code selection methode It

ls shbwn how algebraic laws may be used for optimizations.

A. special code selection based on the work of Glanville .and

its embedding into the generation process is discussed. The

methed ha.s been successfully used in a number of code genera­

tors for PASCAL. Results from these experiments are reported.

D. Harel: Decision problems in propositional dynamic logic

The validity problem for formulas of regular propostional dy­

namic legic (POL) is decidable. Same recent results extend­

ing this fundamental result of Fischer & Ladner are surveyed.

In particular, the subject of extensive recent research is the

status of the theorem upon enriching the class of regular pro­

grams. A new appro~ch to proving decidability is suggested,

which might previde new decidable cases, and help explain the

seemingly unbehaved borderline between those classes of con­

text-free programs whose addition to ~DL ruins its decida­

bility, and those whose addition does not.

c. A. R. Haare: Specifications, programs, proofs

A specification of a mechanism is a predicate describing all

pass ib 1e observat ions. of i ts permi t ted behaviour. A computer

 ©

10

program defines a mechanism, of which we enquire "what is the

strongest specification that it maets?" We define a simple

programming language of communicating sequential processes by

igentifying each program with its strongest specifiation.

Many important properties of programs follow directly from a

definition in this style.

N. D. Jones: A simple compiler generator based on algebraic

semantics

A simple algebra-based algorithm for compiler ge~eration is

described. Its input iS'a semantic definiton of a programm~

ing language, and its output is a "compiling semanties" which

maps each program into a sequence of compile-time actions

whose net effect on exeeution is the produetion of a semanti­

eally equivalent target program. The method does not require

individual compiler eorreetness proofs or the eonstruction of

speeialized target algebras.

Souree program execution is assumed to proeeed by performing a

series of elementary actions on a runtime state. A semantic

algebra is introduced to represent and manipulate possible exe­

eution sequences. A souree semantic definition has two parts:

A set of semantic equations mapping souree programs into terms

of the algebra, and an interpretation whieh gives concrete de­

finitions of the state and the elementary aetions on it.

P. Kandzi~: struetural properties of relationsl da ta base schemes

with funetional dependeneies

Investigating normalization proeesses and the use of null val­

ues in relational data base schemes with functional dependencies

one needs ~o_ ~n~w__ r:.rC?~er~~e~ _~f_tb~ ~_ej: _of_ (~tll~ functional_depen-~

 ©

~----- - ~--- -------

11

dencies holding in the considered scheme. Usually this set is

called the closure CL(a l Fl 1 where a and F are the given

attribute set end the given set of functional dependencies l re­

spectively. It'is shown in the lecture that the closure has

same kind of coset structure. The cosets themselves can be cha­

racterized very simply by one maximal and same minimal elements.

The results can be employed as a common framework für algorithms

essential in logical data base design. Especially fqr the prob~

lern of Boyce-Codd normal f9rm (SeNF) classes of data base sche­

mes are given for which SeNF can be found I in acceptable time.

u. Kastens: Code generation based on operator identification

The code generation phase of a compiler maps operations of the

souree language into instruction sequences of the target lan-

g uage. In genera 1 the des ired effect can be ach ieved .by sev­

eral instruction sequences which differ in casts (e.g. code

lengthl and used reeources (e.g. registersl. The code selec-

,tion depends on the context of the operation.

We present a method for code seleetion for tree structured

souree programs. It is'based on the principle of overloading

resolution for operators applied in the analysis of high level

languages (e.g. ALGOL6B 1 Ada). The target machine instruc­

tions are'considered as typed operations: Properties af oper­

ands and results are described by types in terms of the tar­

get, machine (e. g. n register" I "address"). By that means code

selection and resouree allocation can be formally specified.

It will be shown that completeness and optimizing properties

of such a specification are decidable.

 ©

12 .

I. O. Kerner: Same guestions concerning problem-specifications

and their transformation into programs

Most of the errors in software const'ruction "arise from' incom­

pIste or even wrang problem specifications. There are examples

for the transformation of specifications inta programs. But

what i5 the impact of different (correct) specifications to

program efficiency? But what happens if th~se' transformations

are applied on unsolvable (undecidableJ problems?

F. Kröger: Process abstractions

The talk describes an example: Starting from two parallel pro­

grams ft 1 and n 2 , both working in a producer-consumer-fashion,

we try to formulate an "abstract" version of this process scheme

by'first introducing abstract data types instead of the concrete

one. and secondly abstracting the processes and their different

synchronization techniques themselves. We apply the result to

verification. It is shown that several properties (e.g.' dead­

lock-freedom) of n 1 and n 2 can be proved on the ~abstract

level. and other properties (e.g. partial correctness) can be

proved by nnly "implementing" same few of the abstract nations.

P. E. Lauer: Modelling concurrent systems without globality

The prob 1sm isthe mode 11 ingof t he be ha via ur 0 f co 11·e c t ion s 0 f

concurrent and interacting systems without any globality assump­

tions. such. as a single clock, aglobai state or even a single

. observer. We discussed this problem within the eaSY formal­

ism. The semantics of a easy specification has been defined

(i) by an interleaving semantics using t?tally ordered histo­

ries and projections~ (ii) translation to Petri-nets~ and

 ©

13

(iii) vectors' 'of histories representing partially ordered his­

tori es. Al though the mode'ls (i) and (i i i) are isomorph ic

they are not equivalent since two specifications Sand 5'

which are equal in semantics (i) are not necessarily equal in

(iii). In fact, semantics (iii) dlstinguish between specifi­

cations which (a) ar~ subdivided into a' different number of

subsystems and (b) have events differently distributed to sub­

systems. Semantics Ci) does not distinguish systems with re­

gard to their degree of cancurrency and/ar distribution as seman­

tics (iii) does.

J. Loeckx: A new specification methad für abstract data types

The algorithmic specification method far abstract data types

has been introduced in (Lo81). The present talk presents an

overview of the specification methad while commenting the main

ideas, however, particular attention is 'given ta the error

treatment, the proof techniques, the specification af param­

eterized data types and the nation of implementation. The ad­

vantages ovar the algebraib specification method are indicated

and the priee paid for these advantages is discussed. Finally,

plans for future werk are discussed.

(Lo81) J. Loeckx: "Algorithmic specificatiens far abstract,data

types", Pro c, 8t h· I CA LP (Acre, I 5 ra el j, LN C5.1 1 5 (J u 1y

..4It 1981) 129-147

A. Meyer: Termination assertions about recursive programs:

Completeness and axiomatic definability

(Joint work with J. Mitcheli)

The termination asser~ion p<S>q means that whenever the form­

ula p is true, there is an execution of the possibly nonde­

terministic program S which terminates in astate in which q

 ©

14

is true. Program S may contain 10eal variable and recursive

procedure declarations with eall-by-value and call-by-address

parameters. Formulas p and q are first order ,extended with

a construct for expressing hypotheses about calls to undeclared

.procedures in s. There is a natural~ effective~ complete axio­

matization of the termination assertions valid in all interpre­

tations. Termination assertions also suffice to define the se­

mantics of recursive programs in the following sense: two pro­

grams have the same termination theory iff they are semantic-

ally equivalent. ~

B. Möller: Transformational semantics for pointers and

updatable storage

A small applicative language is introduced which allows to de­

fine objects with sharing and circularities. Essentially~ re­

cursion equations for objects are used as objects themselves.

In order to get meaningful solutions for these equations.

non-strict constructor functions have to be used. Therefore

the language requires lazy evaluation·; an operational seman­

tics using this technique is given. Several examples illus~

trate how familiar structures with pointers can be model-

led and reasoned about in this language. Secondly~ a lan­

guage level more oriented towards the von Neumann machine

is added which allows variables and selective updating.

This level is connected to the applicative ~ne by defini­

tional transformation rules. They are given in such a way

that the nations of assignment and selective updating are

disentangled and the problems of the use af references in

ALGOL 68 are avoided. The applicat~ons of the techniques to

the derivation of correct procedural implementations of ab­

stract data types are briefly outlined.

 ©

..'

•

15

E. J. Neuhold: Building dat·a base management systems through

formal specification

The Vienna Development Method has been used to develop the

formal specification of a relational data base system. We

illustrate how this specification can form the basis for

systematically constructing an implementation of the system.

The approach follows the three-level architecture concept

proposal by the ANSE-SPARe committee and specifies the nec­

essary scheme definition, data manipulation and mapping lan­

guages. Through stepwise refinement of the abstract data

type oriented·specification an implementation is produced.

The formal techniques applied al~ow both th.e verification

of the original specification but also the proof that the de­

rived implementation behaves correctly.

References: E. J. Neuhold, Th. Olnhoff: The Vienna Develop­

ment Method and its use for the specification of

relational data base systems.

E. J. Neuhold, Th. Olnhoff: Building data base ma­

nagement systems through formal specification.

M. Nivat: Behaviour of processes

A process· is a tuple of languages over an alphabet af actions

A p = <Linit • Lfin , Lmf; where Linit c A* is the set of

initial behaviour, .Lfin the set of terminated finite behav­

iour and L inf c AW is the set of infini te behav·iour. These
-. init init fin init3 sats always satlsfy L = FG(L). L c Land

Linf c Adh(Linitl.

Dne defines several natural nations: deadlock-freenes5, safety,

ideality, closedness, normality. and centrality. They are

properties of tripies af words which express' properties af ac­

tual processes.

 ©

'.

16

Dne tries then to realize ~ process p given by Linit , Lfin ,

L
inf

using a transition system or nondetermistic automaton:

5 uc h ast ra ns i t ion 5 y s t em S = < C, A, T, 0, Cf· I Ci nf> . na tu ­
rally defines 3 languages Linit(S), Lfin(S~~ and L1nf(S)

and p is said to be realized by S iff p = pes).

These nations are extended to vectors of processes such as

p.= <P1' •.. , Pk> which run simultaneously in accordance with

same synchronization condition Syn , a general form of which

is Syn = {Ci E SOO I <l> (Ci) E po} where 5 ~ A
1

x ... x A
k

~ : S ~ Ao and Po is a process called the "synchronization

mechanism". The general problem of building. a multitransition

system S which realizes the system P = <P, Syn> of syn­

ehronized processes is raised, unfortunately not solved: a prac­

t i c a 1 q ue 5 t ion isto' c ho 0 sethere a 1 i zat ion s. 0 f Po' ... I Pk

so that S be.the simplest possible. Even in the rational

ease where all the Pi's are realizable by finite transition

systems we are far from a satisfactory solution (though there

exists an effective construction of S).

E.-R. Olderog: Correctness of PASCAL-like Programs without

global variables

PASCAL-like programs are defined to be blockstructured programs

with procedures of mode depth ~ 2. Due to Clarke 79 there

cannot be any sound and relatively complete Hoare-like system

proving partial correctness for the full set of these programs. ~
However, in Langmaack & Olderog '80 it has been conjectured

that such"a system exists once global varia~les are disallowed.

In this talk a slightly weaker version of this conjecture is

proved by presenting a Hoare-like system which is sound and g­

complete for PASCAL-like programs without global variables. g­

completeness means completeness module a special second order

theory and an appropriate nation of expressibility. The proof

system provides new methods of dealing with pracedures , namely

 ©

17

the usa of relation variables and the so-called separation prin­

ciple. The ~ompleteness proof for the system is carri~d out in

a transparent way with help of modified computatiorr trees.

G. PLotkin: Fairness and countable nondeterminism

The prob1em fa c edis how t 0 ex t end den 0 tat ionals ema nti es,. a s

developed by Scott, Strachey and others, to deal with concurrent

programming languages when the fairness (= finite delayJ proper­

ty is assumed. The difficulty is that natural ~ttempts lead to

the failu~e of the continuity that lies at the heart bf the.usu­

al theory. Apt and I eonsidered previously the. ease of random

assignment and showed how a 'weak continui ty property (preserva­

tion of. w1 -1ubs) provides a substitute for the normal continui~y

.provided the domain involved had lubs of both Wo and w1 se­

quences. The point here i5 that fairness leads to countable non­

determinism and random aS5ignment is an easy'way to introduce

the latter.

S. Takasu: An interactive program synthesizer

An interactive program.synthesizer is described. The system is

an interactive proof-checker which con5trutts ? Pas~al program

as its backgrou~d job if we use the system to ~~ove a quantified

specification of the .program.

B. Trakhtenbrot: On denotational semantics and partial correct-

nass für 1ansuages with procedures as pa~ameters

and with aliasing

Semantics and partial-correctness theory for programming langu­

agas above were developed up to now mainly in frame of the oper­

ational approach to semanties. As an al ternat.i ve a pure denota-

 ©

18

tional approach i5 suggested, that is based on suitable compila­

tion of program texts into terms of a ~-language with the con­

struct "let p = body in T". Equivalenee transformations of

terms in this A-language uSa conventionalA-arguments and fix­

point techniques. They induce equivalence transformations of

programs. that are included in the proof system in addition to

more traditional Hoare-like rules and axioms. In such a way a

sound and relatively ccimplete axiomatization 1s pessible. aft~r

suitable denesting for programs under conditions formulated by ~
E. Clarke. (This investigation is related to werks of H. Lang-

maack and E. R. Olderog. but was performed independently.)

J. V. Tucker:-The axiomatic semantics of programs based on

Hoare's logie

Floyd's Prineiple says that the semantics of a program language

can be usefully defined by the axioms and rules of inference

·used to prove properties of-programs in the language. Tagether

with J". A. Bergstra. I have studied the semantics of while-pro-

grams based on the assumption that all what is known about while­

program computation is what can be proved in Hoare's logie für

partial correctn~ss. The semantics AS one obt~ins is not the

conventional operational semantics OS the axiomatic seman­

tics is non-determinstic. for example. Noteworthy is the fact

that Hoare's logie is always complete w.r.t. AS whereas this

1s not the ease for OS. OS is embedded in AS and on inter­

pretations I for which the assertion language is expressive we

find that. OS AS. 1he talk will present this material as the

conclusion of a survey.of my work with J.A. Bergstra on Hoare's
logic.

 ©

-..

19

M. Wirsing: Implementation of algebraic specifications

(Joint work with o. Sanella)

A nation for the implementation of ane specification by others

is given to handle parameterized specifications. hierarchical

specifications (used for the modularization of'large specifica­

tions) as weIl as 100se specifications (having an assortment

of non-isomorphie models).

-Implementations are proved to compose "vertical1y" (two succes­

sive implementation steps compose to give ane large step) and

"horizontally". That is. under some restrictions two separate

implementations of the pa~ameterized specification and the actual

parameter cornpose to an implementation of the application. More­

over. the implementation o~ a hierar~hical system of specific~-

. rions can be done "locally" : Replacing a subtype of the system

by its impl~mentation leads (again under certain conditions) to

. an implementation of the overall system.

Berichterstatter: Manfred Broy

 ©

Adressen der

Tagungsteilnehmer

Herrn
Dr. K. R. Apt
Erasmus Universiteit
Karner H5-12
Burg. Outlaan 50
Rotterdam
Niederlande

Herrn
Prof. Dr. D. Björner
Dept. of Computer Science
Technische Universität of Denmark
Building 343,344

DK-2800 Lyngby

Herrn
Prof. Dr. C. Böhm
Universite di Rama
Instituto Mathematico
Gino Catelnuovo, P. Delle Science

1-00100 Roma
Italv

Herrn
Prof. Dr. W~ Brauer
Institut für Informatik
Schlüterstraße 70

2000 Hamburg 13

Herrn
. Dr. M. Broy

Institut für Informatik
TU München
Arcisstraße 21

8000 München 2

Herrn
Prof. Dr. V. Claus "
Abtei lung Infonnat; k

- Uni vers";.tät Dortmund" ­
Postfach 500 500

4600 Dortmund

20

Herrn
Prof. Dr. E. M. Clarke
Aiken Camp. Lab.
Harvard University
Cambridge
Massachusetts 02138
USA .

Herrn
Prof. Dr. A. Cremers
Abtei 1ung Infonnati k"
Universität Dortmund
Postfach SO 05 00·

4600 Dortmund

Herrn
Prof. ·Dr. O. J. Dah 1
Hathematisches Institut Avd. D.
Universität Os10
Blindern
o s 1 0 3
Norwegen

Herrn
Dr. W. Damm
Institut für Angewandte Mathematik
und Informatik
Technische Hochschule Aachen
Büchel 29 - 31

5100 Aachen

Herrn
Prof. Dr. J. B. Dennis
MIT Laboratory for Computer Science
545 Main Street

Cambridge, Mass. 02139

USA

Herrn
Prof. Dr. P. Deussen
Institut für Informatik
Universität Kar1sruhe
Postfach 63 80

7500 Karlsruhe

Herrn
Prof. Dr. J. Eickel
Institut für Informatik

-- Techni s-che -Uni vers ftät -Mü·nchen
Arcisstraße 21

8000 München 2

 ©

Herrn
Prof. Dr. G. Gaas
Institut für Informatik
Universität Karlsruhe
Zirkel 2

7500 Karlsruhe

Herrn
Dr. D. Harel
The Weizmann Institute of Science
Department af Applied Mathematics

Rehovot, Israe 1

Herrn
Prof. Dr. C.A.R. Haare
Merton College
Oxford University

Oxford
England

Herrn
Prof. Dr. G. Hatz
Institut für Angewandte Mathematik
und Infonnati k
Universität des Saarlandes
Im Stadtwald
6600 Saarbrücken

Herrn
Prof. Dr. K. Indermark
Institut für Informatik
RWTH Aachen
Büchel 29 - 31

5100 Aachen

Herrn
Prof. Dr. Neil Jones
Computer Sc;ence Department
Aarhus Un;versity
Ny Munkegade
DK-BOOO Aarhus C
Dänemark

Herrn
Prof. Dr. P. Kandzia
Institut für Informatik
und Praktische Mathematik
Christ;an-Albrechts-Universität Kiel
Olshausenstraße 40-60
2300 Kiel 1

21

Herrn
Prof. Dr. M. Karpinski
Computer Sc;ence Dept.
Univ. of Edinburgh
Mayfield Road
Edinburgh EH 9322
Great Britain

Herrn
Dr. U. Kastens
Institut für Informatik
Universität Karlsruhe
Zirkel 2

7500 Karlsruhe

Herrn
Prof. Dr. I. O. Kerner
Pädagogische Hochschule
Abteilung Beographie
Wedardstraße -

8060 Dresden
DDR

Herrn
Prof. Dr. F. Kröger
Institut für Informatik
Technische Universität München
Arcisstraße 21

8000 München 2

Herrn
Prof. Dr. H. Langmaack
Institut für Informatik
und Praktische Mathematik
der Christian-Albrechts-Universität
Olhausenstraße 40 - 60
2300 Kiel

Herrn
Dr. P. Lauer
Computing Laboratory
Univ. of Newcastle upon Type

Newcastle upon Type
UK

Herrn
Prof. Dr. J. Loeckx
Institut für Angewandte Mathematik
und Infonnat; k
der Universität des Saarlandes
Im Stadtwald
6600 Saarbrücken

 ©

Herrn
Prof. Dr. O. Mayer
Institut für Informatik
Universität Kaiserslautern
Pfaffenbergstraße

6750 Kaiserslautern

Herrn
Prof. Dr. A. R. Meyer
MIT, 545 Main Street
Roan 806

Cambridge, Mass. 02139

Herrn
Dr. Möller
Institut für Informatik
Technische Universität München
Arcisstraße 21

8000 r~ünchen 2

Herrn'
Prof. Dr. E. Neuhold
Institut für Informatik
Universität Stuttgart
Azenbergstraße 12

7000 Stuttgart

Herrn
Prof. Dr. M. Nivat
Universite Paris 7
Tour 45 - 55
2, Place Jussieu

F-75230 Paris

Herrn
Dipl.-Inform. E.-R. Olderog
Institut für Informatik
und Praktische Mathematik
Christian-Albrechts-Universität Kiel
Olshausenstraße 40 - 60
2300 Kiel 1

Herrn
Prof. Dr. M. Paul
Institut für Informatik
Technische Universität München
Arcisstraße 2t

8000 München 2

22

Herrn
Dr. G. Plotkin
Computer Science Dept.
Univ. of Edinburgh
r,1ayfi e1d Road

Edinburgh EH 9322
Great Britain .

Herrn
Prof. Dr. J. Stoy
Merton College
Oxford University

. Oxford
England

Herrn
Prof~ Dr. Satoru Takasu
Research Institute for Mathematical
Sc;ences
Kyoto University
Sakyoku, Kyote 606
JAPAN

Herrn
Prof. Dr. B. Trakhtenbrot
Tel Aviv University
Department cf Mathematical Sciences

Ramat-Aviv, Israel

Herrn
Dr. J. V. Tucker
Scheel cf Mathematics and Computer Science
University of Br;stol
University Walk ~

Bristol ass 1 TW .~
England

Herrn
Prof. Dr. H. Walter
Technische Hochschule Darmstadt
Informatik
Hochschulstrasse

6100 Darmstadt

Herrn
Dr. M. Wirsing
Institut fUr Informatik
TU- München-
Arcisstraße 21

8000 r·1ünchen 2
 ©

