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This year's Finite Geometries conference was held under the

direction of F. Buekenhout (Bruxelles), D.R. Hughes (Landon)

and H. Lüneburg (Kaiserslautern). One of the mainstreams of

the conference was the theory of buildings in the sense of

J. Tits (e.q. generalized quadrangles or hexagons, polar spaces)

and the axiomatisation of these geometries. Many lectures treated

relationships to combinatorics, design theory, various aspects

of qroup theory, algebraic geometry, coding theary, graph theory

and number theory. Prof. Hering reported on the discovery of an

interesting new class of finite projective planes, and Prof. Ott

~ studied finite geometries with the help of concepts inspired by
group representation theory.
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Vortragsauszüge

E. Bannai, On spherical t-designs which have transitive auto­

morphism groups.

The following question is discussed:. Question. For large t, can

one find a spherieal t-design X in Sd on which a finite subgroup G

of 0(d+1) (real orthogonal gro~p in Rd +1 ) aets transitively,

(d~2)? Theorem. Let d~2 .. If ~(d+1) acts transitivelyon a

spherical t-design S, then Pi/G remains irredueible for all

i=0,1, ••• ,s=[ (1/2) [t/2]]. Remark. No example of G such that the

above eonelusion of theorem is true is known for s~6. Also, by

assuming the classification of finite simple groups, it ean be

shown that there are no such G for large s. So the answer to the

above question is negative.

T. Beth, Applieation of geometries.

Apart from the well-known connections between coding theory and

.geometry, tw~ reeent applieations of geometrie structures to

praetieal problems of digital signal-processing are discussed:

(a) Finite Radon-transformations, arising from incidence matrices .

of suitable geometries D, are used to provide a fast and stable

inversion algorithm for computer tomography. The decoding pro­

eedure can be performed fast by parallel computation in the group­

ring GF(p) [G] of an automorphism group G of D. (b) Geometrie con­

figurations in PG(n,2) are used for the design of nan-linear

pseudonoise generators of large cornplexity. The generatores are

sucessfully implemented as key-strearn cipher generatores for

cryptographie purposes.

A. Beutelspacher, Finite h-semiaffine planes.

An h-semiaffine plane is a linear space S with the property that

through any point outside a line L there are h or h-1 lines dis­

joint to L. By the work of Dembows~i (1962) and Oehler (1975) all

finite 1- and 2-semiplanes are known. One can prove the following:

Theorem 1. Let S be a finite 3-semiaffine plane. Suppose that

there are two disjoint parallel classes of 1110ng n lines. Then S
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is a projective plane from which a triangle. is removed.

Theorem 2. For any h 4 there are at most finitely many finite

h-semiaffine planes. (This work was done together with

J. Meinhardt.)

A. Bichara, On the independence of ~he axioms in Grassmann·spaces.

We prove that the axioms characterizing the Grassmann spaces are

independent.

A.E. Brouwer, Near polygons.

For the definition of a near polygon see Shult and Yanushka

(Geom., Dedicata 9 (1980) 1-72). Theorem. A regular near. polygon

with thick lines and quads (i.e., with s>1 and t 2>0) does contain

sub-near polygons: any two points at distance i determine a unique

geodetically closed sub-near 2i-gon. Theorem 2. A regular near

octagon satisfies ·(at least) one of the following: (i) s=1;

(ii) t 2=0; (iii) t 3=1; (iv) it is a dual polar space. The known

near polygons are usually unique, the unknown anels usually do

not exist.

F. Buekenhout, Some geometries for the Harada-Norton Group.

We discus~ a geometry for the prime p=2, having the intersection

property and the diagram

3--5 4
2 1+8 (A5XA

5
).2 2 6 .06(2)

The points are the central involutions of RN. Lines have 3 points.
. *and planes-quads have 27 points~ The residues of type (4,5,6)

have 72 points each on 4 lines and 60 lines each on 5 points. I~

the incidence graph of the latter rank 2 geometries, the girth is

2x4, the greatest distance from a point (resp. lines) is 6

(resp. 5). Geometries for the primes 3 and 5 are also discussed.

P~J. Cameron, Some questions and results about permutation groups.

The talk discussed same recent results and open problem 1n asyrnp­

totic permutation group theory, same of which assume the classi­

fication of finite simple groups. (i) For a~most all n, the only
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primitive groups of degree n are the symmetrie and alternating

groups (Carneron, Neumann, Teague). (ii) With known exeeption,

a primitive group of degree n has small" order. If no large

alternating groups or classical groups of large rank oceur as

eomposition factors, the order is polynomially bounded (Babai,

Cameron, Palfy). (iii) There are only finitely many distanee­

transitive graphs of given valeney greater than 2. (iv) There

are inequalities connecting minimal degree or minimal base

results asserting that if a graph, Steiner system, etc. has

sufficiently many automorphisms, then it is "known" in same

sense.

A.M. Cohen, Some point-line geometries of Tits bUildings.

Let (P,B) be an incidence system. The following result both

strenghtens and generalizes a theorem of Cooperstein:

Theorem. Let (P,B) be an incidence system where lines have

length >2 satisfying: (1) X E P, Y E B,IX~ n yl > 1 q Y c X~,

{2} the collinearity graph of {P,B} is eonnected but not eom-

plete, (3) X, Y E P, d{X,Y) 2 q {X,y)~ is a non-degenerate

generalized quadrangle, (4) X E P, Y E B, X~ n y = 0,
.1. ~ '.1. ~ .

IX n y I > 0 q X n y E B. Suppose furthermore that all com-

plete subspaces have finite rank. Then one of the following

holds: Ci) (P,B) is a non-degenerate polar space of rank 3,

{ . '} th 4 d n+1 d d···· h h11 ere are n ~ , ~ --2- an a 1V1S1on r1ng F suc t at

.(P,B) = An,d{F), the space of (d-1)-subspaces of PG{n,F),

(iii) there are d ~ 5, an infinite division ring Fand an invo­

lut~ry automorphism 0 of A2d- 1 ,d{F) indueed by a polarity of

PG{2d-1,F) of Witt index ~ d-5, such that (P,B) ~ A2d- 1 ,d/<o>.

Also it is shown how this theorem fits into a program of elassi­

fying distance-transitive and root groups geometries of groups

of exceptional Lie type. For Cooperstein's original theorem

and notation, see Geometriae Dedicata 6 (1977), 205-258.

B.N. Cooperstein, A geometrie characterization"of a graph
+related to 2n{Q), rn > ~.

Let V be an orthogonal space over a field F with dimension 2m ~ 8
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"and asswne V has maximal Witt index. Let m be the maximal

(totally) singular subspaces of V. Define a graph ·r on m as

follows: for M, N E m,{M,N} E r if and only if diIDp M/N N 2.

Under this relation m has twa connected components. Let P be

such a componentand denote by r the restrietion of r to P.

Using the usual eonstruction we get a gamma space with thick

lines fram the graph (p,r). We obtain a characterization of

this gamma space when F is finite in terms ofaxioms on points

and lines. Th~s extends part of theorem Bin" A 'chara'c't'e"r'i'z'at:iön

of some incidenee-structures. Progress on extending the result

to infinite Fand an applieation will be discussed.

Frank de Clerck, Embedding of triangular copolar spaces.

A(O,al-geometry (a > 1) is a connected incidence structure

S = (P,B,l) satisfying .(a) two distinct points' are incident with

at most one line, (b) if a point X and a line are not incident,

then there are 0 or a (a > 1) points which are collinear with X

and incident with the line, (e) each line is incident with at

least two points, and each point is incidentwith at least two

lines. We determine all (O,a)-geometries with q+1 points on a

line which are embedded ~n PG(n,q), n > 3, and q > 2. ~s a

particular ease all semi-partial geometries with parameters

s = q,t,a( > 1) and ~, embeddable in PG(n,q), q # 2, are obtained.

If q = 2, then the triangular geometries (associated with the

triangular graphs) are examples. We give some unusual embeddings

of these geometries, in particular T(?) in PG(4,2) and T(9) in

PG{S,2). The triangular geometries are the only (O,2)-ge~metries

which can have unusual embeddings.

Anne Delandtsheer, Finite linear spaces with metrically regular

incidence graphs.

We consider incidence graphs of finite linear spaces in which

for a certain 6-tuple (i,j,k,l,m,n) of distances, there exists

an integer pi~ such tha~ for any tripie (x,y,z) of verices with

d(x,y) = i, d(y,z) = j, d(z,x) = k, the number of vertices at

distance 1 (resp. m,n) from x (resp. y,z) is equal to Plijk . Wemn
characterize the finite linear spaces satisfying some of these

conditions.
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o. Domenico, A"characteristic property of the Grassmann

manifold representing the lines of a projective spaee.

Given any ·projeetive space P, dim P ~ 3, the partial line

space G(P) =·'(5,R) ean be eonsidered. The points of G(P) are

the pe~cils of lines of P. G(P) is ealled the Grassmann-spaee

of P. A star of lines (i.e. the set of"all lines of P throug~

a point) is a max~al subspace of G(P). The family ~ of stars

is a covering of 5 with the following property (0):

VT E Land Vp E 5-T each eIem~nt of E through p meets T in a

single point. The points are on a line of T, Iocus of points

in T eollinear with p. In a joint wqrk with Melaue, I proved

the following: Theorem. Let (S,R) be a proper partial line

space whose lines are not maximal subspaces. If (S,R) has a

covering E of max~al subspaces verifying (0), then there

exists a projective space P such that (S , R) iso isomorphie to

G (P) •.

Jean Doyen, A characterization of conferenee matrices.

A finite graph G is said to have property p~t (resp. pt) if. rn,n m,n
for every sequenc~ of m+n vertices.of G, there are at least t

(resp. exactly t) other vertices adjaeent to the first m

vertiees and non adjacent to the last n vertices. It is known

that, for any given m,n and t, almost all graphs have

proper~y P;~n. G has property P2~O iff G is a f~iendship· graph

(Erdös, Renyi and 50S, 1967). G has property P2~O (t 2:.2) iff

G is a strongly regular graph with A = ~ = t (Base and Shrik­

hande, 1970). G has property P t o (m ~ 3) iff G = K +t. ro,. m
(Carstens,and Kruse, 1977). Theorem: There is a graph having

property P t (m,n ~ 1) iff m = n = 1. A graph G has propertym,n
Pl~1 iff G is a conference graph, that is a (4t+l, 2t, t-1, t)

strongly regular graph.

D.A. Foulser, Do irreducibie SL(3,q)-modules support spreads?

Areport on joint"work in progress with G. Mason and M. Walker.

If q = pD and p = 2, then Mason proved the answer is "no"

(Pullman Conference, 1981). If p > 2, our answer iso ineomplete

although much geametrical and group theoretical structure is
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available. For example, there is an elementary abelian group Q

of order q2 whose fixed-point space F(Q) is a sqbplane such

that dirn V = (dirn F(Q»pfd, where f ~ 1 and d ~ p-1 (where V is

an irreducible SL(3,q)-module supporting a spread whose kernel

is GF(q». Let V = V~ x v~ x ••• x V~ where Vi is a basic module

and < 8 > = Aut(GF(q», then at least one Vi is the basic Stein­

berg module·St. As a partial result, one obtains: Proposition.

If 3 x p-l and 21n, then V does not support a spread. Proof. A

certain element P, P = 2(p-1), has 2(p-1) distinct eigenvalues'

on St and hence on V. Moreover on V, the eigenvalues are sub- ~

planes of equal dimension. This implies the number of eigen-

values, 2(p-1), divides pfd, a contradiction.

M.J. Ganley, Weak nucleus semifields.
2A weak nucleus semifield (w.n.s.) is a semifield S of order q

having a subfield'F = GF(q) s.t. x(yz) = (xy)z, whenever 2 of

x, y, z E F. This idea was first 'introduced by Knuth in 1965.

Such semifields give rise to projective planes of Lenz-Barloti

class V.1. We begin by considering commutative examples having

F as the middle nucleus of' S, and show that there exist exactly

two infinite families when q is odd (where "infinite family"

is defined in a special way) and no proper example at all when

q is even. These examples (with q odd) can be combined to pro­

duce ather w.n.s. and we describe all infinite families having F

central in S. Finally, we explain how to construct any w.n.s.

and give same further examples. All of the examples given give

rise to new families af projective planes. We also show how the

original examples of Knuth arise in a very natural way. 4It
B. Ganter, Some new perfect codes.

We give examples of perfect binary (15,11)-codes which are not

equivalent to previously known codes with these parameters. The

main tool is the Jacobian matrix of a code, which generalizes

the parity check matrix of a linear code. (Joint work with

H. Bauer and F. Hergert.)
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Dina Ghinelli Smit, Nonexistence Theorems for automorphism

group of di~isible designs.

Using the Hasse-Minowski theory, we have proved a nonexistence

result for standard automorphism groups of point-divisible

designs (see [2] and [3]). Here we show how, if the design 1s

also block-divisible (or simply divisible) the Bose-Connor

theorem (see" [1]) and the above mentioned result can be

improved. If the automorphism group has odd order, yet another

irnprovement is given, using techniques, due to E. Lander (see

[4]), derived from coding theory and modular representation

theory. References.[1] Bose and Connor, Combinatorial properties

of" "group divisible incomplete block designs, Ann. Math. Statist.,

23 (1952), 367-383. [2) D. Ghinelli Smit, Automorphisms and

generalized ineidence matriees of point-divisible designs,

Proe. of the Intern. Con·f. on Combinatorial Geornetry and its

applieations, Annals of Diser. Math., 1982). [3] D. Ghinelli

Smit, Nonexistence theorems fo~ automorphism groups of divisible

square designs (Ph. D. Thesis, University of Landon, to be sub­

mitted). [4] E.S. Lander, Tapies in algebraie coding theory

(Ph.D. Thesis, University of Oxford, October 1980).

T. Grundhöfer, The groups of projectivities of finite planes.

Assuming th~_classifieationof finite simple groups to 'be

eomplete, orie can prove the following: Theorem. Let TI be the

group of projeetivities of a finite non-desarguesian projective

"plane of order n. Then rr = An + 1 or rr = 5 n+1 , or n = 23 and

TI = M24~ The last exeeptional case probably does not occur.

Work of Prof. Hering gives together with the classification of

simple groups a complete list of all finite linear groups

aeting transitivelyon the non-zero veetors of a vector space.

Applying this we obtain: Theorem. Let rraff be the group of

affine projectivities (= products of parallel projections) of

a translation plane of order qn with kernel GF(q). Then

ASL(n,q) .~ rr aff ;;::; "AGL(n,q) ..Apa.rt from a finite number of

groups, one has to exclude the possibility that rr aff is con­

tained in a sympleetic group.
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c. Hering, On. the new projective plane of Figueroa.

W~ define a proper proiective plane to be a projective plane

whose"automorphism group does not fix any point or line. Up

until reeent~y only 2 types of finite proper projective planes

were known: the classical planes and the Hughes planes dis­

eovered by Hughes in 1957 •. R. Figueroa has constructed a third

class. A geometrie existence proof for these new planes was

presented.

J~W.P. Hirschfeld, Finite semi-linear groups. ~

A eomprehensive table of orders of finite semi-linear groups

DX(n,q) is considered for D = I, 5, 5', G, r, rs, P, PS, PS',

*PG, pr, prs and X L, 0, 0+, 0_, U, sp, Ps, Ps • The invariants

of the respeetive X are PG(n-1,q), the parabolic quadrie Pn-1'

the hyperbolie qua~ric Hn - 1 , the elliptie quad.ric En - 1 , the

Hermitian variety Un - 1, the symplectic polarity and in the last

two cases the pseudo polarity. In the first six cases of D, the

group5 comprise linear transformations of the vector space and,

in the latter six, the groups comprise projectivities of the

projective space.

D.R. Hughes, Semi-symmetric 3-designs: Hadamard case.

A semi-symmetric 3-design (ss30) for A + 1, A > 0, i5 a connected

structure in which any 3 points are on 0 or A + 1 common blocks

and any 3 blocks are on 0 or A + 1 points. If s is an ss30 for

A + 1, then Sy' for any block y, i5 an extended symmetrie design.

The case when Sy is a 3-(22,6,1) has been studied. If Sy 1s a

Hadamard 3-design, we show that: (1) if Sy is not a PG(n,2l, ~
there exists exactly one ss3D associated with each Hadamard

3-design of the appropriate parameters; (2) if 5 is a PG(n,2),
y -

then there exist exactly two ss30's s. (This classifies, among

other things, the geornetries belonging to ~ .•. ~,
1 2 n-1 n

n- ~ 4, except for a finite number of possibilities associated

with a projective plane of order 10.)
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Th. Ihringer, On linear congruence class geometries.

According to Wille a congruence class geometry arises from a

(universal) algebra essentially by taking the elements af the

base set of the algebra as points and the congruence classes as

subspaces of the geometry. Such a geometry is called linear if

every of its lines is specified uniquely by any two of its

points.

Using results of Pasini and Wille on linear congruence class

geometries and of Andre and Biliotti on translation structures,

all nonsirnple finite algebras (with at least one binary ad­

missible operation) having a linear congruence class geometry

can be determined. In particular, it can be shown that the'con­

gruence class geometry of each such algebra is affine and des­

arguesian. Much less is known about infinite linear congruence

class geometries. But it can be proved that every nansimple

groupoid with neutral element and linear congruence class

geometry is an elementary abelian graupe Thus one iS.led to

suspect that linearity has very strong consequences in the in­

finite case as weIl.

v. Jha, Groups of Baer collineations.

A collineation group G' acting on a projective plane rr of order n,

is a B-group if every non-trivial element of G is a Baer col­

linear and (IGI,n) = 1. Theorem. Suppose G is a B-group of a

translation plane rr of order n. Then G is planar, ie. Fix(G) .is

a subplane, which we denote by TI G. Moreover one of the ~ollowing

cases must occur: (i) rrG is a Baer subplane and G is cyclic,

(ii) G is an elernentary abelian 2-group and TI G is a plane of

order n 1 / G, (iii) TIG is a plane of order n 1 / 4 and G is A 4 ,AS '

or contains a cyclic normal subgroup T such that G/T = Z2 or

Z2+Z2. (N.B. It is not clear whether in fact the above pos$ibi­

lities all occuri in particular it is not known if G = AS 1s

possible.) Part (ii) corresponds to a theorem of Ostrom and we

show that it is valid even for cartesian group planes, ie.',

those which are (P,y)-transitive for some flag.
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D. Jungnickel (A joint work with S.S. Sane), On extension of nets.

An (s,r;u)-net is just an affine design Sr (1,su;s2u ). It' is well­

known that r~{s2u-1)/{s-1) with equality for 2-designs. An

{a,su;u)-net with affine dual (i.e. the dual is a net with the

same parameters) is called symmetrie. We propose the following

conjecture: *Every affine 2-design with s~2 contains asymmetrie

{s,u)-net. This would imply that the parameters of affine 2-designs

with s~2 are precisely the pairs (s,u=sd) where 5 is the order of

an affine plane. (Replacing this by "s is a prime power" we obtain

a well-known conjecture of 5.5. Shrinkhande.) A disproof would ~

be interesting too , as it would require a new construction tech-.-r

nique for affine 2-designs. We also ,construct maximal nets of

small deficiency and consider the completion problem. (To appear

in Pacific J. Math.)

Vera Matejkova, Bohumil Bydzovsky, Vladimir Mahel, Karel Harlicek,

Über einige Konfigurationseigenschaften von Punktbahnen.

Kurz vor dem zweiten Weltkrieg veröffentlichte Prof. Bohumil

Bydzovsky eine Arbeit über eine ebene Konfiguration (12 4 ,16
3
).

Diese Thematik interessierte ihn ständig und einige seiner

Schüler setzten in diesem Gebiet die Arbeit fort. So fand Dozent

Vladimir Mahel, daß die Bahn des Punktes der projektiven Ebene

über R in einer Gruppe, die durch zwölf quadratische Transforma­

tionen und zwölf Kollineationen gebildet wurde, im allgemeinen

Fall eine Konfiguration (24 3 ,18 4 ) von Punkten und Geraden ist

und Prof. Karel Harlicek identifizierte in derselben Ebene die

Punktbahn eines allgemein liegenden Punktes in einer tetraedri­

sehen Gruppe von Kollineationen als Konfiguration (12 2 ,38 ) von

Punkten und Kegelschnitten.

In der projektiven Ebene über C führt ähnlich die oktaedrische

Gruppe von Kollineationen zu Konfiguration (24 5 ,15 8 ) von Punkten

und Kegelschnitten, im speziellen Fall dann zu Konfigurationen

(2~2,124) und (24 3 ,18 4 ) von Punkten und Geraden. In der endlichen

proj~ktiven Ebene IT 8 über GF(8) ist die Punktbahn in der oktaedri­

schen Gruppe von Kollineationen im allgemeinen Fall die Konfigu­

ration (24 3 ,18 4 ) von Punkten und Geraden, (~42,68) von Punkten
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und Ovalen und (24 5 ,15 8 ) von Punkten und Kegelschnitten.

Spezielle Fälle führen zur Konfiguration (12 2 ,6 4 ) von Punkten

und Geraden und (12 2 ,38 ) von Punkten und Kegelschnitten. Die

oktaedrische Gruppe von Koll"inationen enthält überdies rechts­

gliedrige Untergruppen, die es ermöglichen, aus den Punktbahnen

Ovale - lauter Kegelschnitte - zusammenzusetzen, und aus diesen

Ovalen weitere Ovale, die keine Kegelschnitte sind, zu konstruie­

ren. Ähnliche Konstruktionen lassen sich auch in den Ebenen

ITn , n < 8 realisieren.

e F. Mazzocca, A characterization of the Dilwo.rth truncations

of the combinatorial geometries.

Let R be a non-empty finite-set, G = G(R) a combinatorial

geornetry on Rand r the rank function of G. A Dilworth trun-

cation of G is a farnily S of subsets of R, called blocks, such

that: (1) B1 ,B2 E S ~ B1 n B2 = ~ and every point of R is con­

tained in at least two different blocks such that: (2) B E S

and X c B ~ the closure X of X is connected; (3) Let B,B' be

different blocks and G a connected flat of G. If the inter-

section of G with B and'B' is not ernpty, then G contains B n B'.

Let G' = G"(R) be a combinatorial geometry, 5' a Dilworth

structure of G' and J: G ~ G' an isomorphism. The Dilworth

structures Sand S' will be called equivalent, S ~ S', if B E Sand

B' E S' ~ J(B} E S' and J- 1 (B') E S. Example: Let r = r(p) be a

combinatorial geometry of rank r(P} = n + 1 > 1, R the family of

its lines and Td(f) = Td(f} [R] the Dilworth truncation of f .. For

every point p·E P, let B(p} denote the family of lines of. f through

p and let D{r} be the farnily.of B(p), pEP. We prove that: The

farnily D(r) is a Dilworth structure of Td{r). Now we have the

following main result: Theorem. A connected combinatorial geometry

G = G(R) is the Dilworth truncation of a geometry if and only if

G has a Dilworth structure. However, for every Dilworth structure

S of G, there exists a unique geometry r such that G = Td(r)·

and S ~ D(r).

M.S. Montakhab, Embedding theorems.

Let P be a vertex of a multigraph G and a (P) ,b(P) ,k{P) ,1 m (P) and

a{P} be given integers, associated to P {for the details see the
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Ph. d thesis by me, Westfield college, The university of London,

1982). We prove, if for every vertex P of G, k(P) is large enough

.inrelation to other parameters, then the multigraph has a cer­

tain regularity of structure. Claws (P,S) of multiplicity ex­

ceeding a(P) do not exist and sufficiently largecliques (called

grand cliques) occur in a certain pattern. Then we also prove

that if r is 'large enough,' then (i) "a Q '\ -design is embeddabler,l\,c
in a unique divisible semi-symmetric design for (c,[A]);

(ii) a non-trivial r-regular linear space with at most r 2-r+1

blocks can be embedded in a unique projective plane of order r-1.

The lower bound for r in (ii) can be reduced in some special

cases: (iii) A Pseudo-Complement of a Quadrilateral of order n

in .which n > 17, is embeddable in a unique projective plane of

order n; (iv) A non-trivial r-regular linear space with

v n 2 _ e, 0 ~ e ~ n, points and at most r 2 - r + 1 blocks is em­

beddable in a unique projective plane of order n if n ~ 3e + 1 .

(v) If n >, max{e(e+1}/2,3e} and n is not the ,order of a finite

projective plane, then every r-regular linear space with at least

n 2 - e points is trivial.

d i i
( [ 1 ] - [ 1 ] ) (ß-a [ 1 ]) ,

i i-1
[ 1 ] (1 +0 [ 1 ]),

b.
1

Arnold Neumaier, Pseudo classical distance.

A distance regular graph is pseudo classical if its 'intersection

array is given by

where d is the diameter, and Ci] = 1+b+ ... +bi - 1 for a suitable
1

basis b.

Pseudo classical graphs give rise to P- and Q-polynomial asso­

ciation schemes. Johnson schemes, Haing schemes, and all

distance regular graphs belonging.to classical groups or their

parabolic subgroups belong to the family of pseudo classical

graphs. It is conjectured that all pseudo-classical graphs with

diameter ~ 3 are already known.

u. Ott, On the Steinberg module of rank 2 geometries.

Die Definition des Steinberg Moduls einer Geometrie wird gegeben.

Für Geometrien vom Rang 2 wird über einige Anwendungen berichtet.
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A. Pasini, A Bruck-Ryser type theorem on finite cyclic projec­

tive geometries of rank 3.

Let r be a finite geometry in the diagram:

b- 'c

(r is meant to be pure and we assume (18) on r.) Let us assume

that every projective plane on the edges of the diagram is non­

degenerate. Then all these projective spaces have the same

order, say n. We show that there is a positive integer N such

that for every type i (i=a,b,c) there are just N i-verieties,

and N ~ f(n), where f(n) = (n(n+l)2+n (n+l)+1. The equality

N =f(n) holds iff the geometry got from r by deleting the

i-verieties (for some i = a,b,c) is a projective plane of

order n(n+l). It is natural to conjecture that N > f(n) if

n > 1. But I am not able to prove this conjecture. Nevertheless,

I proved that if n > 1 and N = f(n), then one of the two follow­

ing cases holds: 1) n = 1 (8) and every odd prime p which divides

n to an odd power satisfies po: 1 (4) and 2 is a p-adie square"

2) n = 0,3(4) and for every odd prime p which d~vides n to an

odd power, either p = 1 (4) and 2 is a p-adie square, or p t '1 (4)

and 2 is not a p-adic square.

S.E. Payne, Subquadrangles of Kantor's Quadrangles in charac­

teristic 2.

Kantor's generalized K(q) of order (q,q2), q : 2 (mod 3), have

many subquadrangles of oder q when q is even. The subquadrangles

are all isomorphie to the dual of the usual translation genera­

lized quadrangle associated with the ovoidal permutation

e: t ~ t 4 and denoted se. This embedding of the self-polar se

in K(q) yields several interesting observations about ovoids

and spreads of se' and shows that in' some sense certain charac­

terization theorems of Thas are the best possible.

If x 2 + x + k is irreducible over F = GF(q) and if y is an auto­

morphism of maximal order cf F for which e:

t ~ a 2t(y-1)/y + at1/ 2 + kt 1/ y is an ovoidal permutation for each

a E F, then there arises a Ge ef order (q,q2) having subquad­

rangles of order (q,q) dual to these arising from the oveidal

map 6-1 . y = 2 gives the elassical' examples. y = 4 gives Kantor's

examples.
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N. Percsy, On the grassmannian geometry of polar spaces.

Let T be apolar space of rank n ~ 00 and d ~ n-1 an integer.

The grassmannian geometry Td of T is the incidence structure

whose points are the d-dimensional singular subspaces of T,

and whose lines are the sets of d-dimensional singular sub­

spaces contained in a given (d+1)-dimensional one and inter­

secting in a (d-1)-dimensional one. We give an axiomatic

characterization of these Td , for d ~ n-4, in the spirit of

B. Cooperstein, F. Buekenhout and A.M. Cohen's work on

building geometry. •D. Ray-Chaudhuri, .Geometrical results proved at Ohio State

University in recent years.

A finite M6bius plane M of order q after deleting a circle

and its points gives rise to a 3-design with parameters
232v = q -q, Ao q +Q-1, A1 = q +q, A2 = q+1 and A3 = 1 and set

of block sizes {q+1,q,q-1}. Any 3-design with such parameters

is called PBRD(q). A block e is said to be r-tangent to a

block e' at X if e n e' = {X} and there exists a block e tl

which is tangent to e at X and secant to e'. A PBRD(q) is said

to satisfy the r-tangency condition if given a circle B, points

X and Y not in B there exists at most one circle containing X

and Y and r-tangent to B. Theorem. A PBRD(q) can be uniquely·

embedded into a M6bius plane if and only if it satisfies the

r-tangency condition. Let r be a finite affine space of dimen­

sion n and d be any integer, ~ d < n-1. Let Hi be the set of

I-dimensional flats of rand TI be the incidence structure

(Wd'Wd+1'~). A theorem is proved giving a geometrical charac- ...

terization of TI by S axioms. All bit one of the axioms are ~

proved to be essential in a certain sense.

J. Saxl, The sims conjecture.

In a joint work with Cameron, Praeger and Seitz, we use the

classificatio~ of fini~e simple groups to settle the"conjecture

in the title: Theorem. There is an integral function f such

that whenever G is a finite primitive permutation group with a

subdegree d, then IGa ' ~ f(d). As a corollary we get Theorem.

There are only finitely many distance transitive graphs of any

given valency d > 2.
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A. Sprague, Generalized 3-nets and extended dual affine planes.

net Lt
Geometries adrnitting diagram are examined. Examples

of such geometries are plentiful, some like 3-nets, embeddable

in affine 3-spaces. It may be shown that any geometry adrnitting

this diagram admits a parallelism ön lines, and also on planes

A classification or partial classification of several classes

is achieved.

Giuseppe Tallini, Partial spreads of Grassmannian manifolds and

quadrics in PG(r,q).

We give results on maximal partial spreads of Grassmann mani­

. folds and quadrics in PG(r,q) .

Maria Tallini Scafati, Two characters k-sets with respect to a

singular space in PG(r,q).

Let R be a family of lines in PG(r,q). We say that a k-set K

is of type (m,n) with respect to R, if every line of R rneets K

either in m or in n points and rn-secants and n-secants in R do

exist. Two characters k-sets of type (m,n) are studied with

respect to the families of all lines in PG(r,q) except those

of a hyperplane TI which will be called singular space. More­

over K is studied with respect to all lines in PG(r,q) not

passing through a point P.

J.A. Thas, a) Elementary proofs of two ~undarnental theorems of

B. Segre without using the Hasse-Weil theorem. b) ~emarks on the

classical generalized hexagon B(q) of Tits.

a) If K is a comple~e k-arc with k ~ q+1 in PG(2,q), g even, then

B. Segre proved that k ~ q-vq+1. For that purpose he showed that

the number N of simple points on a plane algebraic curve Cn of

order n in PG(2,q) with no regular linear components is less than

n{q+2-n) if vq > n-1. Here he used the deep theorem of Hasse-Weil

on the number of points lying on an algebraic curve of order n

and genus g. Here we prove that the number R of real points of a

plane algebraic curve Cn of.order n with no regular linear com­

ponents satisfies R ~ qn-q+n, which is better than Segre's bound
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since N ~ R. Moreover the proof is a few lines just using ~he

classical theorem of Bezout. Further, Segrels result on com­

plete k-arcs for q even readily follows from that new bound

on N. b) The class~cal generalized hexagon H(q) of Tits can be

obtained as the lIinterseetion" of 7 linear line complexes of

PG(6,q). From thes we deduce a "geometrieally" and short proof

for the fact that the structure K(q)'of Kantor arising from the

hexagon H(q), q = 2 (mod 3), is indeed a generalized quadrangle

of order (q,q2).

Patricia Vanden Cruyee, Locally T(nT graphs.

For any n ~ 2, we denote by T(n) the graph whose vertiees are

the unordered pairs of elements of the set E = {1,2, •.. ,n}, two

vertices being adjacent if and only if the eorresponding pairs

of E are disjoint. A graph r is loeally T(n) (for some given n)

if' for each vertex x of r, the graph induced by r on the neigh­

bourhood of x is isomorphie to T(n). J. Hall has proved that

there are (up to isomorphism) exaetly three conneeted locally

T15T graphs (note that T15T is isomorphie to Petersen graph).

We prove that if r is a connected loeally T(n) graph with n ~ 7

then r ;;;' T(n+2).

A.L. Wells, Universal projective embeddings.

Let G = (P,L) be a partial linear incidence structure, and f an

injective map fram the points of G ta the points of a classical

projective space P (W). We say that f is a' p'rÖj'e'c:t'ive 'embedding

(ar simply an embedding) when the image of a line of Gunder f

is an entire line of P(W). Let u be an embedding of G in P(u).

We say that u is universal when for every embedding f of G in a

projective space P(W), there is a similar transformation

$: u ~ W, deterrnined by f up to a scalar multiple such that

f = $ou. The fundamental theorem of projeetive geometry shows

that any classical projective space is universally ernbedded. The

work of Buekenhout, Dienst, Lefevre-Peresy and Tits shows that a

finite polar geornetry (P,L) of rank at least 2 of type SP(2n)

(characteristic 4 2),O±(2n) ,O(2n+1) or u(n) embedded as one of

these types is universally embedded. Dur main theorem is that
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the Exterior power space embeddings of An,d' and the spinor

embeddings of Dn,n and Bn,n (in the last case, provided that

the characteristic is odd) are universal projective.

M. Willems, Special Laguerre i-structures and optimal codes.

A special Laguerre i-structure of order n (i ~ 1) is an inci­

dence structure J = (P,B 1 B2I) for which: (i) Each element .

of P is incident with one element of B1 • (ii) Each i-residual

space of J (with respect to B1 ) is a projective plane of order n

minus one point. (iii) B2 4 0 and each element of B2 1s incident

with at least i elements of P which are pairwise not incident

with a cammon element of B1 • We prove some necessary conditions

for the existence of special Laguerre i-structures, i ~ 2, of

order n {resp. 'optimal (n+i+l, i+2) -codes of order on) and

Laguerre i-structures, i ~ 2, of even order n (resp. optimal

(n+i,i+2)-codes of even order n).

F. Zara, Same graphs related to polar spaces.

We study a class of simple graphs which satisfy the following

two axioms: Let G be a graph with vertices set n. We let C be

the set of cliques of G (complete m~ximal subgraphs of G).
Al 3r E N : VC E C, then ICI = r; A2 3t E N: VC E C, VX E Q - C,

then 16(X) n CI = t, where ~(X) {YIY E Q, X and Y are adjacent}.

Examples: The graphs associated with finite polar spaces. If

~ E Q,we put ~(~) = n 6(X) and G the subgraph induced on ~(~).

XE~

The study of G for various ~, enables to obtain some structure

theorem'on this class of graphs.

Berichterstatter: Th. Grundhöfer
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