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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t. 13/1982

Mathematische Stochastik

28.3. bis 3.4.1982

Die Tagung wurde geleitet von den Herren L. Arnold (Bremen) und

H. Strasser (Bayreuth).

Die 45 Teilnehmer aus den USA, Indien, Japan und neun europäischen

Ländern repräsentierten eine Vielzahl verschiedener Arbeitsrich­

tungen innerhalb der mathematischen Stochastik und ihrer Grenzge­

biete, dies kam auch in der thematischen Vielfalt der 36 Vorträge

zum Ausdruck. Besonders erfreulich war die Anwesenheit einer

größeren Anzahl international führender Vertreter des Fachgebiets.

Bedauert wurde, daß Herr Zabczyk (Warszawa) auf die persönliche

Teilnahme an der Tagung verzichten mußte.

Neben Darstellungen speziellerer Resultate wurden einige längere

Vorträge zu folgenden Problemkreisen gehalten: Schätzerkonstruktion

vermittels Vapnik-~ervonenkis-Klassen:Green- und Dirichlet-Räume

von Markov-Prozessen und zufälligen Feldern; Martingale auf Mannig­

faltigkeiten; Differentialtheoretische Ansätze in der asympto­

tischen Statistik; Zufällige Medien.

Besonderes Interesse fanden einerseits die asymptotische Entschei­

dungstheorie, andererseits die Theorie der Wahrscheinlichkeitsmaße

auf lokal kompakten Gruppen und schließlich die 'neue' Verbindung

zwischen der Differentialgeometrie und der Theorie der stocha­

stischen Prozesse, dies spiegelte sich sowohl in der Anzahl der

Vorträge dazu als auch in den informellen -Diskussionen.
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Vortragsauszüge

M. AKAHlRA

Asymptotic deficiency of estimators under modeols wi th nuisance

parameters

In rnany cases of statistical inference, there is often raised the

problem of "model selection", that is, to specify the appropriate

model for observed data. In typical situations we have observations

whieh are assumed to be independently and identically distributed

with a parameter e to be estimated and also "shape n parameters.

If we chooseoa IIlargeli model, that is, with many shape parameters,

the model will be more accurate, or it will include a distribution

whieh is elose to the IItrue" distribution. On the other hand,

however, the presence of many nuisance parameters would increase

the error of estimation of e due to the errors of those estimated

nuisance parameters. This problem can not be approached when we

only consider the first order asymptotic efficiency, since the

presence of nuisance parameters will not affect the asymptotic

variance of estimators of e,provided that the parameters are

orthogonal. Hence we have to consider the second (or the third) ~

order asymptotic efficiency and discuss the problem in terms

of " asymptotic deficiency" .. And in this term we may consider

the trade-off between naacuracy" and "simplicity" of the model.
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R. BERAN

Estimated sarnpling distributions: the bootstrap and competitors

Let X"X2 ' ... 'Xn be i.i.d random variables with cdf F. Suppose
A A

the {Tn=Tn(X1'X2, ... ,Xn); n.~ 1} are real-valued statistics and

the {Tn(F); n ~ 1}" are centering functionals such that the

asymptotic distribution of {nl/2(~ -T (F»; n ~ 1} is normal withn n
1/2 A

mean zero. Let Hn(x,F) be the exact cdf of n (Tn-Tn(F». The

problem is to estimate Hn(x,F) or functionals of Hn(x,F) from

the sarnple. Under regularity assumptions, it is shown that the
A A.

bootstrap estim~te Hn(x,Fn ), where. Fi is the sample cdf, is

asymptotically minimax. On the other hand, the commonly used

normal approximation with estimated variance ist not asymptoti-

cally minimax for Hn(x,F) (except in special cases) because of

bias. However, the estimated first-order Edgeworth expansion of

Hn(x,F) is, again, asymptotically minimax an~ is equivalent to

A -1/2
the bootstrap estimate Hn(X,Fn ) up to terms of order n .

The results for estimating functionals of Hn(x,F) are similar.

L. BIRGE

Stability and instability of minimax risk for i.i.cl. variables

under perturbations

Consider the problem of estimating a in 8 fram n i.i.d. variables

of law P. Suppose we define ~he minimax risk correspanding to

this experiment by

Rn (8) = inf
T

T being any estimate of a and h Hellinger distance. If we enlarge
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the parameter space or make some small perturbations of "it we get

a new parameter space 8. with the property that for any 8' in S,
there "exists 8 in 8 and h(3,8') ~ E. How much will Rn (8) differ

from Rn (8)? We search for results of the type

Rn(e) :5 K Rn (8)

with K not depending on n or R
n

(8) but only on E. We eonsider the

cases of E =~ and prove astability result (R being a funetion
n

of C only). 1

For larger perturbations c = cn-Z Rn (8) the result is false in the 4It
general case, but it holds for a large subclass of models whieh

are regular in the sense that their risk is determined by the

dimensional properties of the parameter space (S;h) considered as

ametrie space.

E. B. DYNKIN

Dirichlet spaces and Green' s spaees for Markov pro"Ce"s"ses and

Gaussian random fields

For symmetrie Markov proeesses, a dual pair of Hilbert spaces: the

Dirichlet space Hand Green's space Kare the most natural domain

for the eorresponding semi-group of operators Tt . The infinitesimal
-1

operator A is an isometry from H onto K and Green's operator G=(-A) is

the inverse isometry of Konto H. Elements of H ean be represented

by fine functions i.e. by functions which are right continuous along

almost all paths, and elements of K ean be represented as measures

or generalized measures. To every positive element kEK, there

corresponds a measure on the space of paths and an additive funetional

of the Markov process. Using these tools a general Diriehlet problem

can be solved. The results ean be extended to families of symmetrie

Markov proeesses and ean be used for the investigation of symmetrie

fields assoeiated with symmetrie Markov proeesses (in partieular, the

so called free field eonsidered in quantum fields theory) .
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K. D. ELWORTHY

Flows of stochastic dynamical ~stems: the functional analytic

approach

Let Ft(U) be a solution of the stochastic differential equation

dXt = Y(xt)odB
t

+ A(Xt)dt on Rn, with B an rn-dimensional Brownian

motion, and initial point Xo = u. A 'flow' for the equation is a

version of F. (.) which is jointly continuous in t and u. Following

work by Malliavin there has been recent interest in the existence

of flows and their properties. By lifting our equation to an equation

on a suitable Hilbert space of functions we will show that many of

the long technical details of the proofs can be subsumed once and for

all in known results about Sobolev spaces.

After giving a simple example to clear away some misconceptions:

in particular to show that it is not enough to' simply add a coffin

state to deal with explosions, we will prove the main results when

the coefficients have compact support: existence, differentiability,

equation for the inverse, backward equations. The general case

(with smooth coefficients) is then deduced from these, as is Kunitafs

criterion for surjectivity of F t .

The discussion is based on an expository article written with

A. P. Carverhill.

B. FEREBEE

Asymptotic expansion of Brownian exit densities

Let pet) be the density of the first-exit time of a Brownian motion

over the moving boundary given by x = f(t). Let A(t) :=f(t)-tf' (t) be

the intercept on the vertical axis of the tangent to the boundary at

t. 1f, for a given ~, the quantity 6:=~(f~S) - f~t»/(~ - t) is

"large enough" for sE(O,t), then pet) is mainly determined by the

behavior of f near ti in fact,

Here

pet) - ~(f(t» {A(t) _ ~ c t n / 2 mn(~)}.
Vt ~ n=1 n "'VI..

m (x) :=(_1)n dn~ 1-~(x.) and the coefficients
n· dxn ~(x)

on the derivatives of f at t .

depentl only
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w. HAZOD

On stable measures

M. Sharpe (Trans. Amer. Math. SOC. 136 (1969) 51-65) introduced
d

the concept of operator stable laws on R : Let (~t)t~o be a

continuous convolution semigroup of probability measures (c.c.s.)

on Rd , let further (Lt)t>O S Aut(Rd ) be of the form L t t
B

,

B E End(Rd ), Spect(B) S' {A Re A > ol, such that

(*) Tt(Us ) Utus * Eb(t) for some fixed a > 0,

b(t) E Rd , s,t > o. Then' (~t) is operator stable. e
We need the following fact: Let (~t)t~o be a c.c.s. on a locally

compact group, then for ~ E V(G) - the Schwartz-Bruhat-space -

the generating functional <A,$>:= ~t <~t'~> is defined, and

the correspondence (Ut ) ~ A is 1-1.

(*) is equivalent to

(**) ~t(A) = tUA + P(t), where pet) is a generating functional

of a group of Point measures.

Defintion Let G be a locally compact group. Let (~t) be a c.c.s.

with generating functional A and let (Lt)t>O ~ Aut(G) be a group,

such that Tt 1:'s = "tts', t, 5>0 and LtX ITö e, x E G.

A resp. CUt) is stable if (**) holds.

For a class of connected, simply connected nilpotent Lie groups G

(- which admit such automorphisms -) the generating functionals

of stable measures can be completely described:

Theorem: Let G be as above, ~ the tangent space at e (i.e.

the Lie Algebra). Via the exponential map there is a 1-1-correspon­

dence between generating functionals on G and on the vectorgrou~ .

To stahle generating functionals on G there correspond operator~'

stable generating functionals on ~ in the sense of M. Sharpe.

H. HEYER

Embedding of 'invari'ant probabil'ity me'asures

;The theory of probability measures on the hyperbolic plan~ vieved

as the homogeneous space X = G/K with G:= SL{2,R) and

K:= SO(2,R) is based;on a detailed analysis of the group G, the
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semigroup M1~K,G,K) of K-biinvariant probabilities on G and the

theory of K-spherieal funetions on G. The faet that X is a

Riernannian symmetrie spaee of noncompact type makes it possible

to solve the following central problems.

(1) The ernbedding of infinitely divisible (K-biinvariant) measures

into continuous eonvolution semigroups.

(2) The eentral limit theorem for infinitesimal triangular arrays

of measures ..

(3) The transience property of nondegenerate eontinuous convolution

semigroups ..

This talk deals only with problem (1), but in a more general

framework. The results obtained extend nclassicalu contributions

to the ernbedding problem for infinitely divisible measures on an

arbitrary weakly compact group (as diseussed in chapter 111 of the

author's monograph) to large classes of homogeneous spaces

(including the euclidean spaces, the spheres and the real hyper­

bolie spaces).

A. JANSSEN

Infinitely divisible experiments and exponential families

We refer to three points:

1. Limit theorems for stat~stical experiments,

infinitely divisible experiments, stable exp ..

2. Exponential families,

3. Asymptotically normal families.

Infinitely divisible experiments are weak limits of infinitesimal

triangle systems of statistical experiments. Especially we consider

weak limit points of

n en
(X

n
, i~l~' (Ponala E T" on + 0, which we call stable (semistablel.

A k-parametric exponential family on Rk is stable (infinitely

divisible) if and only if the measure Po is stable (infinitely

divisible) .

Finally, we give necessary and sufficient eonditions for a limit

experiment to be a Gauß-experiment.

These results can be applied to prove that under certain conditions

the loglikelihood ratio process is asymptotically normal.
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P. JEGANATHAN

Some remarks on Hajek's loeal asymptotic minimax and adrnissibility

results

In'recent times there occur several estirnation problems, especially

in stochastic processes, e.g. in Galton-Watson super-critical

branching processes , where the "limi t of the loglikelihood ratios is

mixed normal. It was shown by Swenson (1980, ph. D. thesis, Univ.

Calif., Berkeley) and also by the present author that J. Hajek's

(1972) local asymptotic minimax and admissibility results can be ~

extended to the fore-mentioned case also. The present purpose is

to give an elementary proof of these,and other related results in

asymptotic theory.

w. KIRSCH

Selfadjointness of Schrödin'ge'r" operatörs wi'th 's"t'ocha'st'ic potentials

We consider Schrödinger operators on L2 (Rd ) of the form H = H +V
" ü) 0 ü)

where Ho -6 is the d dimensional Laplacian and Vw is a

stochastic potential; i.e. (w,x) ~ Vw{x) is a jointly measurable

function on QXR
d , where (Q,F,p) is a probability space. Such

operators arise naturally in the quantum theory of disordered

systems. We are interested in criteria which ensure that the

operator Hw is essential1y self~djoint on the domain C~(Rd), the

space of infinitely differentiable functions with compact support.

Physically speaking the essential selfadjointness means that the

time evolution of the system described by H~ is uniquely given by 4It
the action of H on C~(Rd). Dur main result is: Let C be an open

. (),) 0 0

set and denote by {xi}iEI an indexed set in R
d such that the sets

C +x. (iEI) cover Rd , then H is essentially selfadjoint, if foro 1 w
same p > max(2,d/2) the moment of order k of the randorn variables

f Iv (x) IPdx . exists and is bounded by a constant C independent
CI.)

Ca+xi

of i. Here k is a number depending on p and the dimension d.

(joint paper with F. Martinelli)
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A. KOZEK

Minimum Levy distance estimation of a translation parameter

Let xi' 1 5 i S n, be independent identically distributed random

variables with a common distribution function Fand let G be a

srnooth distribution function. We derive the limit distribution

of vn(PL(Fn~G)-PL(F,G»,where Fn is the empirical distribution

function based on X" •.. ,Xn ," and PL is the Levy distance between

distribution functions. 1f, moreover, F is continuous and

{Ge = G(·-9): e ER'} is a farnily of probability measures on R'

with a translation parameter 8, we obtain the limit distribution

of yn(PL(Fn,Ge ) - PL(F,G_», Vn(8n-e) and VnPL(Ge ,G_), where
n e n e

an and ij denote the minimum Levy distance translation para-

meters for Fn and F, respectively. These results are compared

with the corresponding ones for the Kolmogorov rnetric.

L. LECAM

v
Construction of estimates through"Vapnik - Cervonenkis classes

Let E = {Pe :8E81 be an experiment where each Pe is a product

measure Pe = ~ Pe,. Metrize e through the surn H2 of the square
. J ]

Hellinger distances on the cornponents. The problem is to find
A 2 A

estimates Sn such that ES H (Sn,e) rernains bounded by a function

of the dimension of e for H. This has been done (by LeCarn and

then Birge) using tests between Hellinger tubes. One can also

attempt to da it by a minimum distance method using as a norm

i lAI I~ = sup {IA(S) I: sE~} where ~ is a class of measurable sets

in the space that carries the Pe,. Properties of classes ~ leading
"J

to acceptable estirnates are described as weIl as inequalities on

quantities such as Vn sup lu (s) - pes) I where Un is the
sE~ n

1ernpirical measure and where P n ~ Pe,.
j J
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P. MAJOR

Dyson's hierarchical models and limit theorems in statistical

physics

Dur aim is to give a generaloverlook about Dyson's hierarchical

model. It is investigated in order to understand the general

behaviour of equilibrium states in statistical physics. We are

interested in the behaviour of the model at critical temperature.

We get limit theorems for sums of random variables with unorthodox

norming. The limit measure roust be the fixed point of a complicate~

transformation. There is always a Gaussian solution, but it is in ~

certain cases unstable. In such cases a stable non-Gaussian solution

can be found be means of perturbation theory. This is the interesting

solution from physical point of view.

P. MALLIAVIN

Elliptic estimates in infinite dimension

Stochastic calculus of variation, stochastic flow,weak processes,

estimates of laws. Application to non linear filtering and models

of classical statistical mechanics.

References. Journal of Functional Analysis year 1981 and 1982.

E. MAMMEN

The information (measured b the deficienc dis"tan'ce")- of- additiona

observations

In the case of asymptotically Gaussian experiments we give an

asymptotic lower bound for the information contained in additional

observations as measured by the deficiency distance of LeCarn. For

exponential families we use Edgeworth expansions of the Bayes

risks to .study the asyrnptotic gain of information.
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P. A. MEYER

Martingale convergence theorem in Riemanhian manifolds

Given a continuous semimartingale Xt with values in a Riemannian

manifold V one can define intrinsically 1) the property of Xt
of being a martingale 2) the scalar increasing process

d<x,x>t = gijd<X~xj>t. Some propaganda is made for the following

results:

W. DARLING: on the set {<x,x>~<~}, X~ a.s. exists in the one point

compactification of V

w. A. ZHENG: on the set {x~ exists in V}, <x,x>~ a.s. is finite.

D. W. MÜLLER

Factorizing the information contained in an experiment, conditionally

on the observed value of a statistic

No matter which value t of a statistic Tn has been observed the

lass of information, in cornparison with the original data, will

asymptotically (n~) always be the same. This statement is inter­

preted and proved in the framework of "comparison of experiments".

The lass of information is described by the conditional experiments

{ Le(data!Tn=t): 8 E" a }. Under assumptions commonly accepted in

asymptotic statistics these conditional experiments are shown to be

all of the same IItype", as n -+ ~ • Joint work with Werner EHM,

University of Frankfurt, W-Germany.

S. OREY

Strang laws for shrinking" Brownian" Tubes

d T 2
Let X be R -valued Brownian motion, I T (IT(~) = f I~{s) 1 ds) the

o
associated action functionaland define the functional

Ilwil
T

= sup 1l!J{s) I.
o~s~T

Next let X' be a second Rd-valued Brownian motion, independent of

Xi say (X,X') are defined o~ a ~roduct space (OxO' ,BxB' ,PxP'). Let

qT(E,~) = p'[1 IX'-~I IT~E]. Interest will focus on the random

functional qT(E,X).
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that 2 -t 0Theorem 1 : 3 positive constant m1 such E aT(E)/T ---. ID, as e:

Theorem 2 : 3 positive constant m2 such that -e: 210g q (E,X) ID2T T
as e: -t o.

G. PALM

Stochastic identificat~on of nonlinear systems

A system is a mapping S: I ~ R, where I is a set of fu~ctions of ~

time T. Usually T = R,Z, or [o,l], and I = C(T), L (T), V(T), ..•

Identification of a system S requires its representation, for

example as Sx = ko + fk 1 (t1 )X(t,)dt, + ffk2(t"t2)x(t,)x(t2)dt,dt2+ .. ·

(this is called a Volterra series). Then one can identify the system

by experirnentally determining the 'kerneis' k, (t) ,k2 (t"t2 ) , ....

This is done by testing the system by appropriate test inputs x(t).

Norbert Wiener had the idea to use stochastic test inputs, i.e. a

process (I,L,p) and to assume S E L2 (I,p). S is then identified by

expansion with respect to a specific CONS Hnk ~ L2 (I,p).

S = L<S,Hnk>Hnk . Here I = C[o,l], p Brownian Motion, and Hnknare

Hermite-Laguerre polynomials, which are of the form(A)H k L G kO,
n i=o n 1

where (B)Gnki x = ! ... f9nki(t1, ... ,ti)dx(t,) ... dx(t i ). This result

can be generalized to quite arbitrary stochastic processes (I,L,~).,

Theorem: For every stochastic process (I,L,p), (where L is generated

by cylindersets, x(o) = 0 a.s. and something like

E(x(t) - x(to »2 ~ 0 (t~to» with polynomials dense in LPOR,P t ) for

every p ~ " t E T there exists a CONS in L2 (I,P) of functionals

Unk of the form (A), (B). •

G. PAPANICOLAOU

Characterization of set of values of conductivity in 'random media

We qive a suitable definition of conductivity in a random medium.

Then we give a representation formula for the conductivity and

discuss its implications.Multicomponent random media will be

discussed also.
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J. PFANZAGL

A differential approach to aSymptotic statistical theory

Let~ be a family of probability measures with densities h(·,P).

The tangent space T(P,~) is defined as the set of all functions

9 E L
2

(P) with Ig(x)P(dx) = 0 which are limits of sequences

t- 1 (h{.,P
t
)/h(.,P) - 1), t 4- o. The gradient z·(·,P) of a

functional z: ~ ~ R is defined by the property that, for Pt

near P, x(Pt ) can be approximated by x(P) + Ix· (x,P)Pt(dx). Then

Ix· (x,p)2p (dx) is abound for the asymptotic variance of asympto­

tically median unbiased estimator-sequences for x, if x· (·,P)ET(P,~).

As an example, estirnation of quantites of symmetrie distributions

is discussed.

G. eh. PFLUG

Recursive estimation- in nonregular cases

Für nicht reguläre Dichtefamilien (das sind solche, bei denen der

euklidische Abstand im Parameterraum und die Hellingerdistanzen

der Dichten eine Relation vom Grade p erfüllen) werden, aufbauend

auf dem Konzept der Pitmanschätzer, rekursive Schätzer definiert.

Schätzt man auch die a-posteriori Varianz rekursiv mit, so erreichen

so definierte Schätzer jene maximale Konvergenzgeschwindigkeit,

welche von LeCam resp. Strasser als "quick-consistency" bezeichnet

wird. Weiter ist es möglich, asymptotische Verteilungen (die in der

Regel nicht normal sind) anzugeben.

",,' ""
P. REVESZ

How big are' -the increments of 'the loca'!- 'time" of a' Wien'er' process?

Let {n(X,t)i O<t<~, -m<x<m} be the Iocal time of the Wiener

p~ocess {W(t); O<t<~} i.e. for any Borel set A let

I n(x,t)dx
A

A{S: s~t, W(s)EA}

where A is the Lebesgue measure. Further let O<a(t)<t (t>O) be

a non-decreasing function. Our airn is to study the properties of the

processes
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sup (n(O,s+a(t»-n(O,S»,
O~s~t-a(t)

sup max (n(X,s+a(t»-n(X,S».
O~s~t-a(t) -oo<X<oo

A new continuity modulus of the local time will be also given.

M. DENKER und U. RÖSLER

On Chernoff-Savage theorems

The subject of this talk is a new proof and" an extension of

the two-sample linear rank statistic of the Chernoff-Savage

type. Let Xi' Yj , i=1, ... ,n, j=1, ... ,m be independent r.v.

with distribution function F,G and consider

1 N 1 A
VN f h(N+1 HN(t»dFn(t) - VN f h(HN(t»dF(t)

o 0

where Fn,Gn are the empirical distributions and
n mAn m

HN = N Fn + N Gm' HN = N> F + N G. The problem is to find a
large class of functions h , such that the above converges in

distribution to a normal distribution.

Our basic assumption on the two processes Xi'Y j is the inde­

pendence of the processes and the condition, 0 ~ n ~ 1/2

E(vn(F (z)-F{z»2) = O{[F{z) (1-F{z» ]1-2 Tl )
n .

for all z E [0,1] and sirnilar for Gm,G. This enables us

to treat processes with some dependence structure, like uni- ~

formly mixing, absolutely regular or strongly mixing.

Chernoff, H. / I. R. Savage: Asymptotic normality and effciency
of certain nonparametric test statistics, Ann. Math. Stat. 29
(1.958), 972-994. -

Pyke, R. / G. R. Shorak: Weak convergence of a two-sample empirical
process and a new approach to Chernoff-Savage theorems. An~. Math.
Stat. 39 (1968), 755-771.

                                   
                                                                                                       ©



- 14 -

H. ROST

Probabilistic modelling of hydrodynamic behaviour

If one is interested in' the macroscopic evolution law of a many

particle system (concerning mass density) and expects a non­

equilibrium behaviour of the form

• 1f = 2 div(k(f) grad f)

one way of trying to identify the density dependent diffusion

coefficient k(·) is - following an old idea of Onsager - to

look at fluctuations around the equilibrium state of the system

characterized by the fixed density p. It is shown here that fo~

a zero-range jump·process with arbitrary jump rates in dimension

d = 1 or 2 k can be identified and a relation of the form

(for (P,llJ E ~)

E E fI x~lim E N ($,O)N (~,t) = X· ~(x)~(y)g(.~t) dx dy
E-+O Vh

can be proven. Here g(.) is standard Gaussian density, the

other quantities are defined as foliows:

X(i,t) = number of particles at site i at time t,

E d/ 2 2
N (q>,t) = E .:r (X(i,tE- )-p)<p(iE),

iEZ d

x
p

"susceptibility"

density

E(X(0,0)_p)2 in that particular model

EX(O,O) •

~ M. SCHEUTZOW

Stationary "solutions 'of" stoch'as"t"i'c di'ff"e"re'nt"ial' e"qua't-i"On'swi th

bounded memory

We study solutions of stochastic delay equations of the form

dX(t) = F(Xt)dt + dW(t), where W is a one-dimensional Wiener

process, F: C[O,l] -+ Rand X
t

(5): = X(t+s), S E [0,,1]. Such

equations have a bounde~ memory because the ~rift function F only

depends on the past of X during the last unit time interval.

In case there exists a unique weak solution, (Xt)t~o is a Markov­

process. If Xt has an invariant probability measure, it is

unique and every initial p.m. converqes to it. Sufficient conditions
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for this case are forrnulated via Lyapunov functionals. We give two

examples one of which is the well-known logistic equation of

population growth. Finally we state a convergence result of

invariant p.ms of the discretized equation towards the invariant

p.m. of the originalequation.

E. SIEBERT

Holomorphic convolution 's"emigroups

A continuous convolution semigroup (Ut)t>o of probability

measures on a locally cornpact group G is said to be (strongly)

holomorphic if for every representation n of G by isometries

on a Hilbert spaee (resp. Banach space) the operator semigroup

(n(Ut»t>o is holomorphic. For example compound Poisson sernigroups

are strongly holomorphici and symmetrie eonvolution sernigroups are

holomorphie.

Holomorphic semigroups possess interesting properties with regard

to support, densities, etc.

Further important exarnples of strongly holornorphic semigroups are

given by (strictly) stable eonvolution semigroupsi by certain

(absolutely continuous) Gaussian semigroupsi and by subordination

by means of strongly holomorphic semigroups on [O,~[ (as one­

sided stahle and Gamma semigroups). For operator-stable probability

measures on Rd (in the sense of Sharpe) more precise results .

can be derived.

J. STOYANOV

ODe approach. to 'estimat"ion" problems fbr 'c'ontinuöÜs 'time' st"o"Cha's·tie

processes

We shall consider eontinuous time stoehastie processes depending on

some unknown parameters. The finding of good estimators for these

parameters is a natural and important problem. Often the following

assumption is made: the process is observed continuously during

some time interval. In this case and if the process is of a diffu­

sion type the estimators contain integrals in Lebesgue and Ito's

sense which is not so convenient from the practice point of view.
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We shall present another approach. Suppose the process is observed

only at the moments of some discrete window, deterministic or random.

The aim is to find estimators for the unknown parameters on the basis

of the obtained discrete data. The solution of this general problem

will be given for same sp~cific classes of continuous time processes

and discrete windows.

H. STRASSER

Experiments with independent increments

The starting point are those·non-regular situations in asymptotic

statistics where the densities may have jumps. Such situations have

been considered under a couple of conditions by Ibragimov & Hasiminskil

1972-1981, and by Pflug, 1981. We treat the problem"by LeCam's theory

of infinitely divisible experiments. The limit experiments occurring

with densities with jumps are particular cases of what we call

experiments with independent'increments. This class ofexperiments

can be described by the associated semigroups of binary experiments.

We give a simple set of conditions which implies the situation

considered by Ibragimov & Has'minskiY.

E. N. TORGERSEN

statistical information obtainable by sampling plans insurvey sampling

Consider a finite population land a characteristic of interest

which, with varying amount (value, degree, ... ) is possessed by all

individuals in I. Let Sei) be the amount of this characteristic

for individual i.

It is known that e belangs ta some set e of functions on I.

Let a be a.sampling plan, i.e. a probability distribution on the

set of finite sequences of elements fram I. If this sampling plan

is used and if the charac~eristics of sampled individuals are

deterrnined without error, then the outcome

x = «il,8(i1»,(i2,6(i2», ...,(in,8(in»

is obtained with probability a(i"i2 , ... ,in ).

We shall here discuss how the statistical information in x depends

on the chosen sampling plan a.
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s. R. S. VARADHAN

Transport processes in random media

We consider a transport process in R
d

with a finite set {v
1

, ... ,v
N

}

of possible velocities. The infinitesimal generator takes the

form

G = V·V F + p(x) ~ {F(x,v') - F(x,v)} .
x N v'

p(x) controls the Poisson rate for transitions in velocities and

new velocity is chosen randomly with equal probabilities at each ~

turn. p(x) is assumed to be random and forms a stationary

stochastic process in x with very general ergodicity properties.

Under the assumption that the set of velocities is balanced (i.e.

v is a velocity'implies that -v is so) we prove a central limit

theorem for the position x(t) of the process at time t as t ~ ~.

H. v. WEIZSÄCKER

What is aperfeet experiment?

Let (Q,B,{Pa}aee) be a statistieal experiment, Q and e being

Polish spaees and 8 Pa(B) Borel for eaeh BEB. Eaeh of" the

following eonditions is strietly weaker than the next. Eaeh may be

viewed as a possible definition of 'perfectness' cf the experiment.

a) if a ~ a'.

b) There is a farnily (Ba)aE8 of subsets of Q satisfying

i)' {(w,a): w E Ba} E Borel(Qx8)

{o
1 if a = a'

ii) Pa(Ba ,) if a = a l •

c) If

d) There is a Borel map ~: Q ~ 8 such that

for all a" E e

c + d. For Gaussian shift

d is·an unsolved problem.

The main points here are e ~ band

experiments a ~ c is known and e ~

c has rnany interesting reformulations.
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v. WIHSTUTZ

Stabilization of linear systems by noise

It is proved that the biggest Lyapunov number Amax of the system

X = (A+F(t»x, where A i5 a fixed dxd-rnatrix and F{t) is a

zero-mean strictly stationary rnatrix-valued stochastic process,

satisfies dl trace A ~ A . On the other hand, for each E > 0
max 1

there is a process pet) for which Amax ~ a trace A + E. In

particular, the system x = Ax can be stabilized by zero mean

stationary parameter noise if and only if trace(A) < o. The stabi­

lization can be accomplished by a one-dimensional noise source.

The results carry over to the case where A is a stationary process.

(Joint paper of L. Arnold, H. Crauel, V. Wihstutz)

H. WITTING

On the convergence rate of·linear rank statistics

The convergence rate of signed linear rank statistics is proved

to be not worse than 0(n- 1 / 2 (10g n)2) if the score generating

function b satisfies the Chernoff-Savage type condition

Ib"{t) 1 S c [t(1-t)]-2 vt E (0,1). The main idea is to approxi­

mate the statistic by a U-statistic and toapply a result of

Helmers - van Zwet (1981) about the convergence rate of U-statistics~

By an appropriate generalization of U-statistics and the··Helmers -

van Zwet result the convergence rate of general linear rank

statistics can be shown to be not worse than O(maxlc .Klog n)-2),
nJ

if the regression coefficients satisfy the Noether conoltion

maxlc ·1 ~ 0, ~c ~ ~ 1. (Joint with U. Müller-Funk and
nJ nJ

K. O. Friedrich).

J. ZABCZYK

Structural properties of stochastic linear systems in Hilbert spaces

The object of the talk is to discuss structural prop~rties of a

stochastic linear system (xt}t ~ 0 of the form

dXt = (Axt+But)dt + C dwt , Xo = x E H, where Adenotes infinitesimal

generator of a Co-semigroup defined on a Hilbert space H; Band C
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. are bounded linear operators and (wt)t ~ 0 is a Wiener process.

In particular conditions will be given under which the controlled

system is non-degenerate, recurrent or positive recurrent.

w. R. van ZWET

Contiguity relative to -the randomness hypothe"sis

For N = 1,2, .•• , consider product probability measures

N
nON"

i=l 1
and let denote the product of N identical

is asymptotically
dQNi

1: log~
N

(iii) The log-likelihood ratio

probabilities PN • We investigate the following statements:

(i) The sequence '{QJN>} is contiguous to {P~} for some

choice of {P
N

};

(ii) The sequences - {Q~N>} and {P:} are mutually contiguous

for some choice of - {P
N

};

122 N
N(-~N,oN) under '{PN} and its summands are asymptotically

negligible.

Each of these statements is equivalent to the same statement with

ON ~ 1: QNi instead of PN . Necessary and sufficient conditions

in terms of the marginals QNi are given for each statement.

Berichterstatter: Ludwig Arnold
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