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Die Tagung wurde geleitet von den Herren L. Arnold (Bremen) und
H. Strasser (Bayreuth).

. Die 45 Teilnehmer aus den USA, Indien, Japan und neun europdischen

Ldndern reprdsentierten eine Vielzahl verschiedener Arbeitsrich-
tungen innerhalb der mathematischen Stochastik und ihrer Grenzge-
biete, dies kam auch in der thematischen Vielfalt der 36 Vortrige
zum Ausdruck. Besonders erfreulich war die Anwesenheit einer
gréBeren Anzahl international fiihrender Vertreter des Fachgebiets.
Bedauert wurde, daB Herr Zabczyk (Warszawa) auf die perséhliche
Teilnahme an der Tagung verzichten muBte.

Neben Darstellungen speziellerer Resultate wurden einige lingere
Vortrdge zu folgenden Problemkreisen gehalten: Schidtzerkonstruktion
vermittels Vapnik-Cervonenkis-Klassen; Green- und Dirichlet-Riume
von Markov-Prozessen und zufdlligen Feldern; Martingale auf Mannig-
faltigkeiten; Differentialtheoretische Ansitze in der asympto-
tischen Statistik; Zufdllige Medien.

Besonderes Interesse fanden einerseits die asymptotische Entschei-
dungstheorie, andererseits die Theorie der WahrscheinlichkeitsmaBe
auf lokal kompakten Gruppen und schlieBlich die 'neue' Verbindung
zwischen der Differentialgeometrie und der Theorie der stocha-
stischen Prozesse, dies spiegelte sich sowohl in der Anzahl der
Vortrége dazu als auch in den informellen Diskussionen.
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Vortragsausziige

M. AKAHIRA ‘l’

Asymptotic deficiency of estimators under models with nuisance

parameters

In many cases of statistical inference, there is often raised the
problem of "model selection", that is, to specify the appropriate
model for observed data. In typical situations we have observations

which are assumed to be independently and identically distributed
with a parameter 6 to be estimated and also "shape" parameters.

If we choose-a "large" model, that is, with many shape parameters,
the model will be more accurate, or it will include a distribution
which is close to the "true" distribution. On the other hand,
however, the presence of many nuisance parameters would increase
the error of estimation of 6 due to the errors of those estimated

nuisance parameters. This problem can not be approached when we

only consider the first order asymptotic efficiency, since the

presence of nuisance parameters will not affect the asymptotic

variance of estimators of 6,provided that the parameters are
orthogonal. Hence we have to consider the second (or the third) .
order asymptotic efficiency and discuss the problem in terms

of "asymptotic deficiency". And in this term we may consider

the trade-off between "aacuracy" and "simplicity" of the model.
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R. BERAN

Estimated sampling distributions: the bootstrap and competitors

Let X, ,X5,..., X be i.i.d random variables with cdf F. Suppose
A A
the {Tn=Tn(X1,X2,...,xn); n. 2 1} are real-valued statistics and

the {Tn(F); n 2 1} are centering functionals such that the

1/2 A > . .
(Tn-Tn(F)); n 2 1} is normal with

1/2 4
(T_-T_(F)). The

asymptotic distribution of {n
mean zero. Let Hn(x,F) be the exact cdf of n
problem is to estimate Hn(x,F) or functionals of Hn(x,F) from
the sample. Under regularity assumptions, it is shown that the
bootstrap estimate Hn(x,%n), where,§n~is the sample cdf, is
asymptotically minimax. On the other hand, the commonly used
normal approximation with estimated variance ist not asymptoti-
cally minimax for Hn(x,F) (except in special cases) because of
bias. However, the estimated first-order Edgeworth expansion of
Hn(x,F) is, again, asymptotically minimax and is equivalent to
the bootstrap estimate Hn(x’%n) up to terms of order n-1/2.

The results for estimating functionals of Hn(x,F) are similar.

L. BIRGE

Stability and instability of minimax risk for i.i.d. variables

under perturbations

Consider the problem of estimating ©® in & from n i.i.d. variables

of law P. Suppose we define the minimax risk corresponding to
this experiment by
_ . 2
Rn(e) = inf suplZS[nh (PT’PS)]'
T S
T being any estimate of 9 and h Hellinger distance. If we enlarge
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the parameter space or make some small perturbations of it we get

a new parameter space © with the property that for any 9' in 8,
there exists 9 in ® and h(9,9') £ e. How much will Rn(§) differ
from Rn(e)? We search for results of the type

Rn(e) <K Rn(e)

with K not depending on n or Rn(e) but only on €. We consider the
cases of € = —%— and prove a stability result (K being a function
vof c only). 1

For larger perturbations € = cn—7 Rn(e) the result is false in the

general case, but it holds for a large subclass of models which

are reqular in the sense that their risk is determined by the

dimensional properties of the parameter space (€,h) considered as

a metric space.

E. B. DYNKIN

Dirichlet spaces and Green's spaces for Markov processes and

Gaussian random fields

For symmetric Markov processes, a dual pair of Hilbert spaces{ the

Dirichlet space H and Green's space K are the most natural domain

for the corresponding semi-group of operators T

operator A is an isometry from H onto K and Green's operator G=(-A)~

i The infinitesimal
1

the inverse isometry of K onto H. Elements of H can be represented

by fine functions i.e. by functions which are right continuous along

almost

all paths, and elements of K can be represented as measures

or generalized measures. To every positive element k€K, there

is

corresponds a measure on the space of paths and an additive functional

of the
can be
Markov
fields

Markov process. Using these tools a general Dirichlet problem
solved. The results can be extended to families of symmetric
processes and can be used for the investigation of symmetric

associated with symmetric Markov processes (in particular, the

so called free field considered in quantum fields theory).
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K. D. ELWORTHY

Flows of stochastic dynamical systems: the functional analytic
approach

Let Ft(u) be a solution of the stochastic differential equation

dx, = Y(xt)-dBt + A(xt)dt on R", with B an m—dimengional Brownian
motion, and initial point X, = u. A 'flow' for the equation is a
version of F. (') which is jointly continuous in t and u. Following
work by Malliavin there has been recent interest in the existence

of flows and their properties. By lifting our equation to an equation
on a suitable Hilbert space of functions we will show that many of
the long technical details of the proofs can be subsumed once and for
all in known results about Sobolev spaces.

After giving a simple example to clear away some misconceptions:

in particular to show that it is not enough to simply add a coffin
state to deal with explosions, we will prove the main results when
the coefficients have compact support: existence, differentiability,
equation for the inverse, backward equations. The general case

(with smooth coefficients) is then deduced from these, as is Kunita's
criterion for surjectivity of Ft'
The discussion is based on an expository article written with
A. P. Carverhill.

B. FEREBEE

Asymptotic expansion of Brownian exit densities

Let p(t) be the density of the first-exit time of a Brownian motion
over the moving boundafy given by x = f(t). Let A(t):=f(t)-tf'(t) be
the intercept on the vertical axis of the tangent to the boundary at
t. If, for a given t, the quantity A:=%(£é§l - £7__(-3-)—)/(% - %) is
"large enough" for s€(0,t), then p(t) is mainly determined by the
behavior of f near t; in fact,

- £(t), (A(t) _ 3 n/2 Alt)
p(t) ol W/t_) {;37-2‘ n£1 c.t mn(T)}.

n d% 1-0(x)

Here mn(x):=(-1) dxn —T(x—)

and the coefficients ¢, depend only

on the derivatives of f at t .

Forschungsgemeinschaft © @
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W. HAZOD .

On stable measures

M. Sharpe (Trans. Amer. Math. Soc. 136 (1969) 51-65) introduced
the concept of operator stable laws on Rd: Let (ut)tZo be a '
continuous convolution semigroup of probability measures (c.c.s.)
< Aut(Rd) be of the form =t_ = tB,

d
on R, let further (v.). o t
Re A > 0}, such that

B € End(Rd), Spect (B) € {A

= * i
(*) Ty (1) Hiag b (t) for some fixed a > O,

b(t) € Rd, s,t > 0. Then (ut) is operator stable. .
We need the following fact: Let (ut)tZo be a c.c.s. on a locally
compact group, then for ¢ € D(G) - the Schwartz-Bruhat-space -

the generating functional <A,e>:= g? <ug 0> is defined, and

the correspondence (ut) - A is 1-1.

(*) is equivalent to
(**) tt(A) = t*A + P(t), where P(t) is a generating functional
of a group of Point measures.
Defintion Let G be a locally compact group. Let (ut) be a c.c.s.
with generating functional A and let (tt)t>o < Aut(G) be a group,
such that T Ty = Tts{ t,s>0 and TeX o3 € X € G.

A resp. (ut) is stable if (**) holds.
For a class of connected, simply connected nilpotent Lie groups G
(- which admit such automorphisms -) the generating functionals
of stable measures can be completely described:
Theorem: Let G be as above, g the tangent space at e (i.e.
the Lie Algebra). Via the exponential map there is a 1-1-correspon-

dence. between generating functionals on G and on the vectorgrou
To stable generating functionals on G there correspond operator-
stable generating functionals on 9 in the sense of M. Sharpe.

H. HEYER

Embedding of invariant probability measures

“The theory of probability measures on the hyperbolic plane vieved
as the homogeneous space X = G/g with G:= SL(2,R) and
K:= SO(2,R) is based ,on a detailed analysis of the group G , the

Deutsche .
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semigroup M1(K,G,K) of K-biinvariant probabilities on G and the

theory of K-spherical functions on G. The fact that X is a

Riemannian symmetric space of noncompact type makes it possible

to solve the following central problems.

(1) The embedding of infinitely divisible (K-biinvariant) measures
into continuous convolution semigroups.

(2) The central limit theorem for infinitesimal triangular arrays
of measures.

(3) The transience property of nondegenerate continuous convolution

. semigroups.
This talk deals only with problem (1), but in a more general
framework. The results obtained extend "classical" contributions
to the embedding problem for infinitely divisible measures on an
arbitrary weakly compact group (as discussed in chapter III of the
author's monograph) to large classes of homogeneous spaces
(including the euclidean spaces, the spheres and the real hyper-
bolic spaces).

A. JANSSEN

Infinitely divisible experiments and exponential families

We refer to three points:

1. Limit theorems for statistical experiments,
infinitely divisible experiments, stable exp. ...,

2. Exponential families,

3. Asymptotically normal families.

. Infinitely divisible experiments are weak limits of infinitesimal
triangle systems of statistical experiments. Especially we consider
weak limit points of

n en
n

x°, ea, (Pana’a € )

5n ¢ 0, which we call stable (semistable).
i=1 .

A k-parametric exponential family on Rk is stable (infinitely
divisible) if and only if the measure Po is stable (infinitely
divisible).

Finally, we give necessary and sufficient conditions for a limit
experiment to be a GauB-experiment.

These results can be applied to prove that under certain conditions
the loglikelihood ratio process is asymptotically normal.

DF Deutsche
Forschungsgemeinschaft ©
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P. JEGANATHAN

Some remarks on Hajek's local asymptotic minimax and admissibility

results

In recent times there occur several estimation problems, especially
in stochastic processes, e.g. in Galton-Watson super-critical '
branching processes, where the limit of the loglikelihood ratios is
mixed normal. It was shown by Swenson (1980, Ph. D. thesis, Univ.
calif., Berkeley) and also by the present author that J. Hajek's
(1972) local asymptotic minimax and admissibility results can be .
extended to the fore-mentioned case also. The present purpose is

to give an elementary proof of these and other related results in
asymptotic theory.

W. KIRSCH

Selfadjointness of Schrodinger operators with stochastic potentials

We consider Schrédinger operators on LZ(Rd) of the form H = H 4V,
where H = -4 is the d dimensional Laplacian and Vo is a
stochastic potential; i.e. (w,x) - Vw(x) is a jointly measurable
function on and, where (Q,F,P) is a probability space. Such
operators arise naturally in the quantum theory of disordered
systems. We are interested in crlterla which ensure that the
operator H is essentially selfadjOlnt on the domain C (R ), the
space of inf1n1tely differentiable functions with compact support.
Physically speaking the essential selfadjointness means that the
time evolution of the system described by H is uniquely given by
the action of H on C (R ) . Our main result is: Let Co be an open

set and denote by {x } an indexed set in R such that the sets

Co+xi (i€I) cover Rd, tﬁin Hm is essentially selfadjoint, if for
some p > max(2,d/2) the moment of order k of the random variables
] |Vm(x)|pdx “exists and is bounded by a constant C independent
Co+xi

of i. Here k is a number depending on p and the dimension 4.
(joint paper with F. Martinelli)

Deutsche
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A. KOZEK

Minimum Lévy distance estimation of a translation parameter

Let X5 1 £ i £ n, be independent identically distributed random
variables with a common distribution function F and let G be a
smooth distribution function. We derive the limit distribution

of VH(DL(Fn}G)-oL(F,G)), where F_ is the empirical distribution
function based on X1,...,Xn,- and Py, is the Levy distance between
distribution functions. If, moreover, F is continuous and ;

{Ge = G(--8): @ € R1} is a family of probability measures on R

with a translation parameter © , we obtain the limit distribution
of VE(DL(Fn'Gen) = pp(F,G)), vn(e -6) and \/HDL(Ge /G_), where
n e n e
A and @ denote the minimum Levy distance translation para-

meters for Fn and F , respectively. These results are compared
with the corresponding ones for the Kolmogorov metric.

L. LECAM 4

' v
Construction of estimates through Vapnik - Cervonenkis classes

Let E = {pe:eee} be an experiment where each Py is a product

measure Pe =X pe . Metrize € through the sum H2 of the square

. ]
Hellinger distances on the components. The problem is to find

estimates §n such that Ee Hz(én,e) remains bounded by a function
of the dimension of © for H. This has been done (by LeCam and
then Birgé) using tests between Hellinger tubes. One can also
attempt to do it by a minimum distance method using as a norm

illllA = sup {IA(s)|: s€s} where 4 is a class of measurable sets

- in the space that carries the Py - Properties of classes 4 leading

: J
to acceptable estimates are described as well as inequalities on

quantities such as vh sup |u_(s) - p(s)| where u is the
s€s n no-

empirical measure and where p = % I pg .-
J

3
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" The information (measured by the deficiency distance)'of‘additionai
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P. MAJOR

-

Dyson's hierarchical models and limit theorems in statistical
physics

Our aim is to give a general overlook about Dyson's hierarchical

model. It is investigated in order to understand the general
behaviour of equilibrium states in statistical physics.>We are
interested in the behaviour of the model at critical temperature.

We Qet limit theorems for sums of random variables with unorthodox
norming. The limit measure must be the fixed point of a complicate
transformation. There is always a Gaussian solution, but it is in b
certain cases unstable. In such cases a stable non-Gaussian solution
can be found be means of perturbation theory. This is the interesting
solution from physical point of view.

P. MALLIAVIN

Elliptic estimates in infinite dimension

Stochastic calculus of variation, stochastic flow, weak processes,
estimates of laws. Applicatién to non linear filtering and models
of classical statistical mechanics.

References. Journal of Functional Analysis year 1981 and 1982.

E. MAMMEN

observations

In the case of asymptotically Gaussian experiments we give an
asymptotic lower bound for the information contained in additional
observations as measured by the deficiency distance of LeCam. For
exponential families we use Edgeworth expansions of the Bayes
risks to study the asymptotic gain of information.

o




P. A. MEYER

Martingale convergence theorem in Riemannian manifolds

Given a continuous semimartingale Xt with values in a Riemannian

manifold V one can define intrinsically 1) the property of Xt
of being a martingale 2) the scalar increasing process

d<x,x>t = gijd<xfx3>t. Some propaganda is made for the following
results:
W. DARLING: on the set {<x,x>_ <o}, X_ a.s. exists in the one point
‘ compactification of V

W. A. ZHENG: on the set {xeo exists in V}, <x,x>_ a.s. is finite.

D. W. MULLER

Factorizing the information contained in an experiment, conditionally

on the observed value of a statistic

No matter which value t of a statistic T, has been observed the
loss of information, in comparison with the original data, will
asymptotically (n-») always be the same. This statement is inter-
preted and proved in the framework of "comparison of experiments".
The loss of information is described by the conditional experiments
{ Le(datalTn=t): 6 € © }. Under assumptions commonly accepted in
asymptotic statistics these conditional experiments are shown to be
all of the same "type", as n - « ., Joint work with Werner EHM,
University of Frankfurt, W-Germany.

‘I' S. OREY

Strong laws for shrinking Brownian Tubes

T

Let X be Rd-valued Brownian motion, IT (IT(w) = Ié(s)lzds) the
o

associated action functional and define the functional

ap(e) = inf {IT(w): Ho-X1tg < €}, where Holly = o;:ngw(s)l.
Next let X' be a second Rd-valued Brownian motion, independent of
X; say (X,X') are defined on a product space (QxQ',BxB',PxP'). Let
qT(elw) = P'[IIX'—wIITSS]. Interest will focus on the random
functional qT(e,X).

DF Deutsche
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Theorem 1: 3 positive constant m, such that ezaT(e)/T — m1 as € ¥ o _

1
Theorem 2: 3 positive constant m, such that —Ezlog q (g,x) — m,
T T

as € ¥+ o.

G. PALM

Stochastic identification of nonlinear systems

A system is a mapping S: I - R, where I is a set of functions of
time T. Usually T = R,2Z, or [o,£], and I = C(T), L%(T), D(T),. &
Identification of a system S requires its representation, for

example as Sx = k_ + j'k1(t1)x(t.|)dt1 + Ik, (ty ) x(t) x(ty)dt dt+. ..
(this is called a Volterra series). Then one can identify the system
by experimentally determining the 'kernels' ki(t),kz(t1,t2),... .
This is done by testing the system by appropriate test inputs x(t).
Norbert Wiener had the idea to use stochastic test inputs, i.e. a
process (I,Z,p) and to assume S € LZ(I,p). S is then identified by
expansion with respect to a specific CONS an < L2(I,p).

S = Z<S,an>an. Here I = C[o,1], p Brownian Motion, and Hpx are

Hermite-Laguerre polynomials, which are of the form(A)Hnk = I Gnki'
i=o

where (B)G , . x = j...Ignki(t1,...,ti)dx(t1)...dx(ti). This result
can be generalized to quite arbitrary stochastic processes (I,Z,p).
Theorem: For every stochastic process (I,Z,p). (where I is generated
by cylindersets, x(o) = o a.s. and something like

E(x(t) - x(to))2 - o(f»to)) with polynomials dense in LPOR,Pt) for
every p 21, t € T there exists a CONS in LZ(I,p) of functionals

an of the form (A), (B). .

G. PAPANICOLAOU

Characterization of set of values of conductivity in random media

We give a suitable definition of conductivity in a random medium.
Then we give a representation formula for the conductivity and
discuss its implications. Multicomponent random media will be
discussed also.

o®
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J. PFANZAGL

A differential approach to asymptotic statistical theory

Let P be a family of probability measures with densities h(-,P).
The tangent space T(P,¥) is defined as the set of all functions
g € £, (P) with fg(x)P(dx) = O which are limits of sequences
(h( Pt)/h(°,P) - 1), t + 0. The gradient x°(-,P) of a
functional x: Y » R is defined by the property that, for Pt
near P, x(P ) can be approximated by x(P) + fx°(x, P)Pt(dx) Then
fx° (x,P) P(dx) is a bound for the asymptotic variance of asympto-
. tically median unbiased estimator-sequences for x, if x°(-,P)€T(P,9P).
As an example, estimation of quantites of symmetric distributions

is discussed.

G. Ch. PFLUG

Recursive estimation in nonregqular cases

Fiir nicht reguldre Dichtefamilien (das sind solche, bei denen der
euklidische Abstand im Parameterraum und die Hellingerdistanzen

der Dichten eine Relation vom Grade p erfiillen) werden, aufbauend
auf dem Konzept der Pitmanschidtzer, rekursive Schidtzer definiert.
Schadtzt man auch die a-posteriori Varianz rekursiv mit, so erreichen
so definierte Schdtzer jene maximale Konvergenzgeschwindigkeit,
welche von LeCam resp. Strasser als "quick-consistency".bezeichnet
wird. Weiter ist es mdglich, asymptotische Verteilungen (die in der
Regel nicht normal sind) anzugeben.

P. REVESZ

How big are the increments of the local time of a Wiener process?

Let {n(x,t); O<t<w, -w<x<w} be the local time of the Wiener
process {W(t); O<t<s} i.e. for any Borel set A let

f n(x,t)dx = A{s: ssSt, W(s)€A}
A

where A is the Lebesgue measure. Further let O<a(t)<t (t>0) be
a non-decreasing function. Our aim is to study the properties of the
processes

DF Deutsche
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y,(t) = sup (n(0,s+a(t))-n(0,s)),
03sit-a(t)

y,(t) = sup max (n(x,s+a(t))-n(x,s)).
0Ssst-~a(t) —o<X <®

A new continuity modulus of the local time will be also given.

M. DENKER und U. ROSLER

On Chernoff-Savage theorems

The subject of this talk is a new proof and an extension of
the two-sample linear rank statistic of the Chernoff-Savage

type. Let xi, Yj' i=1,...,n, j=1,...,m be independent r.v.

with distribution function F,G and consider
1 N _ 1A
VN CI) h (a7 Hy(£))dF (£) - VN é h (Hy (t))dF (t)

where Fn'Gn are the empirical distributions and

B o=2p 4+ B, =DpyDg oy blem is to find
N n N ‘m’ N = N N . e pro em 1s o] in a

large class of functions h , such that the above converges in

Z|3

distribution to a normal distribution.
Our basic assumption on the two processes Xi”Yj is the inde-
pendence of the processes and the condition, O in21/2

E(VA(F, (2)-F(2))?) = O([F(2) (1-F(2))1"?™

for all =z € [0,1] and similar for Gm,G. This enables us
to treat processes with some dependence structure, like uni-

formly mixing, absolutely regqular or strongly mixing.

Chernoff, H. / I. R. Savage: Asymptotic normality and effciency

of certain nonparametric test statistics, Ann. Math. Stat. 29
(1958), 972-994.

Pyke, R. / G. R. Shorak: Weak convergence of a two-sample empirical

process and a new approach to Chernoff-Savage theorems. Ann. Math.

Stat. 39 (1968), 755-771.

Deutsche
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H. ROST

Probabilistic modelling of hydrodynamic behaviour

If one is interested in the macroscopic evolution law of a many M
particle system (concerning mass density) and expects a non-

equilibrium behaviour of the form
£ = 1 Aiv(k(f) grad f)
one way of trying to identify the density dependent diffusion
coefficient k(-) 1is ~ following an old idea of Onsager - to
look at fluctuations around the equilibrium state of the system
characterized by the fixed density p . It is shown here that for
a zero-range jump-process with arbitrary jump rates in dimension
d =1 or 2 k can be identified and a relation of the form
(for o, €Y)
lim € N%(0,00N® (U, t) = x - [fo(x)¥(y)g(3=L) ax dy
€0 vkt
can be proven. Here g(-:) . is standard Gaussian density, the
other quantities are defined as follows: )

X(i,t) = number of particles at site i at time t,

d/ _
N (o t) =€ '3 T (X(i,te 2)-o)w(ie:),‘
i€Zd
X = "susceptibility" = e(x(o,o)—p)2 in that particular model

p = density €X(o,0).

M. SCHEUTZOW

Stationary solutions of stochastic differential equations with

bounded memory

We study solutions of stochastic delay equations of the form
dx(t) = F(X )dt + dW(t), where W is a one-dimensional Wiener
process, F: C[0,1] - R and Xt(s): = X(t+s), s € [0,1]. Such
equations have a bounded memory because the drift function F only
depends on the past of X during the last unit timé interval.

In case there exists a unique weak solution, (X is a Markov-

t)t20

~process. If X has an invariant probability measure, it is

Deutsche

t
unique and every initial p.m. converges to it. Sufficient conditions
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for this case are formulated via Lyapunov functionals. We give two
examples one of which is the well-known logistic equation of
population growth. Finally we state a convergence result of

e invariant p.ms of the discretized equation towards the invariant

p.m. of the originalequation.

E. SIEBERT

Holomorphic convolution semigroups

>0 of probability .
measures on a locally compact group G is said to be (strongly)

A continuous convolution semigroup (ut)

holomorphic if for every representation n of G by isometries
on a Hilbert space (resp. Banach space) the operator semigroup

) s,
are strongly holomorphic; and symmetric convolution semigroups are

is holomorphic. For example compound Poisson semigroups

holomorphic.

Holomorphic semigroups possess interesting properties with regard
to support, densities, etc.

Further important examples of strongly holomorphic semigrodps are
given by (strictly) stable convolution semigroups; by certain
(absolutely continuous) Gaussian semigroups; and by subordination
by means of strongly holomorphic semigroups on [0,=[ (as one-
sided stable and Gamma semigroups). For operator-stable probability
measures on Rd (in the sense of Sharpe) more precise results

can be derived.

J. STOYANOV ‘l’

One agproéch.to estimation problems for continuous time stochastic
processes

We shall consider continuous time stochastic processes depending on

some unknown parameters. The finding of good estimators for these
parameters is a natural and important problem. Often the following
assumption is made: the process is observed continuously during
some time interval. In this case and if the process is of a diffu-
sion type the estimators contain integrals in Lebesgue and Ito's
sense which is not so convenient from the practice point of view.

DF Deutsche
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We shall present another approach. Suppose the process is observed
only at the moments of some discrete window, deterministic or random.
The aim is to find estimators for the unknown parameters on the basis
of the obtained discrete data. The solution of this general problem
will be given for some specific classes of continuous time processes
and discrete windows.

H. STRASSER

Experiments with independent increments

The starting point are those non-regular situations in asymptotic
statistics where the densities may have jumps. Such situations have
been considered under a couple of conditions by Ibragimov & Has'minskil
1972-1981, and by Pflug, 1981. We treat the problem by LeCam's theory
of infinitely divisible experiments. The limit experiments occurring
with densities with jumps are particular cases of what we call
experiments with independent’increments. This class of experiments

can be described by the associated semigroups of binary experiments.

We give a simple set of conditions which implies the situation

considered by Ibragimov & Has'minskil.

E. N. TORGERSEN

Statistical information obtainable by sampling plans in survey sampling

Consider a finite population I and a characteristic of interest
which, with varying amount (value, degree,...) is possessed by all
individuals in I. Let"e(i) be the amount of this characteristic
for individual i. ’

It is known that 6 belongs to some set © of functions on I.
Let a be a sampling plan, i.e. a probability distribution on the
set of finite sequences of elements from I. If this sampling plan
is used and if the characteristics of sampled individuals are
determined without error, then the outcome

X = ((17,8(11)), (15,8(ip)) 0.0 (i,00i))

is obtained with probability a(i1,i2,...,in).
We shall here discuss how the statistical information in x depends
on the chosen sampling plan a .
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S. R. S. VARADHAN .

Transport processes in random media

We consider a transport process in Rd with a finite set {V1""’VN}
of possible velocities. The infinitesimal generator takes the

form

G = V'VXF + D_(_E_) z {F(xrvl) = F(XIV)}
v!'

p(x) controls the Poisson rate for transitions in velocities and

new velocity is chosen randomly with equal probabilities at each .
turn. p{x) is assumed to be random and forms a stationary

stochastic process in x with very general ergodicity properties.
Under the assumption that the set of velocities is balanced (i.e.

v is a velocity implies that -v is so) we prove a central limit

theorem for the position x(t) of the process at time t as t - .

H. v. WEIZSACKER

What is a perfect experiment?

Let (Q,B,{pa}aee) be a statistical experiment, Q and © being
Polish spaces and 9 = pS(B) Borel for each B € B. Each of the

following conditions is strictly weaker than the next. Each may be
viewed as a possible definition of 'perfectness' of the experiment.

a) Pg L Py if 9 % 9'.

b) There is a family (36)868 of subsets of Q satisfying
i) {(w,9): w € BB} € Borel (Rx6) » .
) pyBen = {o if 515 '

c) If wlv on @ then fpaduvL Ipadv on Q

d) There is a Borgl map ¢: Q -» 8 such that

Py {w: 0(@) =9} =1 for all d €8

The main‘points here are ¢ = b and c¢ # d. For Gaussian shift
experiments a = ¢ is known and ¢ =» d is an unsolved problem.

c has many interesting reformulations.
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V. WIHSTUTZ

Stabilization of linear systems by noise

It is proved that the biggest Lyapunov number Amax of the system
x = (A+F(t))x, where A is a fixed dxd-matrix and F(t) 1is a

zero-mean strictly stationary matrix-valued stochastic process,

satisfies % trace A < Aax- On the other hand, for each € > O
there is a process F(t) for which Amax < % trace A + €. In

particular, the system X = Ax can be stabilized by zero mean
stationary parameter noise if and only if trace(A) < O. The stabi-
lization can be accomplished by a one-dimensional noise source.
The results carry over to the case where A is a stationary process.

(Joint paper of L. Arnold, H. Crauel, V. Wihstutz)

H. WITTING

On the convergence rate of - linear rank statistics

The convergence rate of signed linear rank statistics is proved

-1/2(log n)2) if the score generating

to be not worse than O(n
function b satisfies the Chernoff-Savage type condition

Ib"(£) 1 s C [t(1—t)]_2 vt € (0,1). The main idea is to approxi-

mate the statistic by a U-statistic and to apply a result of

Helmers - van Zwet (1981) about the convergence rate of U-statistics.
By an appropriate generalization of U-statistics and the Helmers -
van Zwet result the convergence rate of general linear rank
statistics can be shown to be not worse than O(maxlcnjklog n)_z),

if the regression coefficients satisfy the Noether conaition

maxlcnjl - 0, ch? - 1. (Joint with U. Miller-Funk and

K. O. Friedrich).

J. ZABCZYK

Structural properties of stochastic linear systems in Hilbert spaces

The object of the talk is to discuss structufal properties of a

stochastic linear system (xt) of the form

t2o
dxt = (Axt+But)dt + C dwt, Xy = % € H, where A denotes infinitesimal
generator of a Co-semigroup defined on a Hilbert space H; B and C
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_are bounded linear operators and (wt)t >0 is a Wiener process.
In particular conditions will be given under which the controlled
system is non-degenerate, recurrent or positive recurrent.

W. R. van ZWET

Contiguity relative to the randomness hypothesis

For N =1,2,..., consider product probability measures

v @
QéN) = 1 QNi and let Pg denote the product of N identical
i=1 :

probabilities PN . We investigate the following statements:

(i) The sequence '{QéN)} is contiguous to {Pg} for some

choice of {PN}; .
(ii) The sequences '{QéN)} and {Pg) are mutually contiguous
for some choice of ‘{PN};
daQ
dPN

(iii) The log-likelihood ratio I log is asymptotically

N(—; ;,oﬁ) under '{Pg} and its summands are asymptotically

negligible.

Each of these statements is equivalent to the same statement with

QN = % z QNi instead of Py - Necessary and sufficient conditions
in terms of the marginals QNi are given for each statement.

Berichterstatter: Ludwig Arnold
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