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1m Mittelpunkt der Tagung, die unter der Leitung von

D. Foata (Strasbourg) stattfand, standen Vorträge und Diskussio-

nen über Parti~ionen, q - Reihen, symmetrische Funktionen,

orthogonale Funktionen und spezielle "Funktionen. Diese Themen

wurden vom Standpunkt der Kombinatorik aus behandelt. Insbe-

sondere kamen die vor allem in den letzten heiden Jahren ent­

wickelten Methoden, klassische Identitäten mit Hilfe von

kombinatorischen überlegungen zu beweisen, öfters zur Sprache.

Für das Gelingen der Tagung waren auch die gute Ausstattung

~. und schöne Lage des Instituts sehr wesentlich. Last not least

sei ·den Mitarbeitern des Instituts für ihre sorgfältige un~

unbürokratische Betreuung an dieser Stelle herzlich gedankt!
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Vortragsauszüge

G. E. ANDREWS:

- 2 -

Frobenius' Representation cf Partitions and Related Problem~

Frobenius first observed that each ordinary partition of n

can be written as (ab' a 2 ••• bar) where a, > 3 2 > ••• > a r ?:. 0;
1 b Z ••• r

b1 > bZ > ••• > br > 0 and n = r + E a + E b. If.we relax the

condition that the als and bis are respectively distinct to

the condition that no integer appears more than k times in

e~ch row, we obtain generalized Frobenius partitions. Let

Fk(n) denote the number of generalized Frobenius partitions of

n of multiplicity k. Numerous interesting results arise for

the Fk(n). E. g.

(1) 1: FZ(n) =lAr (1_qn)-1(1_qlln-l0)-1(1-qlZn-9)-1(1_qlZn-3)-1(1-qlln-Z)-1
~ n=l .

(Z) 5 I F2 (Sn+ 3)

etc. etc.

G. E. ANDREWS:

What Is (er Should Be) a Simple Combinaterial Proo! cf the

Rogers - Ramanujan Identities

A history of the interplay of bijective and algebraic - analytic

proofs of par~ition identities is presented. Three bijective

proofs of Euler's theorem (the partitions of n into distinct
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parts are equinumerous with the partitions of n into odd

parts) are presented along with the refinernents cf Euler's

theorem implied by them. Also treated are the Rogers - Rama­

nujan Schur identities and Schurfs "difference 3" theorem;

again the analytic refinements related to combinatorial

treatments are presented.

The ciassical bijections seem to rely on algorithms that

terminate in a number of steps related to the number cf parts

of the cansidered partitions. Is there such an l1 e fficient"

bijection related to the Rogers - Ramanujan identities?

The pathbreaki~g bijection of Garsia - Milne appears to be

inefficient by this measure.

M. BARNABE I :

Umbral Methods for Multi - Variate Hermite Polynomials

Multivariate umbral methods can be used to give quick proofs

of same basic facts in the theory cf multivariate Hermite

palynomials, such as recurrence relations, Rodrigues formula

and Burchnall - Feldheim - Watson formulas.

G. BARON:

Hinomial Systems on free Monoids

Since the original papers of G. C. ROTA and his team several

generalizations of binomial polynomials were considered.
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We want to develop a noncommutative analogue of these

structures.

Starting w~th an at most countable alphabet A considered

as aposet we define a generalized shuffle product and a

.generalized concatenation for the words of A*. The coefficients

appearing in the shuffle product are identified as an ana-

logue cf the ordinary and EILENBERG binomial coefficients

and lead to a noncommutative version of the binomial theorem.

From this point of view we study related P91y~omial sy~tems

and operator systems and also formal power series on A.

Some algebraic results derived on these structures will be

presented.

D. BRESSOUD:

A constructive pr06f of the 9 - analog of Pfarr - Saalschiltz

It is proved by constructive methods thai the generating

function for pairs cf partitions, n and ~, satisfying

(1) n has n distinct parts, all ~ and ~ m + n - k,

(2) , has m parts, zero permitted, all parts ~ s + k,

(3) the crossing numbers cf 'I' with respect to TI starting

at 5 is r; is

oe

[ SJ rm+n- s][m+n+k- rJ
r Ln-s+r m+n

(m-r)(s-r)
q

Summing over all r, and recognizing that the generating

function for pairs cf partitions satisfying (1) and Cl) is
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yields the q - analog of the rfaff - Saalschütz summation.

R. CANFIELD:

Interplay between combinatorics and topology

We consider a class cf regular hypergraphs whose vertices

are all the k - element subsets of a given set and whose

edges are families of subsets which are pairwise disjoint.

A problem is to determine the chrornatic number of these.

Following a method used by Lovasz, we relate this coloring

problem to questio~s about coverings by open sets of

certain topological spaces.

J. CIGLER:

Some methods for 9 - identities

Same results obtained·by students in Vienna are given.

PAU~E gives a simple transformation
.2

" [a+b
k

] [ab+b
k

] = ~ la+bl! --S:...-JJ• S2J'
~ a k a+ + ~[a-J]![b-J]! TZITT

with 52' = r[j~tl q_k
2

J k a k•

For suitable values of a k finite forms of known q - idcntities

are derived such as Rogers - Rarnanujan, Rogcrs - SeIherg,                                   
                                                                                                       ©
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Göllnitz - Gordon, etc ••

k
k 'Z(Sk+l)

( - 1) q give s t he f i n i t e fo rm 0 f R. - R. - I.: .

r:
k

tk (Sk+l)
(_l)k q [ a+bJ ra+bJ

a+k lb+k L
j

KRATTENTHALER has given a q - Lagrange formula, a q - generali-

zation of Egorychev's inverse relation results and further

q - identities.

M. CLAUSEN:

Pictures and standard tableaux

Pictures appeared first in papers by James/Peel (J. Alg. 56)

and zelevinsky (J. Alg. 69). Roughly speaking a .picture is

a bijection T : A ~ B (A,B =IN x IN) such that T and T- 1 both

satisfy the same standard property_ A problem which arises

in representation theory is to compute explicitly all pictures

between two skew diagrams A and B. We establish an algorithm

which constructs by suitable hook deformations' all those

pictures •.

This work was done join~ly with F. Stötzer.
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D. 1. A. COHl:N:

A Schur Bet

Having previously (Oberwolfach 1980) proved that the number

of partitions of n into parts e ',4 (mod 5) called ben) is

ben) = L (_l)k p(n - kfZ (Sk ± 1))

we now continue by defining a(n,m) = the number of partitions

of n into parts ~ m such that any two parts differ by

at least 2.

Schur noted that

{

aen,rn) = a(n,m-l) + a(n-m,m-2)

a(n,Ol = 0 unless n 0 when a

a(n,l) 0 unless n = 0,1 when a 1.

Now let P(x,y,z) be the number of partitions of z inta at

most y parts each < x. Obviously

P(x,y,z) - P(x-l,y,z)

P(x.y,z) - P(x,y-l,z)

Now we show

P(x,y-l,z-x)

P(x-l,y,z-y).

a(n,2m) = r {P(ID+Si+1,m-Si,n-10i 2-i)

- P(m+Si+3,m-Si-2,n-l0i 2-11i-3)}

a(n,2m+l) I {P(m+Si+l,m-Si+l,n-l0i 2
-i)

- P(m+Si+4,m-Si-2,n-l0i 2-11i-3)}.

Now take m = n. The P(x,y,z) turn inta p(z) and the distinction

between even and odd vanishes leaving
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a(n) D L (_l)k p(n - kfZ (Sk ± 1)).

Hence

a(n) = ben)

and the Rogers - Ramanujan - Schur identities are proved.

Bijections and congruen~e were also given.

P, FLAJOLET:

Combinatorial Aspects of Continued Fractions and

Orthogonal Polynomials

We show that the universal continued fraction of the Stjeltjes ­

- Jacobi type is equivalent to the characteristic se~ies

of labelied paths in the plane. The equivalence holds in

the set of series in non - commutative indeterminates.

Using it, we derive direct combinatorial proofs of continued

fraction expansions for series involving known combinatorial

quantities: the Catalan numbers, the Bell and Stirling numbers,

the tangent and secant numbers, the Euler and Eulerian numbers

• We also show combinatorial interpretations for the

coefficients of the elliptic functions, the coeff~cien.ts

of inverses of the Tchebycheff, Charlier, Hermitc, La~uerre

and Meixner polynomials. Other applications include cycles

of binomial coefficients and inversion formulae. Most of

the proofs fellow from direct geometrical correspondences

between objects.
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lJ. FOATA:

The Laguerre polynomials L(a)(x) (n > 0) defined by
n -

1: n (a) -0-1
u L ( x) ::: (1 - u) exp ( - xu/ ( 1 . - u)) (n > 0)

n -

have a combinatorial interpretation that can be used to

prove most of the classical identities such as the Bille ­

- Hardy formula, the Erd~lyi formula. Furthermore a multi-

linear version of the latter identity can be proved that

is tbe analog for the Laguerre polynomials of the Kibble ­

- Slepian formula for the Hermite polynomials. See D. Foata

& V. Strehl, Une extension multilineaire de la formule d'Erdelyi

pOUT les produits de fonctions hyperg~om~tTiques confluentes,

c. R. Acad. Sc. Paris, 293 (1981), 517 - 520 and Combinatorics

of the Laguerre polynomials, PTOC~ Waterloo Conference, 1982,

to appear.

4It I. GESSEL:

Combinatorial Proofs cf Saalschütz's Theorem and

Multivariable Lagrange Inversion

If we equate coefficients in the identi~y

we obtain a form of Saalschütz's Theorem.
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This identity can be proved by counting paths between nodes

of two calors in two different ways .•

A multivariable Lagrange Inversion formula can be proved

by counting ~unctions on colored vertices; first directly,

and second by connected components.

C. GREENE:

Some Properties cf the Majorization Order

The majorization order ~ on the set Pn of partitions of n

is defined as foliows: if e = {al ~ 8 2 ~ ••• } and

A C {At ~ A2 ~: ••• } then e ~ A iff 9, + 8 2 + ••• + Si

~ At + Az + ••• + Ai for i = 1,2, ••••

We obtain simple combinatorial characterizations of two

important functions on the lattice (Pn'~):

(i) the Möbius function and (ii) the height function. The

first is based on a combinatorial decomposition of partitions

(calied the .. 5 tai rcase decompos i t ion") J ove.r which t in.a

certain sense, the Möbius function is multiplicative. Our

arguments refine·and "explaintt earlier results of Brylawski

and Bogart, which state that ~p assurnes only the values ±1,
n

with certain periodicities modulo 3. The height function of

Pn is characterized by special maximal chains (calied "HV -

- chains tt
), in which all covers of a certain kind (ltH - stepsrt)

precede all covers of another kind (nv - steps"). Our main

result (obtained jointly with D. J. Kleitman) is that any

•
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pai r G ~ A can be 1 inked by an BV - chain, all of tht>sc

chains have the same length, and this length is maximal.

J. ilOFhAUEH:

e Un 9 - analogs of the Lagrange inversion theorem and of

Catalan numbers

Let us consider the following q - analogs of nation of

n - th power of a formal power series: f.l)~(z) = in] .lPn(2.)~(z)

and ~'(z) = q-n ln ) W (qz)~(z). Then the coefficients in
n n

the expansion

fez)

are given by an

nran_z _

<.pn(z)Wn(z)

= .!.f' (z)<.p (z).p (qz) I .
[n] n n n· 1

~

e

(ln this general form, this q - analog of the Lagrange

inversion theorem, is due to ehr. Krattenthaler).

The most important special cases are:

a) ~ (z) (1-z)(1-qz) •.• (1- qn-1 z ) = (z) ,. ~ 1 (Carlitz 1973)n n n

b) ~n(z) c(a(n]z). ~n ; 1 (Ciglcr lYfO)

c) ~n(Z) (az)nJ lPn(Z) (Q-nZ)n·

The last example is closely related to the q - analogs of

the classical orthogonal polynomials (e. g. the little Cl ­

Jacobi polynomials of Andrews and Askey) and may be applied

to obtain nice q - analogs of all inverse relations of

Legendre and Cebyshev type in Riordan's book.
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°To illsustrate the differences of this q - Lagrange formula
n-lwith that of Garsia, where ~n(z) = ~(z)~(qz) •••~(q z), two

different versions of q - Catalan numbers were presented.

P. KIRSCHENHOFeR:

Lagrange Inversion and Sheffer Systems on free monoids

We present a generalization of the weIl known inversion

formula of Lagrange - Good, which works for a special type

of systems of formal power series on free monoids. The .

proof makes use of a result on binomial systems on free

monoids corresponding to the classical or multivariate

Steffensen formula. A generalization of the classical

Rodrigues formula will be presented, too.

In the second part we present a short development of the

"Sheffer" systems related to these blßomial families,

which seems to present a natural way of defining noncommu-

tative analogues of classical polynomial systems such as

e. g. Hermite polynomials.

A. LASCOUX & M. P. SCHÜTZENBERGER:

We refine the order on permutations due to Ehresmann

(and called ßruhat order). By reading the edges of the

•
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graph of this order in different ways, one can describe

the ring of polynomials modulo the ideal generated by the

totally symmetrie polynomials - which is, in geometrr, the

cohomology ring of the flag manifold - and generate different

families of polynomials which have a geometrical and com-

binatorial interpretation. As a special case, one finds

back the Schur functions.

P. LEROUX:

Jacobi Polynomials: Combinatorial interpretation and

generating fUDction

(With D. Foata. to appear in Proc. Amer. Math. Soc.)

The classical generating function for Jacobi polynomials

I: p(~)(x) un = ZQ+B R- 1 (1 - u - R)-a (1 • u + R)-B
ß>O n

4It with R = (1 - 2xu + u 2)1/2

is derived by purely combinatorial methods.

The combinatorial interpretation comes from the explicit

expression'

p (a,S)(x)
n

Se t t ing X c x - 1 ,Y x + 1 , we de fine
----r- --z-

p(a.ß)(x.y) c L In (a + 1 + j)i (8 + 1 + i) xiyj
n i+j=n \
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This counts "Jacobi endofunctions" on [n] = {1,2, ••• ,n}

that is ordered partitions (A,B) of [n]

• injective functions f: A ~ [n]

g: B ~ [n]

with weights (a + l)c(f)(B + l)c(g) XIAI ylBI •
c(f) stands for the number of cycles of f. The generating

function of p~a,ß)(X,y) is obtained by standard techniques

of combinatorial generating functions.

s. C. MILNE:

Schur functions and the invariant polynomials eharaeterizing

U(n) tensor operators

We give a direct formulation of the invariant polynomials

uG(n)(,6"i,x, '+1') eharacterizing U(n) tensor operatorsg ~ 1.,1.

<p,q, ••• ,q.O, ••• ,O> in terms of the symmetrie functions SA

known as Schur functions. To this end we show after the

change of variables 6 i .= Yi - 6 i and xi,i+l = öi - ö i + 1 '

that G(n)(,6, ,i,x, '+1') becomes an integral linear corn-u g 1 1.,1. .

bination of products of Schur functions Sa(,yi,)-Sa('ö i ,)

in the variables {Y 1 , ••• ,Yn } and {ol, ••• ,on}' respectively.

By making further use of basic properties cf Schur functions

such as the Littlewood - Richardson rule we prove several remark-

01(, (n ) l' Ä ~ }

,I Y1'· · · ,'Y ; u l' • • · ,n •U g n m

formula

abl~ new symmetries for the yet more general bisymmetric polynomials

In addition we derive the polynomial
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lr.'hcre (u .. 1 + Jii - n) - Adenotes the partition

\i ::. (v 1 J \) 2 J • • • , 'J u'" 1) \\. i t 11 Vi::' (u ... 1 + m - n) - ). U .. 2 - i ·

h·. 01>ERSCHELP:

Proof concepts for almost - all rcsults

We introduce results cf Fagin (J. Symb. Log. ~, SO - 58)

and Blass - Harary (J. Graph. Th. l, 225 - 40) concerning

o - 1 la~s for relative frequen~ies of first - order -

- defined n - element models in relations.

Then ,,'e interprcte a generalization of Lync-h (Ann. Math.

Log. l!, ~1 - 135), where 0 - 1 laws are proved, if a

superimposed structure (e. g. the successor mod n). can

be used. The idea of Itrichness" (technically: k - extendi­

bility with respect to the Ehrenfeucht game) is cxplicated,

and a negative result fOT finite linear order is compared

with· the successor case.

As a second generalization we consider relative frequencies

with Tespec~ to special relation theories defined by a

condition1.~. "l~is called Blass - Fagin (HF), if the limit

ex ist sandis 0 0 r 1 f 0 r e very [ i r s tor cl e r co nd j 1. j 0 n 1:.

We exhibi t the proo f idea of Blas 5 in the case, tha t J"

is graph theory, and sketch, how things work in the frarne­

work of parametrie relations (W. Oberschclp, Lecture Notes

Math. (Springer) 579 (ed. Foata), 297 - 307). The concept

of richness appears again in the HF - proof for parametrie
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conditions (W. Oberschelp, Oberwolfach 1980 and DMV - Meeting

1980 Dortmund, not yet published completely). Beyond that

we present results of K. J. Campton (Dissertation 19~1).

So far the exponential generating power series had conver­

gence radius R = o. But Compton's results apply to R > o.
Here exactly the case R = ~ yields BF - conditions. We

interprete this case "at the other end of the convergence

scale" as "poorness" in structure, contrasted to richness

in the former cases. Finally we interpr~te Compton's

most interesting positive BF - example, vize equivalence

relations, and correspondingly partitions of n in the

analogous unlabelled case.

D. RAWLINGS:

Enumeration of permutations by d~scents, idescents, imajor

index, and basic components.

Multi - variable extensions of classic permutation results

are obtained by counting permutations by descents t idescents.

imajor index, and basic components. For instance, the genera-

ting function

A(n.s,q,z) ~ deso ima]'o beG
~ 5 q z'
o

for permutations 0 of {1,2, ••• ,nl by descents, imajor index,

and basic components satisfies thc recurrence
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~ n n-k n-kA(n+1;s,q,z) = zA(n;s,q,z) + sq ~ [k-1]q (l-s) A(k;,s,q,z)
k c 1

where A(O;,s,q,z) = 1. In the case 5 = 1 the recurrence

Yields the classic identity due to Gould

n-1
A(n;l,q,z) =~ (z+q[k])

k=O

for the q - Stirling numbers of the first kind. When

z = 1 the recurrence defines the q - Eulerian numbers of

Stanley.

D. P. ROBBINS

Alternating sigo matrices and descending plane partitions

An alternating sign matrix is a square matrix such that

(i) all entries are 1, -1, or 0, (ii) every row and column

has surn 1, and (iii) in every row and column the non -

4It - zero entries alternate in sign.

I have discovered striking numerical evidence of a connection

between these matrices and the descending plane partitions

introduced by Andrews, but I have been unable to prove

the existence of such a connection. However this evidence

did suggest a method of proving the Andrews Conjecture

on descending plane partitions, which in turn suggested

a method of proving the Macdonald Conjecture on cyclieally

symmetrie plane partitions.
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In this talk we discuss alternating sign matrices and

deseending plane partitions, and present several conjeetures

and theorems about them.

D. P. ROBBINS:

Proof of the Maedonald Conjeeture

A plane partition is cyclically symmetrie if its Ferrers

graph is invariant under the eyclic permutation (xtYtz). ~ (y,z,x)

of the~coordinate axes. Let M(m,n) be the number of cyclically

symmetrie partitions of n whose Ferrers graphs are con-

tained in the box [l,rn) x [l,m] x [l,m]. Macdonald has

conjeetured that the generating. funetion Ln>O M(m,n)qn

is a eertain produet cf eyelotomic polynomials. The special

ease q ~ 1 has been settled by Andrews. In the course of

his proof Andrews introduced a new elass of partitions that

he called descending plane partitions and made a similar

conjecture about these partitions. The object cf this

paper is to prove both of these conjectures.

B. SAGAN:

Enumeration cf partially ordered sets with hooklengths

An algorithm cf Hillman and Grassl [J. Comb. Thy.(A) ~

(1976), 216 - 221] for reverse plane partitions is extended
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to shifted reverse plane partitions and rooted trees.

Ihis is motivated by adesire to explain \\hy all thrcc

in a combinatorial manneT (the h i are calledh._ X 1

families have generating functions of the form
h
n

i=l

hooklengths and have a combinatorial interpretation in

each case). Ihis method is seen to app1y to severa1 other

types cf partitions whose generating function is a product,

notably: plane partitions without fixed shape, partitions

restricted.in the number & size of its parts, and multi ­

- variable generating functions which also keep track of

the sum of diagonal elements in a plane partition; ~e note

that various other algorithms have been generalized to

shifted shapes and trees as weIl.

v. STREHL:

Three observations concerning Hermite polynomials

The usual combinatorial model for Herrnite polynomials is

extended in order to derive several classical identities

on orthogonal polynomials within a common combinatorial

framework. Three "examples a Te gi ven:

1) The Szegö - relations connecting Hermite - and LaguerTe -

- polynomials.

·2) An identity of Tricomi's connecting polynomials defined by

(d )
n 2' QnA(X) (1 - x 2)-A-n to GegenbauerCIi (1 - x )-1\ =
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polynomials.

3) Two different relations between Gegenbauer and Jacobi ­

- polynomials (making use of the combinatorial ideas of

Foata - Leroux).

E. TRIESCH:

On an adjacency property of graphs

A graph G has property A(m,n,k) if for any sequence of

m + n distinct points of. G, there are at least kother

points, each of which is adjacent to the first m and not

adjacent to the last n points of the sequence. Tbe property

is important in the first - order theory of graphs. Let

a(m,n,k) .denote the minimum order among all graphs with

property A(m,n,k). The talk provides a survey of the known

inequalities for a(m,n,k). Some new inequalities are derived.

G. VIENNOT, M. FRANCHI - ZANNETTACCI:

Thc number cf convex polyomin~es

A convex polyomin- is a union of elementary cells (defined

up to a translation) of the "plane" Z x 'l which is

simply connected, with DO cut point, and such that the in­

tersection with any vertical and horizontal line is a

connected segment. We prove that the number P2n of convex
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polyominces. with perimeter 2n i5:

P4 • 1 , P6 • 2

and P2n+8
. (2n +' 11) "4 n _ 4(2n + 1) (2~) for every n > o.-

The proof is in 3 steps:

1) CodiDg of a convex polyamine with a word of an algebraic

language,

2). Resolution of systems of algebraic equations,

3) Expanding the generating funetion.

G. VIENNOT:

Same "simple" bijections related to the Rogers - Ramanujan

- Sch~r identities

We give same interpretations for the inverse cf the left

hand' sides of the Rogers - Ramanujan - Schur identities.

The bijections are particular cases Gf a general bijection

4It proving the MacMahon Master· theorem and the cofactor ­

~ determinant classical formula for matrix inversion

(see a forthcoming paper with S. Dulucq). In particular­

the ratio of the two identities is interpreted .in termS

af weighted 'paths and Ramanujan'continued fraction deduced.

Tbe connection with bijections for general orthogonal

polynamials is made explicit.

A pictorial model is·introduced, 'related to q - polynomial

identities of Andrews from which the Rogers - Ramanujan -
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- Schur identities can be deduced. With different weights for the

paths, we have the left hand sides of the identities,

and also the ones of the 14 identities of the hard hexa-

gonal m~del in statistical physics (Baxter, Andrews).

The numbers involved in the corresponding infinite PToducts

are easily seen on the picture.

The problem is to find a nice bijective way to make eK­

plicit these infinte products.

D.- ZEILBERGER:

How to get "eute" bijective proofs from dull inductive proofs

Recently Garsia and Milne, and Garsia and Remmel used general

ideas of the Lotharingian school to translate manipulative

proofs of q - series identities into nice bijective proofs.

-We are go~ng to offer a general algorithm for getting bi-

jective proofs of results of the form F(m" ••• ,mn) = G(m1, ••• ,mn)

where both Fand Gare counting functions of finite sets 4It
depending on n discrete parameters, each of them having a

natural linear partial recurrence equation with polynomial

coefficients. It is shown how this algorithm leads in a

natural way to the Schensted correspondence, Sagan's

correspondence, a bijective proof that the Gau~sian poly-

nomials enumerate partitions restricted by size and number

of elements and the author's correspondence establishing

the hook - lengths formula. However, the chief interest
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of the method isthat ",oe are guaranteed the existence of

bijective proofs in a wider variety cf situations, in

par~iculaT, evcry bincmial identity has a bijective proof.

Be T ich 1 C- r s 1 a t t c :": i.. '1 l" i c sc h
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