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Universelle Algebra

17. bis 21. Mai 1982

21/1982

Die Tagung, die unter der Leitung der Herren Professqren G. Grätzer (Winnipeg)

und R.Wille (Darmstadt) stattfand, brachte Mathematiker aus zehn Ländern Ost­

und West-Europas sowie Nordamerikas zusammen. Von besonde~em Interesse war die

Vielfalt der Anregungen un~ Methoden aus diversen Gebieten wie etwa Logik,

Geometrie, Informatik, Kombinatorik und Gruppentheorie, die zur Lösung alter

Probleme und zur Erforschung neuer Richtungen beitrugen. Die Teilnehmer führ-

ten die Tagung Um Gedenken an Jürgen Schmidt; dem Leiter der ersten Oberwolfacher

Tagung über Universelle Algebra, durch. Jürgen Schmidt verstarb im Oktober 1980.
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Vortragsauszüge
oS:. I

K. A. BAKER:

Markov eonstructions of algebras

T of S x S, let MS,T denote the Markov

for all i}. It is useful to consider the

T is a subalgebra of S x S, or even more

and subsets

(Si' si+l) E T

is an algebra a~dScase where

For a finite set

chain {~E S71

generally, where ~ is a partial algebra and T is a~ induced partial sub­

algebra. Then MS,T becomes.an algebra or a partial algebra. This construction~

provides a unifying framework in which to consider varied examples: (1) arbit­

rarily long non-shortenable projectivities in varieties generated by finite

nondistributive lattiees; (2)'McKenzie's proof that these same varieties lack

definable principal congruences; (3) Park's construction of a non-finitely

based finite idempotent commutative algebra; (4) Shallon's graph algebras;

(5) a' finite 2-unary algebra whose elass of subdirect powers is not fini tely

axiomatizable (Gimpel).

H. BAUER:

Semilattiees of compaet eongruenees.

Definition: A semilattice with 0 is called distributive if the lattice of all

ideals is distributive.

Theorem: Eaeh distributive semilattiee is isomorphie to the semilattiee of

all eompaet e6ngruenees of a lattiee.

More preeisely: Let H be a distributive semilattice. Then it is eonsistent

with ZFC, that there is a lattice V, such that Conc(V) ~ H.

G. BRUNS:

Varieties of modular ortholattices

Let Man be the modular ortholattice consisting of 2n pairvise ineomparable

elements and the bounds (n ~ 1) and let MOa be the one-element ortholattiee.'

is a variety of modular ortholattices different from all

then ~ contains a projeetive plane (with orthoeomple-(0 s n ~ 8)[MOn]

Theorem: If ~ is a variety of modular ortholattiees which is not contained

in the variety [M02] generated by M02 then 'M03 E ~ •

Conjecture: If ~

mentation) .
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P. BURMEISTER:

Seme recent developments in the theory of partial a1gebras

During the last years some interest in partial a1gebras and their theory has

started in Co~puter Seience beeause of same applieations in this fie1d. This

has given new impact to the development of a theory for partial a1gebras,

which needs model theoretie eoneepts already on a very ear1y stage. A geod

basis for this seems to be the eoncept of Itexistenee-equality" (~): For any

two terms t,t* (in the usua1 sense) a partial algebra A satisfies t~t*

with respect to a valuation h : X ~ A of the set X of variables (~= t~t*[h])

if the values of the induced partial X-ary term functions t~, t*~ exist in A

on the sequence hand are equa1: t!(h) = t*!(h).
n"e e *

For formulas of the form i~l' ti=t i => to=to (ECE-equatiens) or
n e e * e *
i~l ti=t

i
=> to=t

o
(QE-equations) or simply t=t (E-equations), respective1y,

Birkhoff-type theorems exist (semantica1 and syntactica1 ones). Moreover, within

this 1anguage together with a model theoretica1 interpretation of the category

theoretical concept of a factorization system, one gets good descriptions for

the most important attributes for homomorphisms between partial a1gebras.

(For more details see TH-Darmstadt-Preprint No. 582 (Dept. of Math.).)

B. csAKANY:

Three-element groupoids with minimal clones

Three-e1ement groupoids <~; f > are considered where ~ = {O, 1, 2} and f

is essential1y binary. Two such groupoids are cal1ed essentially distinet if

they are neither isomorphie nor antiisomorphie. The binary operation with

Cayley table

o

2

o

o

n
o

.2

5 •
is denoted by the integer E 31 n.

. 0 1
There exist twelve essential1y distinet three-e1ement groupoids whose clones

of term functions are minimal (i.e., are atoms of the lattice of all clones

on ~), namely, the groupoids <l ; f > wi th

f = 0,8, 10, ]1, ]6, 17,.26,33,35,68, 178,624 .

( < 1. ; 0 > and < 3 ; 10> are semilattices, < 3 ; 178 > is the triangle , and

< 3 ; 624 > is the three-e1ement affine space.)
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A. DAY (with D. PICKERING):

Coordinatizing Arguesian Lattices

A spanning n-diamond in a (modular) lattice L i5 a sequence (x1, ... ,xn'xn+ l )

such that V x. = 1 for all i and x. A V X = 0 for all i; j. Using
j;i J . 1. k;i, j k

an a5symetr1c notat1.on (xl, .•. ,xn_l,z,t) for a spanning n-diamond and h = V xi'

w = h A (z v t) and D = {a : a v w = z v t, a A w = O} we prove~

Theorem I: If L i5 Argue5ian, then (D,~, z, ~, t) is a ring for n ~ 3.

Theorem 2: If L i5 Arguesian and n ~ 3 then there i5 a meet-preserving •
",[) n-I IF : [0, n] ~ ~ (nD ). Moreover F is injective if F [0, w] is injective

and F is join preserving if L satisfy (h - UC) : [p v h = 1 => 3 q . 3 . q ~ p,

q v h = land q A h = 0].

T. EVANS:

Lattice-ordered loops

~n a variety of lattice-ordered algebras, the fully-ordered algebras generate

a subvariety, every algebra of which is a subdirect product of fully-ordered

algebras. Characterizations of these subvarieties in terms of identities are

known for groups, rings etc. In this joint work with P. Hartman, we describe

the identities satisfied by the fully-ordered algebras in the variety of

lattice-ordered loops. The known results for groups and commutative groups

are consequences of this result.

P. GORALetK and V. KOUBEK:

Isomorphism-complete and group-universal semigroup varieties

A variety ~ is group-universal if for every group G there is A € Y with •

G = Aut(A). A pseudovariety ~ is isomorphism-complete if there is a polynomial

reduction of the graph-isomorphism problem to ~.

We prove that a 5emigroup pseudovariety is isomorphism-complete if it is not

contained in (Zr v C) u (ZI v C) U (Zr v Z) v V
g
), where Zr = [xy = yJ,

ZI = [xy = x], C = [xy = zt], and V
g

is a variety containing only groups.

We give a camplete list of minimal group-universal semigroup varieties.

We prove that a semigroup pseudovariety is isomorphism-complete if it is not
f f f f f f f f f

contained in (Zr v C v G) u (ZI v C v G) U (Zr v Z) v G), where Zr' ZI' C

are the pseudovarieties of the finite members of Zr' Z), C, respectively, and

G is the pseudovariety of all finite groups. We give a complete list of minimal

isomorphism-complete semigroup pseudovarieties.
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M. GOULD:

Embedding in Globals of Groups and Semilattices

The global of a semigroup S is the family gl(5) of all nonvoid subsets of 5,

with the natural mu1tiplication: AB = {abla in At b in B}. In the case where

5 is a group G, every factor group of G is a subsemigroup of gl(G), but gl(G)

has many other subsemigroups. We shall survey the recent literature on subsemi­

groups of gl(G), emphasizing Trnkova's embedding of an arbitrary commutative.

semigroup into the.' global of a direct po~er of the group of integers. There

will be some discussion of recent attempts by the author and others to establish

a finite version of Trnkova'~ result. An analogous problem concerning globals

of semilattices will be discussed, and a connection will be elaborated between

the semilattice question and the group question.

G. GRÄTZER and D. KELLY:

Same infinitary free lattices land 11

In Part I, the free m-lattice freely generated by H is described. Here, m is

an infinite regular ca~dinal, an m-lattice is aposet L in wbich Ax and Vx
exist for all X S L witb 0 < lxi < m; finally, H is the poset

W
Tbis lattice, CF (H) is put together from three building blocks: CFm(t, + t,),m
A, and "B, where A = {<r,s> Ir< 5; r, s dyadic~rationals; 0 ::5: r, s ::5: 1; and

-n
with (s)} ; is defined simi1arly withs - r = 2 n 2: ord B r > s. The

ordering of A ~nd B is componentwise.

Theorem: Let P be a countab1e poset. T.F.A.E.

(1) CF (P) does not contain F (3);
m m

(2) P does not contain ! + 2" .t + ~t ! + ! + 1·"",,'
(3) CFm(P) can be embedded into CF (H) •

m

In the special case: P is finite and m =~o' this theorem is due to J. Rival

and R. Wille.
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H. P. GliMM:

Two sides of modular varieties

Using the commutator operation Ca, ß] of two congruences a and ß we say that

a congruence relation p is prime if Ca, ß] ~ p implies a $ p or ß $ p.

Setting E;;(e) = V {a I 3
ß

>. e Ca, ß] $ el we find that for e finitely A­

~rreducible ct/~(8) € HSP~(K) whenever Ct€ HSP(K). In particula~ this is

true, if e is prime. Moreover, since e is prime iff E;;(8) = 8, on defining

the prime radical /öL:= n {p Ip prime} we find for arbitrary Oi E HSP(K),

that Cü/~ E Ps~SPn(K).

On the other side of modular varieties we look at congruences a ~ ß with ~
Ca, ß] = O. In a natural way we are associating affine a1gebras with the

6-classes, such that the ß-c1asses in one and the same a-c1ass carry isomorphie

affine a1gebras. In the case Cl = those affine a1gebras (%U[ß] are in rY (m),

in particular, ß;;; mx m I7[ß].

c. HERRMANN:

Definabi.lity, generation and decidability problems for varieties of modular

lattices

The short comings of the axiomatic approach to lattices of submodules of a

module can be i11ustrated by the fol1owing facts: 1) The word problem for the

modular lattice in four free generators is recursive1y unso1vab1e. 2) No modular

lattice variety containing an infinite dimensional projective geometry can be

both finite1y based and generated by its finite dimensional members. In contrast,

the lattice variety generated by all lattices of submodules has a solvable word

problem for free 1attices and is generated by its finite rnembers. Who minds

that it ,is not finitely based?

~
w. HODGES (joint with J. BALDWIN, J. BERMAN, A. GLASS):

A combinatorial property of free algebras

We give a corumon generalisation of many known results of the following type:

A free boolean algebra contains no uncountable chain (Horn 1968). We define as

endomorphism base of the algebra A to be a set X c A such that every~ap

* * * * *f : X ~ X extends to an endomorphism f : A ~ A so that f g = (fg) ,IX 1
A

.
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This X is an endomorphism base over Y c A iff moreover each f* fixes Y

pointwise. THEOREM: Let A be a free algebra in a variety with countable

language, and let X, Y c A, IYI < K ~ lxi where K is a regular uncountable

cardinal. Tben some subset of X of cardinality K i5 an endomorphism base over Y.

A. HUHN:

On tbe representation of distributive semilattices

E. T. Schmidt proved that every distributive lattice with 0 is isomorphie with

the lattice of compact congruences of a lattice. P. Pudlak gave a new proof

and a category theoretical generalization of Schmidt's theorem by considering

the distributive lattice to be repre5ented as a direct limit of its finite

5ublattices containing 0 and ~epresenting this sublattices.simultaneously.

Our main theorem asserts that a considerable part of Pudlak's program, namely

the simultaneous representation of two objects, can be carried out by working

witb distributive semilattices instead of distributive lattices. Among the

corollaries we have the results of Schmidt and Pudlak as weIl as Bauer's un­

publisbed theorem that every eountable distributive semilattice with 0 is the

semilattice ~f finitely generated congruences of a lattice. Our technique

combines the technique of a proof of E. T.. Sehmidt (for the relatively pseudo­

complemented case) with the methods in the theory of free distributive products.

B. JONSSON:

Varieties of relation algebras

In the variety RA of all relation algebras (in the sense of A. Tarski) every

subdirectly irreducible member is simple. Every finite, simple relations algebra

is splitting. In particular, this is true of R(n), the full relation algebra on

n elements.

Thm I. Every embedding of R(n) ioto a simple relation alge~ra is an isomorphism.

Thm 2. A simple relation algebra A is isomorphie to R(n) iff A has an element a

witb a < a a + an ~ 0', an = 0, ao- J ~ 0 .a j - , T

Thm 3. The conjugate variety o~ R(n), RA*(n), i5 a dual atom in the lattice of

all subarieties of RA.

Thm 4. The identity ao- 1 ~ I; «a;a)a- + a-an-O' + an); 1 constitutes an

equational basis for RA*(n) mod RA.
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H. KAISER:

Approximation in universal algebra

When analyzing the interpolation problem for functions over the field of real

numbers from the topo1ogiea1 view one is led to the following definition (due

to G. Kowol):

Let A be a topologiea1 universal algebra. A has the approximation property if

the algebra Pk{A) of all k-ary polynomia1 functions over A is dense in the

ful1 funetion algebra Fk(A) for every positive integer k.

Same properties of a1gebras with the approximation property will be discussed

and the problem of deseribing all topo1ogical universal algebras satisfying

T2 and having the approximation property will be solved for the case of

congruence permutable varieties. As an application Jaeobson's density theorem

for rings of linear transformations of vectorspaces over skewfields will be

derived in this setting.

E. W. KISS:

Finitely Boolean representab1e varieties

A subalgebra ~ of an algebra 1n is ca1led very skew if ~.is skew in each

direct decomposition of~. It is proved that a finite neutral simple algebra

~contained in a modular variety is quasi-prima1 iff there is abound on the

cardinalities of the very skew subalgebras of the finite direet powers of Vt.

With the help of this eharacterisation a short, elementary proof of a result

of S. Burris and R. MeKenzie stating that eaeh variety Boolean representable

by a finite set of finite algebras is the join of an abelian and a discriminator

variety is obtained.

P. KÖHLER:

The finite congruenee lattice problem

There are three good reasons to elaim that Group Theory will playa crucial

röle in any attempt to solve the "finite congruence 1attice problem". The

first one is - of course - the Pudlak-Pa1fy result that every finite lattiee

is isomorphie to the eongruenee lattiee of a finite algebra if and only if

every finite lattice is isomorphie to an interval in the subgroup lattice of

a finite group. The second one is the reeent example - due to Walter Feit -

of a finite algebra with eongruenee lattice H
7

. The third one is the - possibly

decisive - special case of the lattiees Mn' n-I not a prime power. Here sorne

                                   
                                                                                                       ©



- 9 -

restrietions on the structure of the possible finite algebras having such Mn'S

as congruence lattices can be proved quite easily by applying some - not always

trivial - results from Group Theory.

G. F. McNULTY (joint work with C. SHALLON):

Inherently nonfinitely based finite algebras

A variety V is inherently nonfinitely based provided V is locally finite and

whenever W is a locally finite variety including V then W is not finitely based.

A finite algebra is said to be inherently nonfinitely based if the variety it

generates is. A graph algebra is a groupoid with universe A z where z A such

that az = za zz = z for all a in A and ab has either the value a or the

value z for every a, b in A.

THEOREM. Let V be a locally finite variety of groupoids. If either every finite

idempotent graph algebra belongs to V or every finite graph algebra without

-idempotents belongs to V, then V is inherently nonfinitely based.

THEOREM. Every nonassoeiative, nonabsorptive finite groupoid that has a multi­

plicative zero and a unit is inherently nonfinitely based.

Lyndons nonfinitely based groupoid fails to be inherently nonfinitely based.

The werk of Murskii and Perkins inspired ours.

R. PADMANABHAN :

Geometrie universal algebras

Let us consider the following phenomenon: If < G, n > is a mathematical

structure admitting a "natur~l" binary operation lJ: G x G -+ G with two

sided identity e, i.e. lJ(x,e) = ~(e,x) = x for all x E G, then the set G

has a eommutative semi-group structure (actually a group in many interesting

~ cases) naturally associated with n and ~. This phenomenon occurs in sever~l
"disjoint" areas of mathematics: (1) If G is a completely i,rreducible alg~braic

curve over an algebraically closed field k and lJ a morphism then < G, lJ, e >

is an abelian (algebraic) group. (2) If G is a topological space and lJ continuous

then the fundamental group ß(G, e) is abelian. (3) If G is an affine algebra

and lJ itself is an affine operation of G then <G, ~, e> is an abelian group.

Thus it is natural to ask for a common universal algebraic formulation of this

implication
{lJ(x,e) == lJ(e,x) xl ~G {~ is an abelian group operation}.
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With this in mind we give a few formal ru1es of derivation for an equational

theory such that (i) these rules of derivations are formally valid for all

the mathematica1 systems mentioned above and (ii) under these rules of

derivations, one ean derive the abelian group laws for ~ from the one­

variable 1aw {~(x,e) = ~(e,x) = xl .

D. PIGOZZI:

Varieties with equationa11y definable congruences - a study of the deduction

theorem in a1gebraie 10gic

A variety V has equationa11y definab1e prineipal congruences (EDPC) if there

is a system of equations Pi(x,y,z,w) = qi(x,y,z,w) for i = I, ... ,n such

that a is congruent to b modulo the prineipal congruence generated by (c,d)

iff Pi(a,b,c,d) = qi(a,b,c,d) for all i. V is I-regular if each congruence

relation is completely determined by its J-equivalence elass. EDPC is

charaeteristic of the varieties that arise from logie, but there are many

varieties with the property that have no apparent relation to logic. It is

shown that if V has EDPC and is I-regular and eongruence-permutable, then

it has a structure very elose to that of the familiar varieties of non­

classical logic. In particular, V has terms - and that behave very much like

the implication and conjunction of intuitionistic logic.

R. W. QUACKENBUSH:

Affine Equational Classes and Affine Equational Logic

•

Let K be an equational class. An algebra. m= <A;F > is quasi-affine if

for same abelian group <A;+ >, each f E F is an affine transformation with

respe~t to +; ~is affine if in addition x - y + Z is a term function. K

is (quasi-) affine if each a6 E K is (quasi-) affine.

Theorem (Ch. Herrmann): K is affine iff K is modular and for each GeE K, •

6 (<Jl,) = {(a, a) I a E Al is a eongruenee class' of 06 2 •

Generalization is the fol1owing ru1e of inference in equationa1 logie: for terms

t, (li' a~ ( 1 ~ i ~ n), ßj , ß! ( I ~ j ~ n), from t(~, ~) t(~, f' )1 J
infer t(~' ,~) t(~' ,~')

ET(K) is the equational theory of K and G(K) is the srnallest equational theory

containing K and closed under generalization.

Theorem (R. McKenzie): If K is permutable and ET(K) G(K), then K is affine.

Theorem (w. Taylor) : If K is n-permutable and ET(K) G(K), then K is permuatable.

Theorem: If K is n-modular and ET(K) = G(K), then K is n-permutable (same n) .

Theorem: If Mod(G(K» is the class of all quasi-affine algebras in K and 02E K,
then (Jl 1s quasi-affine iff l\( 02) is a congruence class of (Jl2.
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I. RIVAL:

Probability, linear extensions, and distributive 1attices

Ordered sets and even distributive 1attices occur often in schedu1ing and

sorting problems. A set of inequa1ities (e.g. a < b, c < d, etc.) in an

ordered set P can be regarded as an "event" and can then be identified with

the set of all linear extensions of P in which these inequa1ities are satisfied.

If all linear extensions of P are taken as equa11y 1ikely we have a probability

measure. Recent1y, L. A. Shepp proved this conjecture of I. Riva1 and B. Sands:

Pr (a < b I a < c) ~ Pr (a <- b) ,

where Pr (a < b) equa1s the number of linear extensions of P in which a < b

and Pr (a < b I a < c) is the usual conditiona1 probability. The proof is a

clever use of distributive 1attices.

I. G. ROSENBERG:

Delayed algebras

Gates in real switching circuits perform operations which to the input va1ues

Xi (over an k-va1ued alphabet) assign the output va1ue f(x
1

, ••• ,x
n

) with a

certain delay. The presence of unwanted phenomena 1ike races and hazards means

that the delay shou1d not be ignored in fast circuits. One of the simp1est-mode1s

is formed by uniform1y de1ayed operations requiring restricted campositions and

hence a treatment different fram the usual oue. The prima1ity. (i.e. comp1eteness)

problems were studied by Kudrjavcev and Birjukova in the 50ties (k~2) and more

recently by Nozaki and Hikita (k>2). Surprising1y, the 1atter lead to very

interesting re1ational problems.

J. SCHMID:

Semigroups of Quotients of (semi-) lattices

If S, T are commutative semigroups, S =T, T is called a semigroup of quotients

of S (written S ~ T) iff for all t
1

' t 2 , t E T there exists SES such that

st. + st2 and st € S. There exists a maximal semigroup Q(S) such that S ~ Q(S);

whenever S ~ T, T embeds inta Q(S) over S. Fact: If S is a (meet-) semilattice,

so is T whenever S S T. In fact, T is then a sup-extension of S. We investigate

the structure of Q(S) for different classes of semilaitices. Sampie of results:
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(i) S is a distributive lattice. Then Q(S) is a distributive lattice also,

and the canonical embedding of Sinto Q(S) preserves joins. If S is Boolean,

so is Q(S), and Q(S) is the MeNeille eompletion of S (Lambek). (ii) S is a

finite semilattice, Q(S) is a finite lattice, and Q(S) is isomorphie with the

lattice of ideals of the lower set generated in S by the join-irreducibles.

In contrast to the general case, Q(S) may be constructed "internally" as a

semilattice of certain lower sets of S if S is a semilattiee.

E. T. SCHMIDT:

Kongruenzverbände der komplementären modularen Verbände

Problem: is every distributive algebraic lattice isomorphie to the congruence

lattice of a complemental modular lattice? For the finite ease we have:

THEOREM. For every finite distributive lattice D there exists a eomplemental

modular lattice K such that the congruenee lattice of K is isomorphie to D

and K is a sublattice of the lattiee of allsubspaces of a countably infinite

dimensional vector space over a finite field.

For infinite D we follow Pavel Pudlak's approach which reduee the problem to

investigations of the representations of finite distributive lattices. We need

to use continuous geometries instead of the subspace lattiees of vectorspaces.

Same remarks were made for solving the problem.

J. SCHULTE MÖNTING:

The nation of codimension for Heyting algebras

The codimension of a Heyting "algebra H is a pair < d, e >, c, d E W U {oo}

where c is the number of minimal prime filters on H, and d is the number of

those minimal prime filters which do not contain the filter D of dense elements

•

of H. In a Heyting algebra of codimension < d,c > there exists an orthogonal •antichain <a I II < c > satisfying a v a (ll #= v), a' = 0 for II < cl,
lJ II v II

a strictly regular (i.e. [a
ll'

1] n D = (I } ) for d :S II < c. The elements
lJ

2
d c-d

of such an antichain generate a subalgebra of the form x ~ , "the" prime

algebra of codimension < d,e >. Codimensions are partially ordered by the

product order. This concept seems to be useful for the strueture theory of

Heyting algebras. As an example, one can prove the

Theorem: A Heyting algebra can be embedded into every algebraically closed

Heyting algebra" of finite codimension < d,c '> if and only if it is countable

and locally finite and has a codimension not greater than < cl, C > •

A similar theorem holds for the infinite case.
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D. SCHWEIGERT:

Congruences of relational systems

For (A;p), p n-ary, n > 1 an equivalence TI is a congruence if for all

p(al,.;.,an), a l TI b l , ... ,a
n

_ 1 rr b
n

- 1 there exists b
n

€ A such that

p(bl, ..• ,b
n

) and an TI bn . For (A;p), (B;p) f: A + B is a relational

homomorphism if J) p(al, •.. ,an) => p(f(al), ... ,f(an», 2) for p(f(d 1), ... ,

f(d
n

» there is c € A such that f(c) = f(dn ) and p(dl, ... ,dn_l'~).

We show homomorphism theorems, the connection to algebras, and that the lattice

C(A;p) of the congruences of (A;p) is complete. Then we confine us to

~ relations p which are flexible i.e.: p(a., ... ,an_1,x) is solvable for all

a
l

, .•. ,a
n

_
1

€ A. In this case C(A;p) is algebraic and we can develope a

subdirect product theorem. Furthermore we study classes of flexible relational

system which are closed under flexible subsystems, relational homomorphisms

and direct products. To describe these classes we consider formulas for predicate

symbols R
1
" of the following form: I) R.(x 1, •.. ,x), 2) R. (x1, ... ,Xu" ) A ••• A

J n J 1 J 1
Rj (x1, ... ,Xu. ) + R (xI' •. ~'~) ordered in such a way that Xe. does not

s Js t t Jr
appear in any R

J
" (x

1
, ..• ,x ) for ) ~ k < r .

k nk

J.D.H. SMITH (with A. B. ROMANOWSKA):

Idempotent Entropie Algebras

An idempotent entropie algebra is an algebra in which each element forms a

singleton subalgebra (idempotence) and for which each operation is a homomorphism

(entropicity). Typical models are semilattices, and convex subsets of a finite­

dimensional Euclidean space ~nder weighted means. Semilattice words on an alphabet

may be regarded as finite subsets of the alphabet, and weighted means as finite

probability distributions. Thus idempotent entropie algebras furnish a universal

algebraic approach to "choice and chance".

Current work on these algebras' involves investigation of their subalgebra systems,

including freeness results, an abstract consideration of approximation of sub­

algebras by finitely generated subalgebras, and structure -theorems (decomposition

and extension).
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L. SZABO:

Compatible orderings of lattiee ordered algebras

By a eompatible ordering of an algebra < A;F > we mean a partial order p on A

preserved by every operation in F.

Theorem. Let AJi = <A;F > be an algebra having two binary loeal algebraic functions

1\ and v such that <A; 1\, v> is a lattiee and every operation in F preserves

the natural ordering ~ of <A; A, v >. If < is a compatible ordering of {ffthen

SI = « n $) 0 « n $)-1 and 02 = « n ~) 0 « n ~)-I are eongruence relations

of {;i with 01 n 02 w. Thus "fit is a subdireet product of tIt1°
1

and vt 1°2 •

Moreover, a < b iff Ca] Si < i [b] Gi' i = 1,2, where < 1 = «01 v 02) I 01~
n ~ land < 2 «8 1 v 02) I 02) n $ 2· (Here $ i is the natural ordering of

<A / Si; A, v>, i = 1,2,.) If< is a lattiee ordering (i.e. <A;<> is a

lattice) then 01 0 8
2

= A x 'A, and thus (Jt:; 1/t1 0) x -ut/ 02 and < ~ l'

< 2 = $ 2"

This theorem is an extension of a joint resu1t of G. Czedli, A.P. Huhn and myself.

A. SZENDREI:

Completeness theorems for finite algebras with semiregular automorphism groups

A finite algebra ~ (A;F) is called demi-prima1 iff ~ has no proper subalgebra

and every~operation on A admitting the automorphisrns of ~ is a polynomia1 of ~.

Clearly, the automorphism group of a derni-prima1 algebra is serniregu1ar.

In order to get a criterion for the demi-prima1ity of algebras with a fixed

semiregular automorphism group G on A we have to determine the maximal subclones

of the clone Pol G eonsisting of all operations on A which commute with the per­

mutations in G. Two special cases will be discussed:

1. G is of prime order / joint result with I.G. Rosenberg /;

2. G is transitive.

S. TULIPANI:

Congruence lattice size of models of a first order theory

Given a first-order theory T in a language without relation symbols, denote by

CT(A) and by Lr(A) the supremum of eardinalities and lengths, respective1y,

of the congruenee 1attiees of all models of T of eardinality A. If A is any

infinite cardinal, one of the fo1lowing ease~ holds:
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L.r(A) ded (A) S Cr(A) S .zA; there exists a positive integer n such that

L
T

().) n and Cr(A) A; there are positive integers m and n such that

C
T
.().) m and LT(A) n.

Further properties of LT.(A) and CT(A) can be proved for Xo-eategorical

theories or for theories with Definability of Compact Congruenees (DCC).

Moreover, there are examples of Xo-categorical theories for which CT(A)

ded (A). However, if T is a stable theory which has DCC, then CT(~) > ~

for some infinite ~ implies Cr ().) = 2
A for every infinite cardinal A.

It is open if CT(~) > ded (~), for same infinite ~, implies always CT(A) 2
A

.

J. TÖMA:

Planes in Dilworth truneations

Let us consider a ·finite geometrie (i.e. point and semimodular) 1attiee L.

Denote ~y L
k

the lattice obtained from L by identifying all elements with

rank s k - 1. ~n general, Lk will not be geometrieal lattiee. Dilworth found

a canonical construetion whieh extends L
k

to a new geometrical lattiee· D(L
k

)

having the same points, and whieh preserves as many properties of L
k

as it ean:

covering relation, meets, and joins whieh do not damage semimodularity. If B

is the boolean lattice of all subsets of a finite set, then D(B 2) is isomorphie

to a partition lattice. We give a partition-like representation of elements in

D(Bk ) for all k.

A geometrie lattice is a 'minor of a geometrie lattiee L if it is a join­

subsemilattiee of L preserving eovering relation. Tuttels deep eharacterization

of graphie matroids gives a finite list of all mini~l forbidden minors of

partition lattices ·(i.e. of all minimal geometrie lattices which are not minors

of any partition lattice). We show that for all k ~ 3 there are infinitely

many minimal geometrie lattiees of rank 3, which are forbidden in all D(B
k
).

Further properties of minors of D(B
k

) are given.

A. URSINI:

Ideals in Universal Algebra

Fix a variety K having operation o. An ideal term in
~

isa nullary y a term
~ y) (;, 0)t (x~ such that t = 0 holds identically in K. A non empty subset

I of A € K is an ideal of A if t (~, b) € I for all ideal terms t (~, y)
in

--i- -r ~

y, a € A, b € I. K has a good theory of ideals if eaeh ideal of any A

K is the class of 0 for exactly one eongruence of A, abbreviated: g.i.~.
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-+ ~

~)term is a term t (x, y, such that t (x, 0, = 0

identically in K. The commutator of two ideals I, J of A E K

(a, i, j) for
~

E A,
7-

I, -t- J.t t a commutator tert:1, a 1 E J E
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A g.i.t. is a Mal'cev Condition.

A g.i.t. implies that congruences are modular, but not necessarily permutable

nar regular.

A connnutator
~ ~ ~

t (x, y, 0)

is the set of

If K has a g.i.t. this corresponds to the commutator of congruences as usually.

defined in modular varieties.

R. WILLE:

Congruence relations of concept lattices

Lattices can be interpreted as hierarchies of concepts. This fundamental inter­

pretation may be formalized as foliows: A context is understood as a tripie

(G,M,I) where G and M are sets, and I is a binary relation between G and M;

the elements of G and Mare called objects and attributes, respectively. If gIm

for g E G and m E M we say: the object g has the attribute m. Following

traditional philosophy we define a concept of (G,M,I) as a pair (A,B) with

A c G, B c M, A = {g E G I gIm for all m E B}, and B = {m E M gIro for

all g E A}. The hierarchy is captured by the definition (AI' BI) ~ (A2 , BZ)

:<=> A] =AZ «=> B] =B2). All concepts of (G,M,I) together with the order ~

form a compIete lattice, the concept lattice ~ (G,M,I). A basic problem is to

determine the concept lattice for a given context. with respect to this problem

the study of congruence relations and subdirect decompositions of ~ (G,M,I)

leads to a reduction if ~ (G,M,I) can be subdirectly decomposed. The main

result is that congruence relations and subdirect decompositions of ~ (G,M, I)

can be directly obtained from (G,M,I) without knowing ~ (G,M,I).

B. WOJDYLO:

Some properties of partial algebras:

This 1ecture bases on the common considerations by P. Burmeister (Darmstadt)

and B. Wojdylo (Torun). The properties of homomorphisms and quomorphisms between

partial a1gebras are discussed. It is presented a lattice of concepts for homo­

morphisms between partial algebras. (Details - see Preprint Nr. 657, FB Mathe­

matik, TR Darmstadt). Moreover, it is given the meaning of categ?ry theoretical

notions in selected categories of partial algebras.

Berichterstatter: J. D. H. Smith (Darmstadt)
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