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Tagungsbericht 21/1982

Universelle Algebra

"17. bis 21. Mai 1982

Die Tagung, die unter der Leitung der Herren Professoren G. Gritzer (Winnipeg)
und R. Wille (Darmstadt) stattfand, brachte Mathematiker aus zehn Lindern Ost—
und West-Europas sowie Nordamerikas zusammen. Von besonderem Interesse war die
Vielfalt der Anregungen und Methoden aus diversen Gebieten wie etwa Logik,
Geomet;ie, Informatik, Kombinatorik und Gruppentheorie, die zur L&sung alte;
Probleme und zur Erforschung neuer Richtungen beitrugen. Die Teilnehmer fiihr- -
ten die Tagung im Gedenken an Jiirgen Schmidt, dem Leiter der ersten Oberwolfacher

Tagung iiber Universelle Algebra, durch. Jiirgen Schmidt verstarb im Oktober 1980.

.

DF Deutsche .
Forschungsgemeinschaft ©




oF

Deutsche
Forschungsgemeinschaft

Vortragsausziige

K. A. BAKER:

Markov constructions of algebras

For a finite set S and subset T of S x §, let MS T denote the Markov
chain (; € Sz : (si; si+|) e T for all i}. 1It is u;eful Fd consider the
case where S 1is an algebra and T is a subalgebra of S x S, or even more
generally, where S 1is a partial aléebra and T 1is an induced partial sub-

algebra. Then M becomes.an algebra or a partial algebra. This construction

provides a unifyiaz framework in which to consider varied examples: (1) arbit-
rarily long non-shortenable projectivities in varieties generated by finite
nondistributive lattices; (2)<Mchnzie's pfoof that these same varieties lack
definable principal congruences; (3) Park's construction of a non-finitely
based finite idempotent commutative algebra; (4) Shallon's graph algebras;

(5) a finite 2-unary algebra whose class of subdirect powers is not finitely

axiomatizable (Gimpel).

H. BAUER:

Semilattices of compact congruences

Definition: A semilattiée with O is called distributive if the lattice of all

ideals is distributive.

Theorem: Each distributive semilattice is isomorphic to the semilattice of

all compact congruences of a lattice.

More precisely: Let H be a distributive semilattice. Then it is consistent

with ZFC, that there is a lattice V, such that Conc(v) = H.

G. BRUNS:

Varieties of modular ortholattices

Let MOn be the modular ortholattice consisting of 2n pairvise incomparable

elements and the bounds (n 2 1) and let MOO be the one-element ortholattice.

Theorem: If R, is a variety of modular ortholattices which is not contained

in the variety [MO2] generated by MO2 then MO3 ¢ R .

Conjecture: If R isa variety of modular ortholattices different from all
fMOn] (0 £n <w then R contains a projective plane (with orthocomple-

mentation).
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P. BURMEISTER:

Some recent developments in the theory of partfal algebras

During the last years some interest in partjal algebras and their theory has

started in Computer Science because of some applications in this field. This

has given new impact to the development of a theory for partial algebras,

which needs model theoretic concepts already on a very early stage. A good

basis for this seems to be the concept of "existence-equality" (g): For any

two terms t,t* (in the usual sense) a partial algebra A satisfies e&e* .

with respect to a valuation h : X > A of the set X of variables (A = t&€*[n])
‘ if the values of the induced partial X-ary term functions té, 1:*é exist in A

on the sequence h and are equal: té(h) = t*é(h).

For formulas of the form izl'tigti => togt: (ECE-equations) or

21 tigti => togt: (QE-equations) or simply t&c* (E-equations), respectively,
Birkhoff-type theorems exist (semantical and syntactical ones). Moreover, within
this language together with a model theoretical interpretation of the category
theoretical concept of a factorization system, one gets good descriptions for
the most important attributes for homomorphisms between partial algebras.

(For more details see TH-Darmstadt-Preprint No. 582 (Dept. of Math.).)

B. CSAKANY:

Three—-element groupoids with minimal clones

Three-element groupoids <3 ; f > are considered where 3 = {0, 1, 2} and f
is essentially binary. Two such groupoids are called essentially distinct if
they are neither isomorphic nor antiisomorphic. The binary operation with
Cayley table

5 .
is denoted by the integer I 31ni .
. N . o . . .
There exist twelve essentially distinct three-element groupoids whose clomnes
of term functions are minimal (i.e., are atoms of the lattice of all clones

on 3), namely, the groupoids <3 ; f> with
£=0,8, 10, 11, 16, 17, 26, 33, 35, 68, 178, 624 .

(<3 ;0> and <3 ; 10> are semilattices, <3 ; 178> is the triangle, and

<3 ; 624> is the three-element affine space.)
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A. DAY (with D. PICKERING):

Coordinatizing Arguesian Lattices

A spanning n-diamond in a (modular) lattice L is a sequence (x],...,xn,xn+l)
such that _V_ x. =1 for all 1 and x, A V . x =0 for all i # j. Using
#1031 : i k#i,j k

an assymetric notation (xl,...,xn_],z,t) for a spanning n-diamond and h = V'xi,

w=hA((zVvt) and D={a:taVvw=2zVvVt,aAaw=0} we prove:
Theorem 1: If L is Arguesian, then (D, ®, z, ®, t) 1is a ring for n = 3.

Theorem 2: If L is Arguesian and n 2 3 then there is a meet-preserving

F: [0, n) > (DDn_l). Moreover F is injective if F‘[O, w] 1is injective .
and F is join preserving if L satisfy (h-UC) : [pvh=1=>3Fq- 3+ q¢%<p,
qvh=1 and q A h =0].

T. EVANS:

Lattice-ordered loops

In a variety of lattice-ordered algebras, the fully—orderéd algebras generate
a subvariety, every algebra of which is a subdirect product of fully-ordered
algebras. Characterizations of these subvarieties in terms of identities are
known for groups, rings etc., In this joint work with P. Hartman, we describe
the identities satisfied by the fully-ordered algebras in the variety of
lattice-ordered loops. The known results for groups and commutative groups

are consequences of this result.

P. GORALEIK and V. KOUBEK:

Isomorphism-complete and group-universal semigroup varieties

A variety V is group-universal if for every group G there is A e¢ V with

G = Aut(A). A pseudovariety P is isomorphism-complete if there is a polynomial
reduction of the graph-isomorphism problem to P.

We prove that a semigroup pseudovariety is isomorphism-complete if it is not
contained in (Zr vC)u (ZI vC)u (Zr v Zl v Vg), where Zr = [xy = y],

Z, = [xy = x], € =[xy = 2t], and Vg is a variety containing only groups.

We give a complete list of minimal group-universal semigroup varieties.

We prove that a semigroup pseudovariety is isomorphism-complete if it is not
contained in (Zi v Cf vV G)u (Zf v Cf vV G)u (Z: v Zf v G), where Z:, Zf, Cf

are the pseudovarieties of the finite members of Zr’ z C, respectively, and

]!
G is the pseudovariety of all finite groups. We give a complete list of minimal

isomorphism-complete semigroup pseudovarieties.
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M. GOULD:

Embedding in Globals of Groups and Semilattices

The global of a semigroup S is the family gl(S) of all nonvoid subsets of S,
with the natural multiplication: AB = {abfa in A, b in B}. 1In the case where
S is a group G, every factor group of G is a subsemigroup of gl(G), but gl(G)
has many other subsemigroups. We shall survéy the recent literature on subsemi-
groups of gl(G), emphasizing Trnkova's embedding of an arbitrary commutative .
semigroup into the global of a direct power of the group of integers. There

will be some discussion of recent attempts by the author and others to establish
a finite version of Trnkova's result. An analogous problem concerning globals

of semilattices will be discussed, and a connection will be elaborated between

the semilattice question and the group question.

G. GRATZER and D. KELLY:

Some infinitary free lattices I and II

In Part I, the free m-lattice freely generated by H is described. Here, m is
an infinite regular cardinal, an m-lattice is a poset L in which AX and VX .

exist for all X ¢ L with O < |x| < m; finally, R is the poset

This lattice, CFm(H) is put together from three building bloqks:' CFm(g +2),
A, and B, where A = {<r,s> |r < s; r, s dyadic rationals; O <r, s < 1; and
s-r=2" with n > ord (s)}; B is defined similarly with r > s. The

ordering of A and B is componentwise.

Theorem: Let P be a countable poset. T.F.A.E.
(1) CFm(P) does not contain Fm(3);
(2) P does not contain ) +5, 2+ 3, 1+ 1 +1;

(3) CFm(P) can be embedded into CFm(H).

In the special case: P is finite and m =)€6, this theorem is due to I. Rival
and R. Wille.
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H. P. GUMM: ' ’ -

Two sides of modular varieties

Using the commutator operation [o, B] of two congruences o and B we say that
a congruence relation p is prime if [a, B] < p implies o <p or B8 = p.
Setting £(8) =V {a | 38 o [a, B] < 8} we find that for 6 finitely A -

irreducible O/ € HSPU(K) whenever Qe HSP(K). 1In particular this is

- true, if O is prgéz? Moreover, since & is prime iff £(8) = 6, on defining
the prime radical Jou :=f"\{p|o prime} we find for aébitrary 0t ¢ HSP(K),
that Ob//aa € PSﬂSPn(K). )
On the other side of modular varieties we look at congruences o 2 B with .
[a, 8] = 0. In a natural way we are associating affine algebras with the
B-classes, such that the B-classes in one and the same a-class carry isomorphic
affine algebras. In the case a = ! those affine algebras ®@U[B] are in & (o),
in particular, 8 = OUx O "re1.

C. HERRMANN:

Definability, generation and decidability problems for varieties of modular

lattices

The short comings of the axiomatic approach to lattices of submodules of a
module can beillustrated by the following facts: 1) The word problem for the
modular lattice in four free generators is recursively unsolvable. 2) No modular
lattice variety containing an infinite dimensional projective geometry can be
both finitely based and generated by its finite dimensional members. In contrast,
the lattice variety generated by all 1atticés of submodules has a solvable word
problem for free lattices and is generated by its finite members. Who minds

that it is not finitely based?

W. HODGES (joint with J. BALDWIN, J. BERMAN, A. GLASS):

A combinatorial property of free algebras

We give a common generalisation of many known results of the following type:
A free boolean algebra contains no uncountable chain (Horn 1968). We define as
endomorphism base of the algebra A to be a set X € A such that every map

f : X > X extends to an endomorphism £ : A> A so that f*g* = (fg)*, l; = IA.
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This X is an endomorphism base over Y ¢ A iff moreover each £* fixes Y
pointwise. THEOREM: Let A be a free algebra in a variety with countable
language, and let X, Y € A, |Y| <k < |X| where x is a regular uncountable

cardinal. Then some subset of X of cardinality k is an endomorphism base over Y.

A. HUHN:

On the representation of distributive semilattices

E. T. Schmidt proved that every distributive lattice with O is isomorphic with
the lattice of compact congruences of a lattice. P. Pudlak gave a new proof
and a category theoretical generalization of Schmidt's theorem by considering
the distributive lattice to be represented as a direct limit of its finite
sublattices containing O and representing this sublattices simultaneously.

Our main theorem asserts that a considerable part of Pudlak's program, namely
the simultaneous representation of two objects, can be carried out by working
with distributive semilattices instead of distributive lattices. Among the
corollaries we have the results of Schmidt and Pudlak as well as Bauer's un-
published theorem that every countable distributive semilattice with O is the
semilattice of finitely generated congruences of a lattice. Our technique
combines the technique of a proof of E. T. Schmidt (for the relatively pseudo-

complemented case) with the methods in the theory of free distributive products.

B. JONSSON :

Varieties of relation algebras

In the variety RA of all relation algebras (in the sense of A. Tarski) every
subdirectly irreducible member is simple. Every finite, simple relations algebra
is splitting. In particular, this is true of R(n), the full relation algebra on
n elements. )

Thm 1. Every embedding of R(n) into a simple relation algebra is an isomorphism.
Thm 2. A simple relation algebra A is isomorphic to R(n) iff A has an element a

with -
aja < a, a+a 2 o', a® = 0, a" ! #0 .

Thm 3. The conjugate variety of R(n), RA (n), is a dual atom in the lattice of
all subarieties of RA.
Thm 4. The identity an'] < 1; ((aza)a + aa"o' + an); 1 constitutes an

equational basis for Eﬁ*(“) mod RA.

o




H. KAISER:

Approximation in universal algebra

When analyzing the interpolation problem for functions over the field of real
numbers from the topological view one is led to the following definition (due
to G. Kowol):

Let A be a topological universal algebra. A has the approximation property if
the algebra Pk(A) of all k-ary polynomial functions over A is dense in the
full function algebra Fk(A) for every positive integer k.

Some properties of algebras with the approximation property will be discussed

and the problem of describing all topological universal algebras satisfying
T2 and having the approximation property will be solved for the case of
congruence permutable varieties. As an application Jacobson's density theorem
for rings of linear transformations of vectorspaces over skewfields will be

derived in this setting.

E. W. KISS:

Finitely Boolean representable varieties

A subalgebra & of an algebra Ul is called very skew if 3$‘is skew in each
direct decomposition of VL. It is proved that a finite neutral simple algebra
Ulcontained in a modular variety is quasi-primal iff there is a bound on the
cardinalities of the very skew subalgebras of the finite direct powers of UC.
With the help of this characterisation a short, elementary proof of a result

of S. Burris and R. McKenzie stating that each variety Boolean representable

by a finite set of finite algebras is the join of an abelian and a discriminator

variety is obtained.

P. KOHLER: , .

The finite congruence lattice problem

There are three good reasons to claim that Group Theory will play a crucial
role in any attempt to solve the "finite congruence lattice problem'". The

first one is - of course - the Pudlak-Palfy result that every finite lattice

is isomorphic to the congruence lattice of a finite algebra if and only if
every finite lattice is isomorphic to an interval in the subgroup lattice of

a finite group. The second one is the recent example - due to Walter Feit -

of a finite algebra with congruence lattice M7. The third one is the - possibly

decisive - special case of the lattices Mn’ n-1 not a prime power. Here some

Deutsche
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restrictions on the structure of the possible finite algebras having such Mn's
as congruence lattices can be proved quite easily by applying some - not always

trivial ~ results from Group Theory.

G. F. McNULTY (joint work with C. SHALLON):

Inherently nonfinitely based finite algebras

A variety V is inherently nonfinitely based provided V is locally finite and

whenever W is a locally finite variety including V then W is not finitely based.

A finite algebra is said to be inherently nonfinitely based if the variety it
. generates is. A graph algebra is a groupoid with universe A z where z A such

that az = za = zz = z for all a in A and ab has either the value a or the

value z for every a, b in A. '

THEOREM. Let V be a locally finite variety of groupoids. If either every finite

idempotent graph algebra belongs to V or every finite graph algebra without

-idempotents belongs to V, then V is inherently nonfinitely based.

THEOREM. Every nonassociative, nonabsorptive finite groupoid that has a multi-

plicative zero and a unit is inherently nonfinitely based. '

LyndonS nonfinitely based groupoid fails to be inherently nonfinitely based.

The work of Murskii and Perkins inspired ours.

R. PADMANABHAN:

Geometric universal algebras

Let us consider the following phenomenon: If <G, > 1is a mathematical
structure admitting a "natural" binary operation u : G x G > G with two
sided identity e, i.e. u(x,e) = p(e,x) = x for all x € G, then the set G
has a commutative semi-group structure (actually a group in many inter;sting
. cases) naturally associated with 2 and u. This phenomenon occurs in several

"disjoint" areas of mathematics: (1) If G is a completely irreducible algebraic
curve over an algebraically closed field k and u a morphism then <G, u, e>
is an abelian (algebraic) group. (2) If G is a topological space and u continuous
then the fundamental group T(G, e) is abelian. (3) If G is an affine algebra
and u itself is an affine operation of G then <G, 4, e> is an abelian group.
Thus it is natural to ask for a common universal algebraic formulation of this
implication

{u(x,e) = yu(e,x) = x} hc {y is an abelian group operation}.

DF Deutsche
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With this in mind we give a few formal rules of derivation for an equational
theory such that (i) these rules of derivations are formally valid for all
the mathematical systems mentioned above and (ii) under these rules of
derivations, one can derive the abelian group laws for u from the one-

variable law {p(x,e) = p(e,x) = x}

D. PIGOZZI:

Varieties with equationally definable congruences - a study of the deduction

theorem in algebraic logic

A variety V has equationally definable principal congruences (EDPC) if there
is a system of equations pi(x,y,z,w) = qi(x,y,z,w) for i=1,...,n such
that a is congruent to b modulo the principal congruence generated by (c,d)
iff pi(a,b,c,d) = qi(a,b,c,d) for all i. V is l-regular if each congruence
relation is completely determined by its l-equivalence class. EDPC is
characteristic of the varieties that arise from logic, but there are many
varieties with the property that have no apparent relation to logic. It is
shown that if V has EDPC and is l-regular and congruence-permutable, then

it has a structure very close to that of the familiar varieties of non-
classical logic. In particular, V has terms - and that behave very much like

the implication and conjunction of intuitionistic logic.

R. W. QUACKENBUSH:

Affine Equational Classes and Affine Equational Logic

Let K be an equational class. An algebra A - <A3;F > is quasi-affine if
for some abelian group <Aj;+>, each f ¢ F is an affine transformation with
respect to +; Olis affine if in addition x - y + z 1is a term function. K

is (quasi-) affine if each e K is (quasi-) affine.

Theorem (Ch. Herrmann): K is affine iff K is modular and for each OZE K, ‘

A (OL) = {(a,a) |a € A} is a congruence class. of OZZ.
Generalization is the following rule of inference in equational logic: for terms
t, a;, ap (1 <<, By 83 (1 £j<n), from t(a, B) = ta, B")

infer t(a',B) = t(a',8")
ET(K) is the equational theory of K and G(K) is the smallest equational theory
containing K and closed under generalization.

Theorem (R. McKenzie): If K is permutable and ET(K) = G(K), then K is affine.

Theorem (W. Taylor): If K is n-permutable and ET(K) = G(K), then K is permuatable.

Theorem: If K is n-modular and ET(K) = G(K), then K is n-permutable (same n).

Theorem: If Mod(G(K)) is the class of all quasi-affine algebras in K and ()Ze K,
then O is quasi-affine iff A(()Z) is a congruence class of ()Zz.
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I. RIVAL:

Probability, linear extensions, and distributive lattices

Ordered sets and even distributive lattices occur often in scheduling and
sorting problems. A set of inequalities (e.g. a < b, ¢ <d, etc.) in an
ordered set P can be regarded as an "event" and can then be identified with

the set of all linear extensions of P in which these inequalities are satisfied.
If all linear extensions of P are taken as equally likely we have a probability

measure. Recently, L. A. Shepp proved this conjecture of I. Rival and B. Sands:
Pr (a<b| ac<c)>Pr (ac<hb),

where Pr (a < b) equals the number of linear extensions of P in which a < b
and Pr (a <b | a <c) is the usual conditional probability. The proof is a

clever use of distributive lattices.

I. G. ROSENBERG:

Delayed algebras

Gates in real switching circuits perform operations which to the input values

%, (over an k-valued alphabet) assign the output value f(x],...,xn) with a
certain delay. The presence of unwanted phenomena like races and hazards means
that the delay should not be ignored in fast circuits. One of the simplest models
is formed by uniformly delayed operations requiring restricted compositioﬁs and
hence a treatment different from the usual one. The primality (i.e. completenesé)
problems were studied by Kudrjavcev and Birjukova in the 50ties (kf2) and more
recently by Nozaki and Hikita (k>2). Surprisingly, the latter lead to very

interesting relational problems.

J. SCHMID:

Semigroups of Quotients of (semi-) lattices

If S, T are commutative semigroups, S € T, T is called a semigroup of quotients

of S (written S < T) iff for all t # ty, €€ T there exists s € S such that
st # st, and st € S. There exists a maximal semigroup Q(S) such that S < Q(S);
whenever S < T, T embeds into Q(S) over S. Fact: If S is a (meet-) semilattice,
so is T whenever S < T. 1In fact, T is then a sup-extension of S. We investigate

the structure of Q(S) for different classes of semilattices. Sample of results:

Forschungsgemeinschaft © @
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(i) S is a distributive lattice. Then Q(S) is a distributive lattice also, -
and the canonical embedding of S into Q(S) preserves joins. If S is Boolean,
so is Q(S), and Q(S) is the McNeille completion of $ (Lambek). (ii) S is a
finite semilattice, Q(S) is a finite lattice, and Q(S) is isomorphic with the
lattice of ideals of the lower set generated in S by the join-itreducibleé.

"

In contrast to the general case, Q(S) may be constructed "internally" as a

semilattice of certain lower sets of S if S is a semilattice.

E. T. SCHMIDT:

Kongruenzverbidnde der komplementiren modularen Verbinde .

Problem: is every distributive algebraic lattice isomorphic to the congruence
lattice of a complemental modular lattice? For the finite case we have:
THEOREM. For every finite distributive lattice D there exists a complemental
modular lattice K such that the congruence lattice of K is isomorphic to D

and K is a sublattice of the lattice of all subspaces of a countably infinite
dimensional vector space over a finite field.

For infinite D we follow Pavel Pudldk's approach which reduce the problem to
investigations of the represeﬁtations of finite distributive lattices. We need
to use continuous geometries instead of the subspace lattices of vectorspaces.

Some remarks were made for solving the problem.

" J. SCHULTE MONTING:

The notion of codimension for Heyting algebras

The codimension of a Heyting algebra H is a pair <d,c>, ¢, d € w U {=}

where c is the number of minimal prime filters on H, and d is the number of
those minimal prime filters which do not contain the filter D of dense elements
of H. In a Heyting algebra of codimension <d,c > there exists an orthogonal
antichain <a, | uw<c> satisfying a,va,-= 1 (u#v), a; =0 for u<d,
a, strictly regular (i.e. [au, 11nD={1}) for d sdu < z;d The elements
of such an antichain generate a subalgebra of the form 2 x 2~ °, "the" prime
algebra of codimension <d,c >. Codimensions are partialiy ordered by the
product order. This concept seems to be useful for the structure theory of
Heyting algebras. As an example, one can prove the

Theorem: A Heyting algebra can be embedded into every algebraically closed
Heyting algebra of finite codimension <d,c> if and only if it is countable
and locally finite and has a codimension not greater than <d,c>.

A similar theorem holds for the infinite case.

Deutsche \
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D. SCHWEIGERT:

Congruences of relational systems

For (A;p), p n-ary, n > 1 an equivalence Il is a congruence if for all
p(al,.;.,an), a, 1 bl""’an-l n bn-l there exists bn € A such that
p(bl,...,bn) and a I bn. For (A;p), (B;jp) f : A+ B 1is a relational
homomorphism if 1) p(al,...,an) => p(f(al),...,f(an)), 2) for o(f(d]),...,
f(dn)) .there is ¢ € A such that f£f(c) = f(dn) and p(dl,...,dn_‘,q).

We show homomorphism theorems, the connection to algebras, and that the lattice
C(A;p) of the congruences of (A;p) 1is complete. Then we confine us to
relations p which are flexible i.e.: p(al,...,an_l,x) is solvable for all
CTERREEL S A. In this case C(Aj;p) 1is algebraic and we can develope a
subdirect product theorem. Furthermore we study classes of flexible relational
system which are closed under flexible subsystems, relational homomorphisms

and direct products. To describe these classes we consider formulas for predicate
symbols Ri of the following form: 1) Rj(xl,...,xn), 2) le(xl""’x“jl) Ao A
st(xl""’x“js) - Rt(xl,..L,xnt) ordered in such a way that xnjr does not

appear in any Rjk(x],...,xnk) for 1 <k <r .

J.D.H. SMITH (with A. B. ROMANOWSKA):

Idempotent Entropic Algebras

An idempotent entropic algebra is an algebra in which each element forms a
singleton subalgebra (idempotence) and for which each operation is a homomorphism
(entropicity). Typical models are semilattices, and convex subsets of a finite-
dimensional Euclidean space under weighted means. Semilattice words on an alphabet
may be regarded as finite subsets of the alphabet, and weighted means as finite
probability distributions. Thus idempotent entropic aigebras furnish a universal
algebraic approach to "choice and chance'.

Current work on these algebras involves investigation of their subalgebra systems,
including freeness results, an abstract consideration of approximation of sub-
algebras by finitely generated subalgebras, and structure theorems (decomposition

and extension).
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Congruence lattice size of models of a first order theory

L. SZABO: .

Compatible orderings of lattice ordered algebras

By a compatible ordering of an algebra <A;F > we mean a partial order p on A ‘
preserved by every operation in F.

Theorem. Let A = <A;F> be an algebra having two binary local algebraic functions
A and vV such that <A; A, V> is a lattice and every operation in F preserves

|

|

the natural ordering < of <Aj; A, v>. If < is avcompatible ordering of {fthen |
|

0, =(<n<)o(<n $)_] and 0, =(<nz)e (<n Z)-l are congruence relations
of {Lwith O] n 92 = w. Thus ¥is a subdirect product of ‘U[/O] and VZ/OZ.
Moreover, a < b iff [a] ei <y [(b] Gi, i=1,2, where < , < ((0] v 92) / 9,
nz and < 2 = ((G)1 v 62) / 02) ns,. (Here < ; Is the natural ordering of
<A/ ei; A, V>, 1 =1,2,.) If < is a lattice ordering (i.e. <Aj;<> is a
lattice) then 9, ° 92 = A xA, and thus 4= Wy 0, x Wy 62 and < =z |,
<y =S,

This theorem is an extension of a joint result of G. Czédli, A.P. Huhn and myself.

A. SZENDREI:

Completeness theorems for finite algebras with semiregular automorphism groups

A finite algebra A = (A;F) is called demi-primal iff A has no proper subalgebra
and every-operation on A admitting the automorphisms of A is a polynomial of A.
Clearly, the automorphism group of a demi-primal algebra is semiregular.

In order to get a criterion for the demi-primality of algebras with a fixed
semiregular automorphism group G on A we have to determine the maximal subclones
of the clone Pol G consisting of all operations on A which commute with the per-
mutations in G. Two special cases will be discussed:

1. G is of prime order / joint result with I.G. Rosenberg /;

2. G is transitive.

S. TULIPANI:

Given a first-order theory T in a language without relation symbols, denote by
CT(X) and by LT(A) the supremum of cardinalities and lengths, respectively,
of the congruence lattices of all models of T of cardinality A. If X is any

infinite cardinal, one of the following cases holds:




- 15 -

ded (1) < CT(A) < ZA; there exists a positive integer n such that

‘ L. ()
LT(A) =n and CT(A) = X; there are positive integers m and n such that
€M) =m and L,(}) '
Further properties of LT(A) and CT(X) can be proved for xo—categorical

n .

theories or for theories with Definability of Compact Congruences (DCC).
Moreover, there are examples of X,-categorical theories for which CT(A) =
ded (A). However, if T is a stable theory which has DCC, then CT(u) > u
for some infinite u implies CT(A) = ZA for every infinite cardinal A.

It is open if CT(p) > ded (n), for some infinite p, implies always CT(A) = 2A.

® .
J. TUMA:

Planes in Dilworth truncations

Let us consider a finite geometric (i.e. point and semimodular) lattice L.
Denote by Lk the lattice obtained from L by identifying all elements with
rank <k - 1. In general, Lk will not be geometrical lattice. Dilworth found
a canonical construction which extends Lk to a new geometrical lattice- D(Lk)
having the same points, and which preserves as many properties of Lk as it can:
covering relation, meets, and joins which do not damage semimodularity. If B
is the boolean lattice of all subsets of a finite set, then D(Bz) is isomorphic
to a partition lattice. We give a partition-like representation of elements in
D(Bk) for all k. ] '
A geometric lattice is a minor of a geometric lattice L if it is a join-
subsemilattice of L preserving covering relation. Tutte's deep characterization
of graphic matroids gives a finite list of all minimal forbidden ﬁinors of
partition lattices (i.e. of all minimal geometric lattices which are not minors
of any partition lattice). We show that for all k 2 3 there are infinitely
. many minimal geometric lattices of rank 3, which are forbidden in all D(Bk)'

Further properties of minors of D(Bk) are given.

A. URSINI:

Ideals in Universal Algebra

Fix a variety K having a nullary operation O. An ideal term in ; is a term
t (;; ;) Quch that t (;, 6) = 0 holds identically in K. A non empty subset
Iof AcK isan ideal of A if t (3, B) ¢ I for all ideal terms t (X, y)
in ;, ae A, Bel K has a good theory of ideals if each ideal of any A

K is the class of O for exactly one congruence of A, abbreviated: g.i.t.

DF Deutsche .
Forschungsgemeinschaft ©
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A g.i.t. is a Mal'cev Condition.
A g.i.t. implies that congruences are modular, but not necessarily permutable
nor regular.
R T > > >

A commutator term is a term ¢t (x, y, z) such that t (x, 0, z) =0 =

> > . . .
t (x, y, 0) identically in K. The commutator of two ideals I, J of A ¢ K
. L > +
is the set of t (a, i, j) for t a commutator term, a ¢ A, T e I, 3 €. )
If K has a g.i.t. this corresponds to the commutator of congruences as usually

defined in modular varieties.

R. WILLE: - .

Congruence relations of concept lattices

Lattices can be interpreted as hierarchies of concepts. This fundamental inter-
pretation may be formalized as follows: A context is understood as a triple
(G,M,I) where G and M are sets, and I is a binary relation between G and M;

the elements of G and M are called objects and attributes, respectively. If gIm
for g€ G and m € M we say: the object g has the attribute m. Following
traditional philosophy we define a concept of (G,M,I) as a pair (A,B) with
AcG, BcM, A={geG | gIlm for all me B}, and B=1{me M | gIm for
all g € A}. The hierarchy is captured by the definition (A], Bl) < (AZ’ Bz)
s<=> Al c A2 (<=> B‘ > BZ)' All concepts of (G,M,I) together with the order <
form a complete lattice, the concept lattice é@(G,M,I). A basic problem is to
determine the concept lattice for a given context. With respect to this problem
the study of congruence relations and subdirect decompositions of §§ (G,M, 1)
leads to a reduction if é; (G,M,I) can be subdirectly decomposed. The main
result is that congruence relations and subdirect decompositions of é; (G,M,1)

can be directly obtained from (G,M,I) without knowing é% (G,M,I).

) B. WOJDYLO: .

Some properties of partial algebras:

This lecture bases on the common considerations by P. Burmeister (Darmstadt)

and B. Wojdylo (Torun). The properties of homomorphisms and quomorphisms between
partial algebras are discussed. It is presented a lattice of concepts for homo-
morphisms between partial algebras. (Details - see Preprint Nr. 657, FB Mathe-
matik, TH Darmstadt). Moreover, it is given the meaning of category theoretical

notions in selected categories of partial algebras.

Berichterstatter: J. D. H. Smith (Darmstadi)
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