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Darstellungstheorie und l-adische Kohomologie

13.6. bis 19.6.1982

Im Rahmen der Arbeitsgemeinschaft Algebra fand in diesem Jahr

unter der Leitung von J.C. Jantzen (Bonn) und T.A. Springer (Utrecht)

eine Tagung zum Thema "Darstellungstheorie und l-adische Kohomologie r1

statt, an der 39 Mathematiker aus verschiedenen Ländern teilnahmen.

Diese Tagung bot sowohl jüngeren Mathematikern die Gelegenheit, anhand

von (häufig mehrteiligen) Überblicksvorträgen einen Einblic~ in die

Anwendungen von l-adischer Kohomologie und (in a~ler neuester zeit)

von Schnittkohomologie in der Darstellungstheorie zu gewinnen, als

auch dem mit diesen Methoden bereits vertrau~en Zuhörer eine Übersicht

über neueste Forschungsergebnisse .

.50 wurde ausführlich über die Kohomologietheorien referiert

(I.G. Macdonald, A. Borel) und die wesentlichen Anwendungen dieser

Methoden auf die Darstellungstheorie endlicher Chevalley-Gruppen

vorgestellt (R.W. Carter). Uber weitere Anwendungen auf die Darstel­

lungen von weylgruppe~ und die Bestimmung der Green-Funktionen

berichteten P. Slodowy and T.A. Springer. Die erst.kürzlich gefundenen

Resultate von T. Shoji and N. Spaltenstein über die explizite Berechnung

der Green-Funktionen gehörten ebenso zum Vortragsprogramm wie von

J.-L. Brylinski neuestens gefundene Zusammenhänge zwischen Fourier­

Transformationen und Darstellungen der Weylgruppen.

C.w. Curtis trug über Anwendungen der Hecke-Algebren in der

Darstellungstheorie vor und berichtete gemeinsam mit T.A. springer

über die von Alvis beschriebene Dualität von Darstellungen endlicher
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Chevalley-Gruppen. G. Lusztig referierte selbst seine neuesten

Ergebnisse über die zerlegung der Deligne-Lusztig-Charaktere RT,e·

Über modulare Darstellungen endlicher Chevalley-Gruppen berichteten

J.C. Jantzen (in der beschreibenden Charakteristik) und B. Srinivasan

(über Blöcke in anderer Charakteristik).

Wie bei früheren Tagungen dieser Art zeigt es sich, daß die

Berücksichtigung didaktischer Gesichtspunkte das wissenschaftliche

Niveau der Tagung nicht beeinträchtigte.

Vortragsauszüge

I.G. HACDONALD:

Introduction to l-adic cohoQology

The conjectures of A. Weil in diophantine geometry (Solutions of

equations in finite fields, Bull. AMS 1949) indicated strongly that

there should exist a cohomology theory for algebraic varieties

defined over a field of arbitrary characteristic; the cohomology

groups should be vector spaces of finite dimension over

same field of characteristic 0, and should have the usual formal

properties which would in particular imply the truth of a Lefschet_

trace formula expressing the number of fixed points of a morphism

F: X -+ X as the alternating surn of the traces of F on the

Such a theory was developed by Grothendieck, Artin and others in

the early 1960's, by generalizing the classical notions of sheaf

cohomology to define etale cohomology for an arbitrary scheme.

The lectures were abrief introduction to this subject, designed for

the non-expert, and covered the statements of same of the main

theorems, including that of the trace formula in its general form,

for.an arbitrary l-adic sheaf of coefficients.
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R.W. CARTER:

Introduction to Deligne-Lusztig theory

Let G be a connected reductive group defined over the field with

q elements with Frobenius map P: G -)- G. Let GF = {g E G; 9 F = g}.

The Deligne-Lusztig theory studies the characters of the finite group

For each F-stable maximal torus T of G and each character

a of the Deligne-Lusztig generalized character R T , e - of

The character formula for in terms of Greenwas defined.

functions on certain subgroups of

RT ,8

G was stated, and also the scalar

The degr~es of theproduct formula for ( RT , e' RT t , e ' ) .

their character values on semisimple elements of were also

and

described. The way in which the give a partition of the set

of all irreducible characters of into geometrie conjugacy elasses

was described, each class containing just one charaeter of degree

prime to p ( if p is not a bad prime for G) • The degrees of

these latter eharacters of G
p

were described in terms of the semi-

simple classes in the dual group Finally abrief discussion

•
of Lusztigrs work on the unipotent characters of was given .
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P. SLODOWY:

Trigonometrie Sums and Representations of Weyl Groups

Aeeordin~ to Springerls hypothesis (proved by Kazhdan) the eharaeter

on unipotent elements can be computed asvalues R
T

, S ( u ) :;:: R
T

, 1 (u)

trigonometrie sues on the GF-orbit of a strongly regular element

A' E (Lie T.> F" Using l-adie eohomology and some geometrie redueti0'lt

one can express R
T

,1 (u) as the alternating surn of the traces of a

twisted Frobenius F*r~(w)-1 on the eohomology groups Hi(~u'~l)'

i
Aut(H (~u,qJl) }.,., is a representation of the Weyl group

where

where

~
u

ir .
B·

is

w -+

the set of Borel subgroups of G containing u, and

for u varying through a set of representations

W :;:: N (T) /T .. A theorem of Springer describes how the top cohomology

groups HtoP(~u'~l)'

of the unipotent conjugacy classes, parameterize the irreducible

representations of w.

T.A. SPRINGER:

Green functions and Deligne-Lusztig characters (after Kazhdan)

This talk contained a review of a paper by D.A. Kazhdan (Israel •J. of Math. 25 (1977), 272-286), which contains another approach

to the Deligne-Lusztig characters RT,S.

character formulas on unipotent elements.

This approach leads to

However, restrietions

on p and q are needed.

The main problem is to show that the elass function on G p which

is the candidate for is a virtual character of This

is done by a sui table application of Brauer' s theorem. The most
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difficult part of the proof is to show that the restrietion of this

function to the group uF
of rational points of a maximal

connected unipotent ~q-subgroup U of G is a virtual character

of
F

U • To do this, l-adic eohomology is involved. It is used to

prove the following result. Let X be an algebraic variety

defined over ~ .
q

Assume there is a elosed filtration x =

such that for all i there exists a morphism f.
1.

Xi - X
i

+
1
~ Y

i
whose non-empty fihres are all isomorphie to a

fixed affine spaee A
d

(the filtration is not assumed to be defined

over IF !).
q

divisible by

Then the number

d
q .

of rational points af X is

N .. SPALTENSTEIN:

Determination of Green functions

Let G be a eonnected reductive group over lF
q

with Frobenius

and q are large enough, Springerendomorphism F. I f ehar OF )
q

and Kazhdan have shown that the Green funetions of G ean be

expressed in terms of Fand same representations of the Weyl

group W on the l-adie eohomology'of the varieties J:i =u

{BIB Borel subgroup, B 3 u}, U & G
F

unipotent. In the top

eohomology groups, the aetions of Fand W can be eomputed. It

has been notieed by Shoji that these informations and the results

of Borho and MaePherson on Springerls representations ean be used

to transform the orthogonality relations inta a system of equatians

for the Green functions. These can be used to compute the Green

functions of exceptional graups. Far elassical groups, Shoji has a

geometrie argument which gives more equations and the Green functions
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As applications, we get the results

(already known for classical groups) that the Green functions are

polynomials and that

A. BOREL:

.1lu
has 00 odd cohomology.

Introduction to middle intersection cohomology

M. Goresky and R. MacPherson have associated new topological invariants,

in the form of homology or cohomology groups, to certain singular

spaces x (e.g. admittiog a Whitney stratification with axiom 8,

in particular algebraic varieties or complex analytic spaces). The

space x is endowed with a filtration

x X
n

by closed subspaces X.
1.

such that S.
J

is either empty

or a j-manifold (the j-th stratum). In particular S
n

is e

n-manifold (X = X
n-l n-2

by convention). There is moreover a

loeal triviality condition: around x ES.,
J

stratification is a

product of S.
)

by a cone over a stratified space (the link).

Tc this and a suitable sequence of. integers (the perversity) are

associated eohomolcgy groups. This talk was devoted to one such, the

middle intersection cohomology, so far the most important for

applications to algebraic varieties. Accordingly it was assumed

that S. = SlS
J

for odd j's.

First, the simplicialdefinition was recalled. Then I went to the

sheaf theoretic point of view and. gave various characterization
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(upto quasi-isomorphism) of the intersection cohomology sheaf

and some of the main properties of the intersection cohomology

rc" ,

groups IH- (XiR), where R is the underlying ground ring. In

particular, when R is a field, Ie" is (Verdier)-self dual, hence

there is a perfect pairing

i n-i
IH (XiR»)( IH

c
(X

i
R)-:tR}i4Ä.lN),

where
c

refers to cohomology with compact supports. Finally, the

extension to local coefficients was described: given a l~cally

~onstant sheaf E on S
n

whose stalks are finitely generated

R-modules, there is similarly an intersection cohomology sheaf IC'" (E)

and aperfeet pairing (when R is a field)

IH
i

(XiE) x n-i
IH (XiE I

c

where E' is the locally constant sheaf contragredient to E.

Ref. : M. Goresky - R. MacPhersoni IIIntersection homology Theorylt

Topology 18 (1980), 135-162; Intersection Homology 11 (preprint);

Cheeger, Goresky, MacPherson: L'eohomology and Intersection homology

(recent Annals of Math. Studies, ed. by S.T.' Yau), various

preprints.

C.w. CURTIS:

Hecke Algebras and their application to representations of

finite Chevalley groups

In this survey lecture, the properties of the Hecke algebra of

apermutation representation of a finite group, on the cosets of a.
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subgroup, wer~ summarized, along with formulas for degrees and

character values for irreducible constituents of the permutation

character in terms of the character values of irreducible characters

of the Hecke algebra. With these ideas as background, the Hecke

algebra H(G,B) of a finite Chevalley group G, and a Borel subgroup

B, was described along with the presentation of H(G,B) due to

Iwahori. Changing the point of view, the generic Hecke algebra H

associated with a Coxeter group (W,R) was defined, so that if

(W,R) is the Weyl group of G, then H(G,B) and QW are both

obtained as specializations of H. This led to the deformation

and the parameterization of characters

1
G

in terms of irreducible
B

and the components of

theorens, that H(G,B) = CW,

K
Hof

characters of w. Generic degrees associated with characters of

W were defined; they turn out (in general) to be polynomials which

specialize to give the degrees of components of A generic

multiplicity formula was also given, with an application to determine

the effect of the duality operation on components of The

possibility of extending these results to components of for

A cuspidal irreducible character of a Levi subgroup of a parabolic

subgroup, was indicated, using Howlett and Lehrer's results that

-G ~
End~GA can be obtained as the specialization of a generic algebra ~

associated with a subgroup of the Weyl group, depending on A.

An introduction was given to Kazhdan and Lusztig's results on

representations of generic Hecke algebras, using the idea of a

1r-graph for a finite Coxeter group vr (Inv. Math. 53, 165-184

(1979». Finally, Lusztig's theorem, that there exists an explicit

isomorphism HQ(!ü) = Q(!ü)W was stated. (Far further discussion

and references on most of this material, the reader may consult

a survey article by the author (Bull. Amer. Math. Soc., vol. (NS») •
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~ G. LUSZTIG:

Decomposition of the R
a, ­

s·
T--

Let G be a connected reductive algebraic group defined over f' •
q

Deligne and the author have constructed for each maximal torus

a virtual representation

T C. G defined over F
q

and for each character

R~ of the finite group

8 :

G (F ).
q

The

lecture was concerned with the problem of decomposing these virtual

representations in the case where G has connected centre. The

main tool used is the intersection cohomology of Deligne-Goresky-

MacPherson. Let X
w

be the locally closed subvariety of· GIB

defined by and let X be its Zariski closure.
w

The following description of its intersection cohomology was given:

E,...
El6.W

Tr ( E

Y5-w
P , Tv,E)R

Y w· ~ E

denotes the representation of the Hecke algebra

as elements in the representation ring of

Here E

G ([F )
q

tensored by

corresponding to an irreducible representation E of w. P
y,w

are the polynomials defined by Kazhdan and the author for any two

elements in a Coxeter group and R
E w

X
w

givesHowever use ofwas proved by Asai and Digne-Michel.

An analogous result in cohomology with compact support of

m i

more precise results and generalizes weIl to non-unipotent

representati,ons.

The following theorem was stated and a proof was indicated. If

E,E' are irreducible representations of W, then are

disjoint if and only if E,E' are in distinct two sidedcells of

w.
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~to a partition of the set of unipotent representations

into fam1lies one for each two sided eell of w. The representations

in a given family can be parameterized by the elements of a set

M(f) where f is a finite group associated to the cell and M(r)

{(x,o>I"'E r up to eonjugacy, o E z (x}r- } •

explicit character formulas for all" unipotent representations of

The multiplicities of these representations in the

expressed in terms of a Fourier transform on M (r) •

can be

This implies •
G(F >

q
on semisimple elements. This generalizes to non-unipotent

representations of G(F }
q

under the assumption that G has

connected eentre. Here one uses interseetion cohomology of x
w

with coefficients in loeal systems of rank 1.

"J.-L. BRYLINSKI:

,Weyl ~roup representations and Fourier transformation

Kashiwarahas reeently given a new proof of Borho-MacPhersonls result

on the decomposition of the eohomology of Springerls resolution of

the nilpotent variety of a semi-simple lie algebra, inta intersection

cohomology groups of closures of nilpotent orbits, with twisted

eoefficients (Kashiwara-Hotta, to appear). This talk was attempting

to relate Kashiwarafs approach to Springerls original construction

of Weyl group representationsi this is easy because both use Fourier

transformation (in the case of Springer, Fourier transformation for

vector spaces over finite fields, and the corresponding geometrie

Fourier transformation, using Artin-Schreier coveringsi in the

case of Kashiwara, the operat~on x -~
a
ax familiar
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The basic fact I use is that a

Borel s~balgebra is orthogonal to its nilpotent radical.

J.C. JANTZEN:

Modular represe~tations of finite Chevalley groups (in equal

characteristic)

Let G be a connected semi-simple algebraic group defined over

W
q

with Frobenius endomorphism F. For the sake of simplicity

assume G to be simply connected and split. This· talk gave a

survey over the representation theory of the finite group G
F

over

and described its relations with the representation theories ofw
q

G and of its Frobenius kernel G.
F

It contained a description of

Lusztig's conjecture how to express the formal characters of the

irreducible G-modules in terms of.the formal characters of the Weyl

modules and how to o~tain from this information. the composition

factors of the Deligne-Lusztig characters reduced. mod p (for G
F

)

and of the universal highest weight modules for FG. Furtherm~re,

it showed how the characters of the principal indecomposable modules

for G
F

as weIl as for FG might be computed from a knowledge of

these character formulas. Finally some results on the decomposition

of the reduction mod p of unipotent characters of G
F

were

mentioned.
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B. SRINIVASAN.:

Blocks in classical groups (Unequal charact~ristic)

This talk is an exposition of some results obtained (jointly with

P. Fong) on the r-blocks of general line~r, unitary, symplectic and

orthogonal groups over

and let e be the order of q mod r.q.

1F,
q

First, let G = GL(n,q}

w.here r is an odd prime not dividing

The unipotent characters of G are parametrized by partitions

The first theorem is thatunipotent character. are in the

cf o. If is a partition .of n, let
A

X be the corresponding

A 11
X ,X

same r-block if and only if ).,11 have the same e-core. Then, the

r-blocks are classified. There is a "Jordan decomposition theorem"

for blocks similar to the Jordan decomposition cf characters of

GL(n,q) . Finally the characters in a block can be classified. These

theorems were stated and the main ideas in the proofs were indicated.

Analogous theorems hold for the unitary groups. Finally some work in

p!ogress for symplectic and orthogonal groups was described; for

example the r~blocks can be classified in these groups also.

c.w. CURTIS/T.A. SPRINGER:

Duality operation for representations of finite Chevalley groups

A duality operation in the character ring eh ~H of a finite group

8 is a Z-automorphism of period 2 preserving the inner product of

characters, and hence permuting, up to sign, the irreducible

characters. For a finite Coxeter system (W, R), such an operation

where

be aGLetL
JcR

E is the sign representation, which

(-1) IJ I (lJ I )W.
'W J

lJE

is given by

can also be expressed as
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finite Chevalley group, with Weyl group (W,R) • For a standard

parabolic subgroup P
J

, J ~ R, operations of truneation

J ~ R,

Levi subgroup L
J

of P
J

,

I.: eh ~L. ~ eh ~G
J J

and the operation

for all

were defined, for a

1: (-1) IJII.TJ~.
J~R J

and using this

fact it ean be proved that *~ ~ ~ is a duality operation. Same

4It applications to character theory were indicated, including Alvis'

interpretation of Springerls formula for the eharaeteristic function

on the unipotent set, and Alvis' proof of MacDonalds' conjecture that

l:(1)-1 E ~(u)
uEU

74 (1982), 211-222.)

for .l: E Irr G(q). (See D. Alvis, J. Algebra

In the second part a brief review was given of some additional

results on the duality, vize

{al a homologieal interpretation of the duality, in terms of

homology of a system of coefficients on the Tits building of

G (after Deligne-Lusztig, J. Alg. 74 (1982), 204-291);

(b) a result of N. Kawanaka for the (similarly defined) duality

operation for class functions on the finite Lie algebra ~

associated with G.

trans form on CJ.
This result connects t~e Fourier-

restricted to the nilpotent set, with the

duality operation (N. Kawanaka, Fouriertransforms of nilpotently

supported invariant funetions on a simple Lie algebra over a

finite field, preprint).

Berichterstatter: K. Kühne

K.-D. Schewe
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