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General Inequalities

8.5, bis 14.5,1983

The fourth International conference on General Inequalities was
held from May 8 to May 14 at the Mathematisches Forschungsinstitut
Oberwolfach. The organizational commitee consisted of L.Losonczi
(Lagos and Debrecen) and W.Walter (Karlsruhe). Dr.A.Kovadec

served extremely well as a secretary of the conference.

The meeting was attended by 42 participants from 17 countries.
In the opening address, W.Walter had to report on the unexpected
death of E.F. Beckenbach. He died of a stroke in SeptemBer'¥9823
a few days after receiving the award for Distinguished Service to
Mathematics from the Mathematical Association of America.

Beckenbach was one of the founding fathers of the General
Inequalities conferences. He served with energy and devotion - -
as an organizer and as editor of the proceedings of- those con-
ferences. He was also engaged in the preparations for the present
conference, which the participants decided should be held in
memoriam Edwin F. Beckenbach In a brief memorial ‘lecture ' -
M.Goldberg gave a survey of Beckenbachs mathematical act1v1t1es
and his services to the mathematical community-.

Inequalities play a significant role in many branches of
mathematics. Correspondingly, the participants represented many
different fields among which classical inequalities still provided
a steady source of new developments. Lectures also included
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differential and functional inequalities, bounds for eigenvalues,
inequalities in functional analysis, convexity and its generali-
zations, inequalities in number theory and probability theory,

as well as mathematical progrgmming and economics.

As in earlier conferences, the problems and remarks sessions
produced a vivid exchange of results, methods and hypotheses.

The participants experienced anew the creative, congenial
and stimulating atmosphere at the Institute.

The conference was closed by L.Losonczi, who in his resumé expressed

the thanks of the participants for the excellent working conditions

in the Institute and for the hospitélity of its leaders and
staff.

Abstracts

R.P.AGARWAL: Difference calcules with Applications to
Difference Equations _

"Everyone knows" that in discrete case there is no analogue of
Rolle's lemme in continuous case, so not all the known results in
continuous calculus are expected to have discrete analogues. In
this paper we shall discuss some possible ones which we shall
need to study qualitive properties of solutions of higher order
difference equations. The proofs are based on some simple in-
equalities. ’

C.ALSINA: Schur-concave t-norms and triangle functions.

Studying Schur-concavity of t-norms, copulas and triangle
functions for probability distribution functions, we have proved .
the following results: ‘
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Theorem 1: Any associative copula is Schur-concave. If T is
a strict t-norm, then T is a copula if and only if T is Schur-
concave. There are Schur-concave nonstrict Archimedean t-norms which
are not copulas.

Theorem 2: If T is a non-strict Archimedean t-norm with concave
additive generator.t, then T is Schur-convex and, therefore,
T(x,y).< Max(x+y-1,0). W(x,y) = Max(x+y-1.0) .is the unigque

t-norm which is at the same time Schur-convex and Schur-concave.

Q Theorem 3: The Schur-concavity for triangle functions:
7(F,G) < t(aF+(1=0)G, (1-0)F+aG) (F,G €A¥, a €[0,1]), holds for
any triangle function To- There exists no copula C such that
Og OT T4 is a Schur-concave triangle function.

Remark: Compare also the talk given by A.Sklar.

D.BRYDAK: Differential inequalities and generalized convex functions.

We prove, under suitable assumptions, that a function Y satisfies
the inequality
(1) ¥ (x) 2 f(x,¥(x), ¥'(x)) in an intérval I iff it is convex with
respect to the two-parameter-family F of all solutions of the equation
y'' = f(x,y,y").
The convexity with respect to a two-parameter family of functions
was defined by E.F.Beckenbach in 1937. The above theorem was proved

. by M.M.Peixoto in 1949 under the additional assumptlon of the
continuity of the second derivative of V.

As an application of the above theorem we prove that if F is
a linear family satisfying suitable conditions, then Y is either
strictly convex or strictly concave with respect to F iff for.
every x,,X, € I there is a unique point'xocfx1,x2] such that
' ¥ (xy) = @' (x), |
‘ where ¢ € Fsatisfies the equalities
\ _ w(x1) = Y(xa), @(xz) = W(xz).

DFG Deutsche
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B.CHOCZEWSKI: Stability of some iterative functional equations.

The notion of stability (and interative stability) of iterative
functional equations of the form

o(f(x)) = g(x) o (x) + hi(x)

(with the unknown @) has been introduced in 1970 by D.Brydak.
A survey of results will be given and the problem of stability of
intervals with respect to the equation will be also mentioned.
The talk is based on papers by D.Brydak,E.Turdza, M.Czerni from
Krakdw and also by R.Wegrzyk and the speaker. : ' .

A.CLAUSING: A t-entropy inequality
Let t>0 and p = (p1,p2,....p ) a probability vector. The
t-entropy function is defined as

£ pi log p;

_ 1—1
H,(p) = Ca—
I p
j=1 1

- Stolarsky has raised the problem of finding the best, that is,

smallest value of t, such that the entropy inequality
H (p) < logn
holds for all p. We prove that this value is given by %, (n) =

= lo,ll,, where

@n(x) _ log 1Qg,(1-x)1' - log log (1+(n-1)x) x €.(0,1)
log(1-x)"" + log(t+(n-1)x)

In contrast with Shannon 8 inequality (t=1), equality can hold
for certain p #(—. ,...,—) if £ =t (n) , ’

W.EICHHORN: Inequalities in the Theory of Economic Inequality
Let x ¢R, be the income before tax, p:R, - [0,1] the income tax

rate, i.e. xp(x) the income tax amount, and x-xp(x) = (1-p(x))x
the income after tax. For certain reasons p has the following
properties:

Deutsche
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P.1: "Weak progression of tax rate": p is weakly increasing.

P.2: "Weak increase of income after tax": (1-p(x))x is weakly
increasing ’

P.3: "Weak decrease of income inequality": For all income
distributions (%4,%5,...,% ) the inequality of
((1-p(x1))x1,...,(1-p(xn))xn) is equal or smaller than
that of (x1,x2,...,xn). The "inequality" mentioned is
given by the -

Definition (Principle of Majorization): The inequality of

Y= y1,y2,...,yn) 40, satisfying O < ¥y 3, < ... Sy is
wulusmnutManof5=u““”%)+m

0 < %, < %, < ... an, if and only if
k k
'z ¥y o z x5
(1) :1 z 121 for every k = 1,2,...,n
Iy Zx
=0 gl

Theorem: The following statements hold:
(a) P.1 # P.3, ©P.2#DP.3
(b) P.1 and P.2 are independent
(¢) P.1, P.2 e P.3
(a) P.1*, P.2 » P.3% (The stars * denote strict versions).

The example p(x) = ?f&? as well as (b) together with (c) show con=
sistency of P.1, P.2, P.3.

W.N.EVERITT:'Haidy-Littlewood Integral-inequalities :
rhis lecture is concerned with three examples of the Hardy-
Littlewood type of integral inequalities,viz.

(1) ([ 222 = [cos(@U#211-2 T 1252, Fo 02 nore a € (1 o)
By )17 [T where o € (-
(11) (J£'2x£2))2 < 4 [£2 [{gn4xp)2
o] o) [o]

o ©o co
(111)  (Ji£ 2421022102 < 4 [£2 [(en - (x2-1)2)2

o o o
All these results are best possible and all cases of equality are
known. The lecture reports on joint work with W.D.Evans (Cardiff)
and W.K.Hayman (London).
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F.FEHER: A weak-typé inequality and a.e. convergehce

A basic theorem in connection with a.e. convérgence is the
following "Banach Principle": :
Let (0, T, u) denote a finite measure space, X,Y Banach function

spaces of u-measurable functions on N; let Tk:X - Y be linear, |
bounded operators (n=1,2,...) and let T denote the maximal operator, I
|

defined by
(r£)(x):= sup (T £)(x)] (x€0)
. KEN K
Moreover, let U be a dense subspace of X. Then the following
statements are equivalent: .
(1) vfeX: (T, £)(x) - (r,£)(x)| » 0 (k,1 - )

(2) (a) Vv £EU : l(ka)(x) - (Tlf)(x)l -0 (k,1 - o)
(b)‘ 3C : (0,0) decreasing, C(2) \O (1 /=), such that
u{xe€q : (Tf)(x)»}sc(ﬂ-}“)

The purpose of the talk is, to give more details on the function C.

I.FENYO: Uber eine Integralungleichung
Fiir eine beliebige Losung z = z(x,y) der Ungleichung vom Gronwall-

Typ
z(x,y) flx,y) + T a, (s,y)z(s,y)ds + ]f'a (x,t)z(x,t)dt +

+ T ?fa (s,t)z(s,t)dsdt (a. = 0)
o0 i

wird eine AbschHtzung hergeleitet, welche nicht verbessert werden
kann. Das Ergebnis erweist sich als Verallgemeinerung von bekannten

Resultaten. .

C.H.FITZGERALD: Opial Type Inequalities that involve Higher
Order Derivates

Estimates of integrals of the fomj' |yy'ldx are made in terms

of integrals of the form
T [Y(n)]zdx

a

DFG Deutschie
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for functions y satisfying appropriate end point conditions. Certain
extremal functions are shown to €xist and have necessary monotonicity
pioperties. For each n = 2,3,4,... these extremals can be found
explicitly by solving associated systems of linear equations. Sharp
constant in the estimates can then be obtained. For example for

=2 and n = %, these extremals and the constants they determine
are given.

M.GOLDBERG: New inequalities for [ -norms.
) 34 -
The £ norm and the lp operator-norm of an mXn complex matrix

A = (aij)‘are‘given by

Al = (5. .la..IP
AL, = ) jlag,IP)

- o )
lall, = max{|Ax| :x €Q%, Ixl, = 1,

respectively. The main purpose of this ﬁaper is to'investigate
the multipicativity of the l norms and their relation to the

"lp operator-norms.

Deutsche
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H.H. KAIRIES An inequality for Krull. solutions )
Using a well known result of Krull concerning the uniqueness

of convex. solutions of certain difference equations we prove: -
Let £ : R+*ﬁ satisfy the difference equation

(1) f(x+1) - £(x) = log x, x € R, » .
and assume that f is convex on R, with f(1) =0 .
Then necessarily

T2 f(x) + f(-—)

for x € R . Moreover, the function x - f(x) + f(—)
is strictly increasing for x 2 1 and the function

¥y > £ (y+ y2-a)) + :(2(y+)/y2.-4)")

is strlctly increasing fory=22.

This result implles the well known inequallty F(x)P(—) > 1,
In the.proof we need neither the concept of dlfferentiablllty
nor the concept of an integral.

o®
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Heinz KONIG: A Dini-type theorem in superconvex analysis
The talk deals with the superconvex theory, a general theory

of countable convexity. (Rodé&, Arch.Math.34, 452-462 (1980) and 36,

62-72 (1981)). A central result of it is & Dini-type theorem: If
on the superconvex space X an increasing sequence of superconvex
functions fn: X » R with limit function f£f:X » R is such that

at each x € X one has f (x) = £(x) for some n€N, then Inf f -Inf f.

The condition, that the 1limit function be attained at each point
seems to be severe, but is fulfilled quite often. However, it is
shown that it is not essential: It suffices that there exists a
sequence of positive numbers c 10 such that £(x) - fn(x) = O(On)
for n=®« at each x € X. This theorem will be deduced from an
inequality of unusual type. Rodé proved his result via a certain
intersection theorem which resembles the classical Baire theorem
We.retain this proceduré and extend the intersection theorem as
well, to its ultimate limit as a counter example reveals.

Herrmann KONIG: Some inequalities for the eigenvalues of a compact

operator.

The approximation-numbers of a compact linear map T:X»X in a
Banachspace X are given by an(T):'-:{"T-Tn":Rank T,Sn} n€N. If
(2,(T)) denotes the sequence of eigenvalue of T, for any 0<p<ew
there is ch ‘RY guch that for all T, n€N
/p

1
(1)P)

n - P 1/p n
(j:1|xj(w)| ) < cp(:,§1aj

) 1
It is shown that cI', < 2e max (1 ,\73). It is an open problem, whether

the inequality sup c¢_<e holds.
. pGR*' P

For single eigenvalues, the following reults are known:
1/m
DM = 1im a (T7)
m> %

m-1

— ——

1 .
DD = V2 (o (T)) % (1<m=n) if |7 < 1

The same formulas hold for the Weyl-numbers instead of the approxima-

tion numbers.

Deutsche
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A.EOVAUEC: On aspects of the matrix-method for algebrai'c-'inequ’alities

Define Mm:={x €R™: 0Sx, < XpSxzyT...<x } Given permutations
t, g, m, oGS we study the following two problems R

(1) To determine necessary and sufficient conditions for the

permutations *,4,m,0 in order that the inequality . R
n : n v . . - . ‘_ .
T x I x (%):

Sy F1h1%1 = (F XaTni%y
holds for all x,y,z.€ M.

(2) We consider the case that the inequality () holds for all -
X,¥,%z € m and ask, whether the function F:mxmxm —y R, defined..:
by . . 7 .

n n EEN
F(x,7,2) := 21 x

1’111 o1 7 E F1%ni%1

which ie non.negative definite (on Inxmxm) can be rewritten in such
a way that it's definiteness becomes obvious: That is, as-a sum
of products of the form p(xi, -xi) (yJ, yJ) (zk, “z, ): where
p>01i'>.14, 3> 3, k> k. By means of the matri_x-method these'~
problems lead to a purely combinatorial question in the. theory

of finite sets. - o . L

If the answer to question (2) is "yes", it follows that very
many algebraic expressions (polynomials) p(x, 1Koseeer X ) that
are positive definite - whenever O <x1 = x, < ... < x,, can be
written as.a sum of products of the form : Lo
p. (x -xi)a(i’j),where a(i,j)eENU {0}, pao
1<i<j<n o AR
N.KUBN: A note on t-convex functions

A function £:I *R on an interval I c R is for 0 <.t< i defined
to be " B

' t-éonvex iff f((1-:t)n+1v)‘ ('1-t)f(u)+'tf(v) Y u,v € I',' o
t-affine 1ff £((1-t)u+tv) = (1-t)f(u)+tf(v) Vouver = oo

&
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Theorem 1: If £:I » R is s-affine for some O < s < 1, then
(1 =t)usrtv)+2((1=t)v=-tu) = £(u)+f(v) ¥ 0O< t <1 and u,v €1I.

Corollary: If f:I » R is s-affine for some O <s < 1, then it is
t-affine for all rational 0 < t < 1,

In view of the Hahn-Banach theorem of Rodé (Arch.Math.31, 474-481
(1974) each s-convex function f:I » R is the pointwise maximum
of the s-affine functions ® = f. Therefore the above implies the
following

Theorem 2: If f£f:I » R is s-convex for some 0 < 8 < 1, then it
is t-convex for all ratiornal 0 < t < 1.

Remark: The talk on t-convex functions was given by Heinz Kénig,
in absence of N.Kuhn.

M.EWAPISZ: Functional inequalities and existence results for
fixed point equations in function spaces.
In t he paper we will show a wide class of operators in C(I,R")
for which a fixed point result can be established by the use of
the Schauder theorem if we are able to solve some functional
inequality related to this operator. Having a solution of this
inequality one can define a compact and convex subset of
C(I,Rn) which remains invariant with respect to the operator
mentioned.

A number of examples of operators and inequalities related which
have solutions will be shown. They include the integral, integro-
functional and functional equations.

The paper will show the importance of functional inequalities .

for more detailed discussion of existence problems for functional
equations. '

V.LAKSHMIKANTHAM: Differential inequalities at resonance

It is well known that the comparison results for the initial
and boundary value problems have been very useful in the theory
of differential equations. it is natural to expect that comparison
results for problems at resonance will be useful in'proving, for
example, existence results for periodic boundary value problems.
In this paper, we develop systematically general comparison
results of various types for boundary value problems at resonance

Deutsche
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and show some applications.of these results.

1.LOSONCZI: Inequalities of Young type
A function ®:[0,®) is called a Young function if
(i) o is increasing and right continuous on [0,®)
(i) 1im o(x) =

X0

The right inverse ©

(-1 of a Young function ® is defined by
(V5 ={° it y€[o,»(0))
sup {x20 | ®(x) <y} if y €[®(0),=).
We prove the following '

Theorem: Let f,g be arbitrary real valued. functions on (0‘,00).
The Young type inequality

(1) zy = £(x)+g(y) " (z,y > 0)
is satiefied if and only if there exist nonnegative functiona P,q
on (O , ), a real conatant a and a Young function @ such that:

£(x) = T cp(f)dt - p(x)wa (x>0),
o -

ely) = T QJ("”(s)ds +qly) -a (y>o) .

We also investigate (1) it x€ (a,»), y€ (b m) and mention a
generalization of (1)

E.R.IOVE: Links between some generalizations of Hardy's -
integral inequality
J.Eadlec and A.Kufner”(1967) used Hardy's inequality in their
‘studies of functions with zero traces, and developed extensiona
like following to deal with certain eingular cases. If p 2 |,
and other conditions hold,

) 1
(J“IF(‘I:)I (t)dt)? C(I;If(t)lpy_(t)dt)? ’

where P(t) = fgf(u)du and y(t) = tP*¥{10g(R/1)}".
When B = -| the form of the inequality is slightly modified.

Forschungsgemeinschaft
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E.T.Copson+(1976) independently gave several inequalities which
might be described, rather inexactly, as the outcome of a general
monotonic substitution t = #(x) in the above results after putting
y = 0.

I propose to present two inequalities which include most of the
above as quite special cases. The two main directions of generali-
zation are that F becomes a fairly general integral transform

of £, and that {log(R/t)}Yis replaced by an almost arbitrary
monotonic function. The method of proof is différent from that

of the above authors, but it yields the same constants C in the
special cases. :

*MR 35 # 5924 MR 56 4 559

R.N.MOHAPATRA: Inequalities related to sequence space ces[p,q]

In this paper we consider inequalities which lead to inclusion
relation between two sequence spaces. In an earlier paper we have
defined that the space of sequences ces [p,q] is the collection
of all sequences whose (N,q) transform belong to A_when
q E{qh} is a non-negative sequence. Copson had given generalization
of Hardy's inequality which is somewhat similar to the kind of
inequalities considered in this paper.

In this paper we shéll be concerned with inclusion among sequence
spaces with the help of our inequalities. Some relations with
Copson's results will be brought out.

R.J.NESSEL: Some négative results in connection with Marchaud-
) type inequalities

Continuing our previous investigations on quantitative uniform
boundedness and condensation principles, the present paper, which
presents joint work with W.Dickmeis and E.van Wickeren, is con-
cerned with some negative results in connection with Marchaud-
type inequalities. The existence of the relevant counterexamples
follows by means of a general theorem, given in terms of
operators in Banach spaces. The method of proof essentially
consists of a quantitative version of the familiar gliding
'hump method.

Deutsche . @
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2s.PALES: Inequalities for comparison of means
The mean values M and N are said to be comparable on the
interval I if
(1) M(xy,Xpy0000%y, ) < N(x)EpyeeesX) ) for n € k,x1,x2,...,x EI (1)

If M and N are quasiarithmetic means then a well-known result of
Jensen states that (1) holds if and. only if

M(x,y) < N(x,y) S L (2)
for any x,y €1 - o '

If M and N are quasiarithmetic means, weighted by a. weight function,
then (2) does not imply (1), but it is known, that the following
inequality is already necessary and sufficient- o

M(X,X, 000y X, ¥)¥-0.,y) < N(X;X ...,x,z,y,...,y) (3)
k 1 k -1

for any k,1 €N, x,y €I

In the talk we 1nvestigate that in other classes of means 1315
a necessary and sufficient condition in order that (1) ie valid.

J.RAIZ:'On unilaterally bounded orthogonally additive mapp;ngs ¥

For a real inner product space X of dimension at least 2, we call
a mapping £:X —) R orthogonally additive if it satisfies the
conditional Cauchy functional equation

(%) f(x1+x2) = f(x1) + f(x ) for all x,,x, €X with x; I Xy

For solutions f of (%), the following questions are answered-“y
1) When is £ bounded below? .

2) When does f assume a minimum?

3) When does every f which is bounded below assume & minimum?

The details will appear in "Aeqhﬁtiones Mafh“,1985 or 1984, under
the title "On orthogonally additive mappings".

D.K.ROSS: Inequalities for ratips of integrals

Deutsche
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A repeated integration by partSvpfocedure.is used to develop
a number of stronger as well as new inequalities for the ratios
of integrals of the form
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I K ,p(t)dt, a €R, m = 0,1,2,3,...

where Kﬁ+m(t) is a positive kernel and f(t) is an m-times
differentiable function with #{®)(4) 0 on the non-null interval

I:= {t:0 £ ¢ < x}

The method is illustrated by taking as the kernel function
Kﬁ(t):=t8e'pt, with R,p = 0. A generalization of a converse
to the Cauchy-Schwarz-Buniakowski inequality is found.

D.C.RUSSEL: Remark on an inequality of N.Ozeki
In a paper (in Japanese) in J.Coll.Arts.Sc.Chiba Univ.(1968),
N.Ozeki stated without proof an inequality of the form

% oy |P la -8, |P
N = c min a.-a
ok DPi<icj<n L+ I _
where a1,32,...,an are real numbers, and p > O. A proof was later
supplied by D.S. Mitrinovié and G.Kalajd%i&, Univ.Beograd Publ.
Fak.(1980); their proof and the best constant, stated by Ozeki,
turns out to be valid only for p 2 1. However (as remarked by
S.B.PreSié), we can replace the left side of (1) by
n

min I |ak-x|p,

x€R k=1 .
which allows us to derive from (1) an apparently improved result.
A proof can be given, with the correct (and sharp) constant Cnp?
which extends to the full range O < p < ®, namely:

Theorem: et p > 0, n€{2,3,...}, e i= min (2'7P 1y,

2(1p+2p+...+{%(n-1)]p), n odd
C =
np ep(1p+3p+...+(n-1)p), n even

are real numbers and d:= min Iai-ajl then

It a1,a2,...,a
1<i<j<n

n

L lag-x|P > o, a?
min I -x|* =2 ¢__d
x@ k=1 ak np

DFG Deutsche
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B.SAFFARI: On the best constant

in a remarkable inequality

of Delange
The following thgorgm is due

Mathematiques, 1982]:

to Delange [Bulletin des Sciences

k B

Let S := W TTgi_T denote -the sum of the k-tuple series ¥ x,
j=1 b n120
1,20
where O < xj<1'(j=1,...,k). Let H be any hyperplane of RE not

containing the origin. Then the
kduples (n1,...,nk) which belong

x1 .o .xk

(1) T )
(n1,...,nk)€H-

b

nq

...Xk

partial sum corresponding to those

to H satisfies the inequality

-1

<e .38

This result provides an elegant and short proof of a difficult theorem

of Erdss, Ruzsa and Slrkézi [Act

a Arithmetica, 1973]: If a real

(or complex)-valued function defined on the set of positive integers
is "completely additive" (i.e. f(mn) = f£(m)+f(n) unconditionally),

then the set {n:f(n) = a} has as
a + 0. (A deeper result with "<
sequently proved by Ruzsa).

ymptotic density < 9-1 whenever
e~'" instead of "< e~ " vas sub-

Delange's method of proof, which is based upon an analogue of (1)

concerning the exponential function and then a Laplace transform,

does not provide the best possib
the right hand side of (1) for f
the best possible absolute const

best possible constant is
+

k
()
with equality only if A1=...=)k=

. proof is based on a double induc

le constant (in terms of k) in
ixed k, although e~! is indeed
ant. Our observation is that the

1
’

m and X =...=X = 1/(k+1). Our
tion argument.

"S.SCHAIBIE: An application of Farkas' Lemma %o nonc&nvex optimization

duality
- A dual problem is introduced

for the following quasiconvex

optimization problem: minimize the maximum of finitely many

convex-concave ratios subject to

copvéx inequality constraints.

The dual is a quasiconcave optimization problem where the minimum

Forschungsgemeinschaft
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of concave-conv2x ratios is to be maximized subject to convex
constraints. The dual is obtained with help of Farkas' Lemma

and its generalization to convex inequalities. Duality relations
between the primal and the dual are established which resemble
those in convex optimization. This work was done in collaboration
with R.Jagannathan, University of Iowa.

W.SCHEMPP: Uber eine Ungleichung der Radarortung

Es bezeichne Z(R) die reelle nilpotente Heisenberg-Gruppe
mit eindimensionalem Zentrum Z. Die als "peak property" der:
Radar-Mehrdeutigkeitsfliche bezeichnete Ungleichimg : .

H(f;,x,y) = H(£;,0,0) (x,y) € R xR

wird bewiesen, indem die Radar-Autokorrelationsfunktion H(f;,., 2)
zur Signaleinhiillenden f € &S (R) als positiv-definite Funktion
auf X(R)/Z aufgefaft wird. Der radiale Fall,-d.h. der Fall, daB
die Radar-Ambiguityfunktion H(f,.,.) SO(2,R)-invariant ist,

wird eingehend betrachtet. ' '

A.SKIAR: Extension of functions satiéfjing certain systems
' of inequalities
The inequalities in the title are those, used to define
n-monotonic functions. A ft}nction F from an appropriate subset
of R® into R is n-monotonic, if

() A-1v,y1 24 ...A.n_,yn,zn P20

for all 2n-tuples (y1 1Fpr w02y ,zz,...,zn) such that
(y1 .yz,...,yn) and (z1,z2,...,zn) are in Dom F and y < 2

m
form = 1,...,n. The difference operators Am,ym,zm in (%) are
" defined by .
(Am,ym.sz) (x1 1Egyeee ,xn)=F(x1 seeesEp q0ZpeXpiqeeee ,xn)l

-F(x1 yeos ,xm_1 B SPTE “‘_’;n) '
for all (x1 yeo .,xn) in Dom F. An n-dimensional distribution functipn
(briefly an n-df) is a function F:f?-+[0,1] such that F(xy,...,%,)=0

if any xm‘=_m , F(w,©,...,») = 1 and F is n-monotonic.

The margins of an n-d.f. F are the functions Fm;:ﬁ"!'oﬂ] defined
vy F (x ) = F(m,oo,...,w,xm,w,...,w). An n-copula is & function
c:[0,1]2»[0,1] such that C(x1,...,xn) = 0 if any x = O,
0(1,1,...,1,xm,1,...1) = x for m = 1,...,n and C is n-monotonic.

DFG Deutsche N N N
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An n-copula is necessarily continuous. A fundamental result in.

probability theory is that, given any n-d.f.F with margins F1,...,Fn,

there is an n-copula C such that
(* *) F(x1,...,x ) = C(F1(x1),...,F (x ))

for all (x1,xz.-..,x ) in RD, The authors proof of this result
proceeds by first showing, that . S

F(x1,...,x ) =¢C (F1(x1),...,F (x ))

where C* is an n-monotonic function defined on Ran F1 XouooX RanFﬁ,

and then showing that C* can be extended to an n-copula C. An
outline of the proof of this extension theorem will be given.

Remark: Compare also the talk given by C.ALSINA.

B.SMITH: An inequality for dyadic rearrangements

- 4< genotes a dyadic reordering of {1,2,...,N}. This is gotten

by & dyadic grid on [O, N] Ve are allowed to change the order
of the elements of grid member I1 with respect to those ‘of I2, '

if I1,I2 have the same larger member of the grid. Let‘Qt,QZ,.,.,Qq

be a partition of . o .
ne= (B, 22 2Ny A'=l(:nl, Qng =pir1dm

Then: : o
sup (z (2 sin (a;b')z1 )

z,%<e,%<. . .0 1 a€Q,
L 4 veq

(m>1)

Kohst.N2

A

This is used to prove theorems on pointwise convergence of Fourier -

series under rearrangements.

R.SPERB: Inequalities in elliptic probléms derived from -~
maximum—principles
Let u be a solution of

(™ Au + £(u) = O in 0, where 0 is & domain on a Riemannian manifold 7.

A number of intereeting ineQualitiee can be derived in problem (*)
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in the following way. One shows that the quantity P := g(u)|Vu|2+h(u)

satisfies a maximum principle if g and h are suitably’selected.
Possible applications are: lower bounds for the first positive
eigenvalue ), for f(u) = 2u, or the critical value 2\ ¥ for

£(u) = 2f(u).

R.L.STENS: Error estimates for sampling approximation

E.T.Whittaker's cardinal series theorem, also known as
C.E.Shannon's sampling theorem, states that every entire function
f of exponential type < ¢ has the representation

() 2w = = 20 sinlot-kn) (t €R)

If f is not an entire function of exponential type, then (1)
may hold at least approximately, i.e., in the limit for ¢ = o=,
In this case one is interested in the error
- -]

. - km, sin(ot-km)
(2) Eo(f,t) = |f(t) —k=§m f(7) ot I .
The aim of the talk is to give estimates of (2) provided f
satisfies certain smoothness conditions..

By similar methods of proof one can deduce bounds for the error
when the derivatives f r) or the Hilbert transform f are
approximated by cardinal series.

G.TALENTI: Estimates of eigenvalues of Sturm-Lionville problems
We consider the following problem:

—u"+q(x)u = A for -1<x<+1, ul(-1) = u(+l) = 0;

where q is nonnegative and integrable. Let A(q) be the smallest
eigenvalue of such a problem. We compute

max {A(q) : q(x) = 0, I+l q(x)dx = A} ,
-1
where A is any positive constant.

E.TURDZA: Stability of an iterative linear equation
Some sufficient conditions for stability and iterative stability
of linear equations
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o(x) = ¢{x)® (£(zx)) + F(x)
and
o(f(x)) = glx) o (x) + hix)
will be given. The range of considered functions are subsets of .

a Banach space.

P.M.VASIG: The Jensen-Steffensen inequality as a function of
the index set
In 1963 W.N.Everitt has started investigations regarding refinements

of general inequalities given in the form of index set functions.
Such results for the Jensen inequality were obtained by P.M. Vasic
and Z.Mijalkovié in 1976. An analogous result for the Jensen-
Steffensen inequality was not known hitherto. In the lecture,
with certain modifications, the corresponding results for the
Jensen-Steffensen inequality are obtained.

P.VOLKMANN: Konvergenz der sukzessiven Approximation flir Systeme
gewohnlicher Differentialgléichungen '
Es sei T>0 und w(t,s) : [0,7] x[0,o) » [0,»] eine beziiglich:
s schwach wachsende Funktion mit folgender Eigenschaft: :
Ist' N €(1,2,3,...}, a € RN una £:[0,7] xRY » RN stetig, beschrinkt

it l2Ct,x) = £0t,9)1 < wit, lx=yl) (wo |l.|l:=Maximums norm im rRY),s0 habve

Deutsche

das Anfangswertproblem u(o) = a, u' = £f(t,u) genau eine Losung
u:fo, T]'*R . Unter diesen Voraussetzungen wird(mit Hilfe von
Ungleichungsmethoden) ein neuer Beweis des Folgenden gegeben.
Sind N,a,f wie oben beschrieben, ist u, [o 7] -’RN stetig und
definiert man rekursiv T

un(t)._ ar T £(r,u,_q(r))ar (n=1,2 ,3,...), s0 gilt

u (t) = ul(t) gleichmiBig auf [O,T] '

C.L.WANG: Inegualities and mathematical programmigg 11

The lecture is a continuation of the paper "Inequalities and
Mathematical Programming" which-was presented at the third
International Conference on.General Inequalities in 1981. More
examples, (q.g. in economics) along a similar line will be given,
In particular special attention will be directed to the concept
of a transition constraint of a mathematical programming problem.

P
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Such a constraint is one designed to be consistent with the original -
one(s), so as to facilitate solving the problem. Finally, the
van der Waerden inequality concerning permanents will be discussed.

R.J.WALLACE: Optimal strategies for locating zeroes of derivatives

The aim here is to find an optimal strategy for locating the
zero of the k'th derivative of a well behaved function on a
prescribed finite interval. ‘

The method of subolividing the interval is the problem at hand,
and it depends on a particular integer sequence {.Lk(n)} , n=0,1,2,...
For any given nonnegative integer k, it is known that Lk(n) su.k(n)
for all n = 0,1,2,... ; with equality when k = 0,1,2,3,4, and 6
and strict inequality when k = 5. The integer sequence {U_ (n)}, -

= 0,1,2,... is def:l.ned by the initial conditionsU (O) -U (1)-..._
= U (k) and by the rule

U (N+k+1) = min {Uk(N+i) +Uk(N+k-i)}. N=0,1,2,... .
1=0 1,...,[5] '

In 1957 R.Bellman described these types of problems as "extra-
ordinarily difficult" but & closed form solution for U (n) is
herewith presented for the cases k = 2(mod 4), k = 2, Although

the techniques can be extended to when k = O(mod 4) k = 0, the cases
k odd, k = 1 are presently proving somewhat more difficult.

K.ZELLER: Positivity in summability

Wir betrachten dreieckige Matrixverfahren A, bei denen die
Abschnitte oder gewisse bewichtete Abschnitte positive Operatoren
darstellern (bezliglich As 2 0). Bei solchen Verfahren erhilt man
aus leicht beschreibbaren Faktoren positive Linearformen bzw. .
Operatoren. Besonders interessant ist der autopositive Fall ‘
(obige Gewichte durch die a nkz 0 gegeben); hier findet man weitere
strukturelle Aussagen lber positive Linearformen (z.B.Multiplikation
von Paktoren). Beispiele bieten u.a. die Cesdro-Verfahren C_ (fur
O<p=<1 bzw. p21); ein auf Faktoren beruhender Vergleichssatz
(B 2 Cp) -illustriert die Anwendungen. Die Ergebnisse stehen in
Zusammenhang mit dem Second Theorem of Consistency (fur Riesz-

Mittel bzw. stetige Cesdro-Verfahren). Positiv-Dekomposition fiihrt
zu einer Ausweitung der Resultate.

Reporter: A. Kovalec
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