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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWüLFACH

Tag u n 9 s b e r ich t 22/1983

Differentialgeo~etrie im Großen

22.05. bis 28.05.1983

Die Tagung wurde von S.5. ehern (Berkeley) und W. Klingenberg (Bann)

organisiert, und fand unter der Le~tung von Herrn Prof. Klingenberg

statt. Die 44 Teilnehmer kamen aus verschiedenen Ländern und vertraten

einen breiten Themenkreis der Differentialgeometrie.

Die vorträge präsentierten eine entsprechende Themenvielfalt. Das

Programm bestand aus 3 Vormittagsvorträgen und 4 halbstündigen Kurz­

vorträgen am Nachmittag. Auch so konnten nicht alle Vorträge unter­

gebracht werden.

Trotz der Vielfalt der Themen sind einige Schwerpunkte zu nennen:

Riemannsche Geometrie (0. Hulin, Chr. Croke, Z. HarlEl, W. Meyer,

P~ Buser, W. Ziller), Geometrie eingebetteter Untermannigfaltigkeiten

(R. Walter, U. Pinkall, N. Kuiper, o. Gromoll, D. Ferus, U. Simon),

geschlossene Geodätische (M. Hamburg, N. Hingston, V. Bangert).

Es gab einen Ergodennachmittag (P. Eberlein, M. Brin, R. Spatzier,

w. Ballmann) und einen Blätterungsnachmittag (Ph. Tondeur, F. Kamber,

G. Andrzejczak). Aber hiermit sind bei weitem nicht alle Themen auf­

gezählt, und es hat auch viele· Querverbindungen gegeben.

Der größte Teil der Ergebnisse' wurde ~n interessanter und verständ­

licher Weise vorgetragen. Besondere Resonanz fand folgende

Definition (DeTurck): Einen Trick, den man mindestens zweimal an­

wenden kann, nennt man eine Technik.
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Hermann Karcher:

Relativistic solar system experiments

Experiments which are presently diseussed by relativists can very

effectively be deseribed without using loeal coordinates.

The Schwarzschild g~ometry deseribes the exterior of a spherieally

symmetrie star (or planet). Its eurvature operator has an eigenbasis

of deeomposable 2-forms from which all eigenveetors and eigenvalues

of the Jacobitensors can be obtained. Gravitational redshift is

expressed in terms of timelike variations of nullgeodesics; spacelike

Jacobifields tangent to the lightcones describe the various distance

measurements. This gives the redshift-observed size - observed lumi­

nosity relations (of eaeh relativistic model). There are enough Killing

fields to reduee the geodesic equation to one first· order equation.

From this the defleetion of light and the time delay of light whieh

passes elose to the sun i5 deduced. The Jacobi equation along the

worldline of a planet on a cireular orbit has eonstant coefficients;

it gives the ~erihel advanee predicted by relativity. Gyroscopes ar~

described by parallel vectorfields so that relativistic effects on

gyroseopes eircling. the sun are immediate. The rotation of" the sun

(being small) is treated by linearizing the Kerrmetric at zero angular

momentum which gives asymmetrie 2-tensorfield solving the linearized

Einstein equations along the Schwarzs'child geometry. The first derivative

of this field gives the linearized contribution to the connection, the

second derivative gives the curvature correction caused by the rotation

of the ·sun; this allows to discuss the influenee of this rotation on ~

the above effeets. .-,

Dennis DeTurek:

Diffeomorphisms with preseribed eigenvalues

Given a diffemorphism of Riemannian manifolds ~: (M,g) --> (N,h),

one can compute the eigenvalues of the pullbaek of h. with respeet

to g. These eigenvalues have physical meaning in the eontext of
co

continuum meehanies; We eonsider the ~roblem, given positve C

functions on M, of showing the existence of a
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diffeomorphism q that realizes these eige~values. As it turns out,

this is a problem that involves a nonlinear hyperbolic system of

partial differential equations. The proof of a result (that such

diffeomorphisms exist provided

involes a Nash-Moser argument.

for i f j and all x)

Another application of this reasoning yields the existence on any
00

three-dimensional Riemannian manifold of an atlas of C

coordinate charts such that all the coordinate systems are triply

orthogonal (i. e., the metric tensor is diagonal at all points )._

Both these results had been known on the analytic categoy - our
00

eontribution is the extension to C _ (Joint work with Deane Yang)

Dominique Hulin:

pinching and Betti numbers

Starting fro~ the ~sphete arid rigidity theore~~" (Berger) , restrieting

ourself to. the real cohomology of the manifold, an~ then considering

the first nontrivial dimension, we prove the following semieontinuity

theorem:

Theorem: There exists an E > 0 such that if (M,g) is a fout'

dimensional conneeted a~d k-pinched riemannian manif6ld wlth

k > i - E ,then b 2 (M) < 1; one ean'take E = 2.5-10-4

The main taols that are used in the praaf of this theorem are the

'Weitzehböck formula for harmonie 2-forms and a Sobolev inequality by

Elias_

Christopher Croke:

A sharp four dimensional isoperimetrie inequality

Consider the following conjecture

Conj~~ture:Let M be a eompact subdomain of a complete simply

connected riemannian manifold of nonpositive curvature'. Then
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with equality holding if and only if M is isometrie to a flat

ball (a{n) represents.the volume of the unit n-sphere).

The eonjecture was proved for n = 2 by Beekenbaeh and Rado. in

1933. In the talk we show that the eonjecture is true for n 4.

In fact we derive the best known constants c(n)

that

for all n such

although ben) = nn-1 a (n_1) only for. n 4.

Matthias Hamburg:

Bifur~ations of closed geodesics

Consider a manifold M and let G{M;I) denote the set of all

one-parmeter families g~ of metrics on M, parametrized by

U E I I I E {:m IlR /rzz. }. Let Co be a given closed geodesic of go.

Under some regularity conditions , we have a family c~ of elosed

geodesies of ~ passing through cO. But there are ~ome unavoi­

dable cases , where this will not be the case. Such geodesies are

bifurcational. To elassify all the typical bifurcations,.we consider

the Poincare maps ~p' which will be symplectic mappings. Then we

give a eomplete classifieation of the bifurcations of periodic

points of symplectie mappings Pu' depending on a 1-diemnsional

parameter. This elassification will be only up to nondegeneracy

conditions. Next we prove a loeal perturbation theorem, asserting

that by a small perturbation of the metric around cO' we can aehiev~

that p~ satisfies the nondegeneraey eonditions needed above. Final~

we prove the main

Theorem: there is a residual set GI (M;I) C G(M;I) such that for

9
U

E GI (M; I)any and any elosed geodesie Co of a 9 , Co lies
Uo

either on a regular family or on a bifureation family, whieh corres­

ponds ~o a non~egenerate bifureation of P~.

Thus, given a generic curve of metries on M, we can describe all

the· unavoidable loeal bifurcation phenomena.
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Hans-Christoph Im Hof:

Discrete Reflection Groups in Hyperbolic Geometry

A discrete reflection group in hyperbolic space Hn is a discrete

group of isometries generated by the reflections w.r.t.finitely many

hyperplanes ?f Hn . Such a group gives rise to a fundamental poly­

hedron in Hn whose dihedraLangles are natural, i.e., of the form

~, p E m , p ~ 2. Conversely, a polyhedron with natural angles

generates a discrete reflection group.

In spherical and euclidean geometry, discrete reflection grpups

have been classified by Coxeter-, but in hyperbolic geometry such a

classification is out of sight. In this talk, I discuss a construc­

tion which gives rise to numerous new examples of hyperbolic finite

volume polyhedr~ with natural angles.

We start with an orthoscheme (i.e., a simplex (Po, ... ,P n )

such that span (Po' •.. ,Pi) .L span (Pi'··· ,Pn ) for all i).

If Po and P
n

lie inside or on the quadric defining the hyperbolic

structure, then this orthoscheme has finite volume. If Po (ar P n '

or both) lie outside the quadric, we introduce the polar hyperplane

of Po (or Pn ' or both) and so we get a truncated (or doubly truncated)

orthoscheme of finite volume. In good cases the polyhedra so obtained

have natural dihedral angles. The classification of the good cases

yields: continuous families for n = 2, infinite families for n = 3,

finitely many cases for 4 ~ n < 9, nothing at all for n > 10 (the

calssification"for n = 4 has not yet been completed).

The trigonometry involved is related to the pentagramma mirificum.

Zvi HarfEl:

Eigenvalue expansions and volume functions

The talk is concerned with the functions uk,v k ' appearing as coef­

ficients in Min akshisundaram-Pleijel a.symptotic expansion for the

eigenvalues of the laplacian

-A . t -E. 2
u (t, .) = Le ~ <1>1 - (4 TT t ) 2' {u 0 +t u 1 +t " u 2 +. . · }

and on the Taylor power series representing the volume fu~etion of

geode sie balls,
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t
2

n+2 v 1 + (n+2 )(n+4)
- ... }.

We explain the universalityof these coefficients, and the independence

of dimension n as a result of the multiplicative properties of the

heat kernel U, and of a eert~in tranform of the surfaee area funetion

o
e *(exp voll ~=

We then present a partial solution to the problem of determining

eoefficients of arbitrary order ~y eomputinga dominant part of their

expression in terms of basic eurvature invariants (T = sealar eurvature,

p = Ricei curvature).

Rolf Walter:

1

6
k
k!

( ~Tk_ k(k-1)1 /2 k-2 )--5-- P T + •••

( k 4k(k-1)1 12 k-2 )
T + --5-- P T + •••

Hypersurfaees with a . constant higher mean curvature

The r-th mean curvature Hr of a hypersurface M in a riemannian

manifold M is (up to a constant factor) the r-th elementary

symmetrie function of the prineipal:curvatures k 1,·,· .km. There are given

several eharaeteri sations of complete or compaet hypersurfaces in

aspace of constant.sectional curvature c, M~ M(c), which have a e
constantfixed H

r
~ 0 and fulfill the intrinsic nonstrict lower

bound curvature eondition K ~ max {O,e} . The results generalize

the classical Liebmann/S~ß-theorems and also reeent results of (e.g.)

Cheng/Yau, Nomizu/Smyth and u. Simon. The proofs are based on certain

elliptic partial differential operators generalizing the Laplaee/ Beltrami­

operator.
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Jost Eschenburg:

Free Isometrie Aetions on Compact Lie Groups and Manifolds of

positive Curvature

Consider the manifold MG = T2,U(3)/T I where

T =1

MG is a manifold sinee Tl x T 2 is aeting freely. We showed that

there is a left invariant metric on U(3) with respect to whieh

Tl x T2 aets isometrically such thatthe indueed metrie on MG

has positive seetional eurvature. MG is simply connected and not

homotopically equivalent to any known space of positive curvature.

We indicated the proof of the following uniqueness theorem:

Let G be a compact simple Lie group with left invariant metric,

which is right invariant w.r. to some maximal torus. Let U be a

compact subgroup of G x G acting >isometr>ically without fixed points.

If G/U has K ~ 0- and even dimension, then G/U is diffeomorphic

to a homogeneous space of positive curvature or to MG.

Ulrich Pinkall:

Compact conformally flat hypersurfaces

E. Cartan proved

in lE n+ I, n .::.. 4

in 1917 that every conformally flat hypersurface

locally (i. e. in the neighborhood of each non-

umbillic point) is the envelope of a one-parameter-family of hyper­

spheres. Here we eonsider the corresponding global problem and study

compact conformally flat hypersurfaces. In particular we determine

the intrinsic conformal structure of such a hypersurface: Every

compact conformally flat immersed hypersurface in mn +1 , n ~ 4 is

confomorphic to a Schottky-manifold. A Sehottky-manifold is a

conformally flat manifold constructed in the following way: start

with a sphere sn and cut out an even numbe~ of spherical holes

B1, ... ,Bk,Bi, ... ,Bk. Then identify in Sn -i~l(Biu Bi> the boundaries

aBi with aBi by means of Moebius transformations f i:" Sn -> Sn.
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Patriek Eberlein/Misha Brin/Ralf Spatzier/Wer~er Ballmann:

Compact Manifolds of Nonpositive Curvature

Problem: To elassify compact manifolds of nonpositive seetional

curvature in some reasonable sense.

Question: Given M compact with K < 0 and 00 Euelideao factor,

can one find a finite eover M' that splits as a Riemannian product

of loeally symmetrie spaees and spaces with "rank" = 1?

(There is much evidence that the answer to this question is yes.)

Rank of a manifold: Recall that if y is a parallel Jacobi vector· 4It
field perpendieular to a geodesie y in any Riemannian manifold N,

then K(Y, y') (t) _ o. For a unit vector v tangent to a compact

manifold M with K ~ 0 .we define r(v) = dimension of the spaee of

parallel Jacobi vector' fields along Yv. Then define r (M) = rank of M

inf r(v). Moreover call v regular if r(v} = reM). Note that
vE SM

this definition of rank agrees with the usual definiton for locally

symmetrie spaees. Also r (Mt x M
2

) = r (M
1

) +r (M
2
). Spaces of rank

behave geometrically like spaees with K < 0 but they may look

very flat. For e~ample, any compact surface of genus 9 ~ 2

metrie with K < 0 is rank 1 in the sense defined above.

and any

denote the geodesie flow onResults: CD Let

with K ~ o. Then is mixing <=> ergodi'c

SM, M compact

<=> it has a

dense orbit in SM "<=> M has rank 1. If M

*and M is homotopieally equivalent, then

properties.

has these properties

*M also has these

® If M has rank k ~ 2, then every v E SM is tangent to at least

one k-flat

m k
). ·If v

in M(=isometrieally immersed, totally geodesie copy of

is regular then ! is tangent to exactly one k-flat.

Remark: These flats even have Weyl chambers. The conjeeture is that

any such M must be a product manifold (or finitely covered by one)

'6r a loeally symmeirie space.

~ Every immersed k-flat is a limit of immersed k-tori in the ease

k ~ 2 (cf. the·analogous situaton in locally symmetrie spaee s ). In

particular ~l(M) eontains many different free abelian groups of rank k.

Corollaries: 1) Every eompact M with nonpositive sectional curvature

has 'its closed geodesies dense in the space of all geodesics (no

assumption on rank) .

2) If .N(t) = the number of free homotopy classes of closed curves that

contain a closed geodesie of length ~ t, then N(t) grows exponenti-
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ally in t.

3) There exists an open {gt} - invariant

exist k-l continuousfffgtegrals if

subset U C SM on which there

k ~ 2. In partieular . {gt} does not

have a dense orbit if k > 2 (cf. I above).

James Eells=

Twistor construetions of harmonie maps

1st order eonstruetions. Let N be an oriented Riemannian n~manifold

and Q(N) ~ N the Grassmannian of oriented 2-planes. The fibre is

Kählerian: the complex quadric

n CTQ(N) as foliows: Each
~n-2·

q e Q (N)

We define the vector subbundle

is an arId Euclidean plane

in Tn(q)N, and therefore a complex line Lq . The space Hq is

the subspace of TqQ(N) spanned by the lift of Lq to the horizontal

subspaee,and the vertical TVQ(N). These components have complex
q

struetures JH and JV. Define eomplex struetures on TI:
q q

on_

on 1
JH on

_J V on

Theorem (Eells-Salamon' eR Paris 19B3) The correspondence ep "'--) <P

(Gauss lift of ep

Q(N)

/1
M ---)N

ep

is a bijection between eonformal harmonie maps and J2-holom~rphic

maps 4>. (Exclude <p eonstant and ~ vertieal):

Examples. N = Sn with n = 3

n = 4,6

(Lawson's examples)

(Brya~t's examples).

N = IRpn (Calabi examples)

N = ~pn (Eells-Wood examples)
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Nicolaas Kuiper;.

The total (absolute) curvature of knotted surfaces

The total absolute curvature of a compact smooth submanifold

imbedding f: Mn ~ mN can be defined by

( 1 )

where ~L is ortho90n~1 projection into a line

number of nondegenerate critical points, and

or mean over all lines through 0 f mN.

For closed curves:

Fer c 10 sed sur face s in ]R3:

t
L

L, 'J.l is the

is the expectatio~

By Morse theory T(f) ~ 6 = sum of the Betti numbers of M.

For knotted curves (Milnor-Fary) and even T (f) > 4

(Milner) (by Langevin-Rosenberg~Meeks-Merton).

For knotted' surfaces T(~) ~ 6+4, B = 2+2·genua. (2 )

For the torus and the surface ef,genus 2

--~
B t ,H 2 ,H

3
connecting K < O-tubes.

aB 2 , aBt. convex surfaces.

W. Meeks and myself examined the possibility' T(f}= ß+4 for

knotted surfaces in ]R3.

this is not possible, but for genus> 3 .there are examples:

here 1s one for 9 = 3
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Wolfgang T. Meyer:

Examples of complete manifolds with positive Ricci curvature

We study the geometry and topology of certain real algebraic

varieties and construct aseries of manifolds V V (1,p,q)

with the following properties: For integers

t ~ 3, P > q > 0, p-q sufficiently large but bounded and p+q

sufficiently large,

negati~Euler number

Vo is a closed

x = 2 (2-t) for

(q-1)-connected manifold with

p,q odd and positive Ricci

curvature. The interior of V is an open (q-1)-connected mani-

fold admitting a complete metric with positive Ricci curvature not

having the homotopy type of any closed manifold. In particular'

V does not admit a metric of nonnegative sectional curvature.

Similar examples of closed manifolds are expected, but not known

to exist. Candidates are manifolds of type V o above and certain

complete intersections as for example the cubic in cp4 having

c 1 > 0 and x < o.

This is joint work with D. Gromoll.

Detlef Gromoll:

Parallel Gauss maps and rigidity ,aspects of minimal submanifolds

We reported on joint work with M. DAJCZER. Starting point is the

observation that hypersurfaces in euclidean spaces (and spheres)

with constant relative nullity have a representation by the

in.verse of the Gauss map on the normal bundle of its image

('Güuss parametrization'). This ha~ many intere~fing applications.

A main result is: Any complete minimal hypersurface Mn

is rigid as min~mal subman{fold in mn +p for any p ~ 1, provided

n ~ 4 and Mn has no euclidean factors mn - 2 n-3
or. lR . Local
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rigidity as minimal hypersurfaces can be completely described in

terms of tassoeiated families' of minimal immersions and 'super-

minimality' of their Gauss image, which we define in general for

eertain (.'circular ' ) Kaehler manifolds in real spaees~ Sueh

Kaehler manifolds play a surprising °role also in the eongruence

problem for isometrie submanifolds with.parallel Gauss maps which

we 'analyze fairly completely. There are various other results in

this' context. For example, all Kaehler hypersurfaces ~f real

euclidean space can be classified essentially in terms of super-

minimal surfaces in spheres.

Nancy Hingston:

Isometry-invariant geodesics on 8
2

Let M be a compact simply connected Riemannian manifbld and.

A: M ~ M an isometry. A geodesie c: m ~ M is called isometry

invariant if c(t+1) = Ae(t). Such geodesics were first studied

by K. Grove. We prove:

Let be an orientation preserving diffeomorphism

of finite order ~ 2. Then for a generie A-invariant metric

on '5 2 th~re will be infinitely many A-in~ariant geodesics.

Note that if we take the standard metrie on 52 and if A is a

rotation, then there is only 1 nontrivial A-invariant geodesie:

the equator.

The .proof consists of two steps. FLrst the Birkhoff-Lewis fixed

point theorem implies the existence of infinitely many for a

generie metric with an elliptic A-invariant geodesie. Next we use

the equivariant Morse theory to conelude that if all A-invariant
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geodesics are hyperbolic, then there must be infinitely many.

William B. Meeks 111:

Classification of finite group actions on compaet 3-dimen~ional

manifolds

(Joint work with S.T. Yau, Peter Scott, Leon Simons)

The problem is related to a conjeeture of Thurston whieh states

that every prime eompaet 3-mani~old admits a geometrie strueture

and that finite group aetions are eonjugate to a group of isometries

of the 'geometrie structure. This is a rather loose statement

in that the manifold may break up into isometrie pieces but the

statement gives the idea. Methods of proof that deal with this

question use minimal surfaee theory.and hyperbolie geometry.

Particular questions which are solved are

(1) Finite group aetions on m3
are conjugate to linear

aetions

(2 )

Ernst 'Ruh:

M

or

has a geometrie strueture and M is not based on

8
3 , then every finite group action is "geometrie".

An integrability eondition for simple Lie groups

(Joint work with Min-Oo)

The Maurer-Cartan equation, dW+[w,w] = 0, is the well-known

integrability condition for a loeal Lie group structure. Pinehing

theorems deal with the following qu~stion: What can be said if the

integrability condition n = dW+[w,w] = 0 is satisfied only up to

a certain degree, i.e., 11'011 is small in a suitable norm? Since

the de fini tion 'cf w requires a global parallelism of the manifold
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M on whieh it is defined, its assumption is rather restrietive.

Another possibility to define a Lie algebra strueture in every

tangent space 'of M is simply to define a tensor field

T: TM @ TM + TM which restriets to a Lie algebra bracket in each

tangent space. In 1965 Nomizu asked for the integrability

eondition for T. In case the Lie algebra AI used as model is

simple the answer is as follows: T defines a pseudo-riemannian

metric <,>. Let 0 denote ist Levi-Civita connection, and define4lt

d T ( X , Y , Z ) = (0 XT) (Y, Z) + ( D YT) (Z,x) + ( D Z T) (X, y) •

Theorem 1. If A1 is simple, rank ~ > 2, then dT = 0 if and·

only if either M is locally isometrie to the Lie group G with

Lie algebra AI' ' or M is flat.

The proof relies on the following version of Berger's theorem on

holonomy groups.

Theorem 2. If is simple, rank A.j ~ 2, and

satisfies (X,ß(Y,·Z)] + (Y,ß(Z,X)] + [Z,ß(X,y)] o (Bianehi

equation), then ß = A[,],

of ~

where A E IR and [,] = Lie bracket

In case AI' is compact' and simple, Theorem 2 is a special case

of Simons' result on holonomy systems.

Karsten Grove:

Group actions, Morse theory and the double mapping cyclinder

A l-eonnected manifold M is ealled Q-elliptic provided

The following gluing construetion leads to a
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new class of ~-elliptic manifolds:

Theorem (Grove-Halperin) rf M can be written as M =

where DO(A) are disc bundles with

common sphere bundle S,

q;}-elliptic.

then M Is ~-elllptic iff S Is

Corollary

~-elilptic.

All 1-connected manifolds of cohomogeniety 1 are

A proof of this can be given by applying Morse theory to the

relative loop space n(M,S). It is possible to give a complete

list of the possible ~-homotopy types of O(M,S) that occur in'

the more general setting of double mapping cylinders

with the (rational) homotopy fibers of f .O·

being spheres (for general CW-type spaces). An amusing consequence

•

of the above is that the complement of a non-~-el1iptic submanifold

N of a ~-elliptic manifold M does not admit a structure of' a

disc bundle, in particular it cannot admit a complete metric of

nonnegative sectional curvature.

ViC.tor Bangert:

Closed geodesics on manifolds with u 1 = ~

Let M be a compact Riemannian manifold with fundamental group

u 1 (M) ~ 2Z • We prove that the number n(1) of geometrical1y

distinct closed geodesics of length < i

numbers, so

grows like the prime

lim infen(t)lOi t
i.~(D

> o.
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The proof consists in reducing the problem first to a topological

and then to an algebraic problem whieh finally can be solved.

This is joint work with N. Hingston.

Peter Buser:

.Almost negative curvature on S3

This is an example by Gromov of.a smooth Riemannian metric on the

3-sphere with diameter = 1 and with the positive upper curvature

bound arbitrarily elose to zero. The example is obtained by

replacing small tubular neighbourhoods of great circles on the

standard s3 with sui~able copies of
02 1
S xs , where is the

two-sphere with a small eireular disc removed. The procedure is

uniquely restricted to three-manifolds. It is not clear, whether

such metries also exist on Sn for n > 4.

Wolfgang Ziller:

Pinching Theorems for the Diameter

Areport was given on some recent results o~ D. Brittain. Let

.Ric be the average sectional curvature. Then we have:

Theorem A: There exists an e:(n, max K, val) > 0 such that

with Ric > 1 , deM) ~ 1T-e: is homeomorphic to sn.
-

Theorem B: There exists an e:(n, max K) > 0 such that Mn with

K > and deM) > 1T-e: is diffeomorphic to Sn.

These results were motivated by:

Bonnet-Myers:

Chenq. (75)

Ric > 1 =) d (H) < 1T

Ric> 1, deM) = 1T =) M isometrie to Sn CK - 1)
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Grove-Shiohama: (75), K ~ 1, d(M) > 'ff/2 => M homeomorphic to Sn

I tokawa-Shiohama: (82), ex. E(n, min K) > 0 s.t. Ric ~ 1,

•

vol (Mn) > vol (Sn) ( 1-e: >' =) M homeomorphic to Sn.

Philippe Tondeur:

Foliations and metries

A foliation ~ on a Riemannian manifold M is called harmonie,

if all leaves of ·r are minimal submanifolds of M. The terminology

is motivated by the faet that this geometrie property is eharacter-

ized by the harmonic~ty of the projection B: TM ~ Q to the

normal bundle Q, viewed "as a Q-valued I-form. Riemannian foliations

of this type on a compaet and oriented mani-fold are further

characterized as the critical points of an energy functional on the

space of foliations. In this talk w~ discuss examples and

geometrie properties of such foliations (joint work with F. Kamber).

Franz Kamber:

Duality "theorems for Riemannian foliations

(joint work with Ph. Tondeur)

About 25 years ago, B.L. Reinhart• basic complex n~(F)

(AJM 1959) asserted that the

of a Riemannian foliation F on a closed

manifold with oriented normal bundle satisfies Poincare duality,

i. e., In 1981, J. Carri~re

produced a counterexample to this assertion, namely a Riemannian

flow F transverse to the fibre of a fibration n2 -+ M 3 -+ 51

On the other hand,
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the flow F in the above example is not geometr~cally· taut~ i~e.,

M3 does not admit ametrie for which the leaves of F become

minimally immersed submanifolds of M
3 (the flow is not geodesible).

It turns out that tautness of F is precisely the condition

More generally we say that a foliation F is geometrically tense

needed to establish Poincare duality for H(OB(F».

if there e~ists a Riemannian metric on M for which the leaves •
The me~ni. e. ,

of F become submanifolds of constant (= parallel) mean curvature,

K = TrW E Ql(F), W the Weingarten operator.
B

curvature form K is then a closed basic l-form and one obtains."

two pairs of mutually adjoint operators and

relative to a suitable metric on (dB = ext. diff. in ~~,

d: = d B - KA, * = star operator in defin~d by the transverse

Riemannian metric). Using the transversally elliptic operator

we can then prove the following theoremes).

Theorem: Let F be a Riemannian foliatio~ with oriented normal

bundle on a closed oriented manifold Mn (q = codim F). ~hen the

(i) F is tense (resp. taut);

following statements are equivalent:

(reep. •isv E n~(F)

for which

where

on Mthere exists a bundle-like metric

d-*v E nq - 1 (F)
K B

(ii)

the invariant transversal volume form of" F;

(iii) there exists a volume form (p dim F)

representing the induced orientation on F such that the

pairing ~(Q,ß) = f (aAß)A wO'
M

a non-degenerate pairing

induces
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i.e., the basic cohomology 8(O~,da) is dual to the basic

twisted cohomology 8· (n~,d~)

Poincare duaZity).

(resp. satisfies

Several applications of this theorem were discussed:

(Observe that

or

in the taut case!)

Hence either

consists of solutions of the 1
st

order PDE

d
K

o -
8 (.S'8,d

K
)

dBf = K f.

(a)•
{f E 0al K = da log f} ;;:lR.

For a tense R~foliation one has therefore:

F taut (=) Hq (n a ' da) == m. (=) [K] = 0 E H1 (n B ' dOs)

relative to a suitable metric on M.

(b) Foliations F with compact leaves are taut <==) F locally

stabie < > F R-foliation (Rummler) .

Thus the base space B (= leaf space) of a locally stable compact

foliation sauisfi~s Poincare duality in the deRham cohomology.

(c) Foliation cycles of a taut R-foliation are homologically

unique up to a constant positive factor. This applies in

particular to the foliation cycles defined by compact leaves.

A conjecture was made concerning a transversal signature Theorem

on taut R-foliations.

                                   
                                                                                                       ©



20

Grzegorz Andrzejczak:

Relations between transverse structure of a foliation and its

characteristic classes

Characteristic classes of a foliation admit natural lifts to

strueture of the foliat~ons and not on the foliation itself.

This is, in short, ,the "philosophy" of connections between char-

cohomology groups of the classifying space of the e~rresponding

(transverse) holonomy groupoid. The litts depend on the transverse

•acteristic classes and the transverse structure.

Theorem 1. If a codimension q ,foliation F on X admits a

cf infinitesimal automorphismstransverse k-field (X
1

, ••• ,Xk )

'such that Fand the fie1ds span a eodimension (q-k) foliation,

say F ' , then the characteristic homomorphism a
F

of F

admits a faetorization

*~B (X).

Corollary. QF annihilates Ker(a(Woq ) ~ B(WOq _k »·
'(Theorem 1 has been p,roved independently by Cordera and Mose ).

Theorem 2. If a foliation F admits a family 6f submersions on

mq
such that the transition maps have (locally) eonstant

J acobi ans, then annihilates ker(H(WO) ~ H(WO }),
q q

WO := wo f(e
1

}
q q

where

In codimension 1 such an F i5 simply a transversally

affine foliation; the G-V class of F is then o.

The proof of the two theorems is based on a deeomposition of
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characteristic classes into "elementary blocks" corresponding to

In the casethe generators c
1

, ••• ,c
q

we
of t~eorem l/have ci = 0

and

and Yj = 0 for

of wo .
q

i,j > q-k, whereas

in the case of theorem 2 the condition imposed on F is simply

the solution to the equation - o.

Remark. The equali~y - 0 holds iff F admits (up to :..1)

•

a transverse volume form.

Jean Prad-ines:

Some universal factorizations of differentiable functors

Smo~th groupo~ds and smooth functors between them occur everywhere

in global Geometry, and their algebraico-differential significance

and structure are much richer than in the very special case of

Lie group morphisms.

For instance smooth functors may describe such various situations

as: a Lie group action, a maximum.or globalizable local trans-

formaiion group in the sense of .Palais, a one-parameter group, a

principal fibration, a cocycle, etc.

Those functors arisi~g from a group (or groupo1d) action will be

called "~".

By describing algebraic properties of functors by means of suitable

diagrams, we are able to give a very natural "smooth" version of

-algebraic concepts such·as faithfulness, functorial equivalence,

etc .•.. , and we can then state: "every faithful functor factorizes
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th r 0 u gh an e q u i val e nc e andan ac to r n, wh ich' we c,a 11 i t s nun i ver 5 a 1
!.

activation H
•

The (purely diagrammatic though rather sophisticated) proof unifies

all the specific constructions (Palais globalization, homogeneous.

spaces, prineipal bundles, Haefliger structures) and of course

covers many new situations; it avoids any loeal triviality

assumption.

This "universal aetivation" is an invariant of the class of the

smooth functor up to an equivalence at the source. On the other

hand, the "transverse structure" of a foliation may be described

by the class of its smooth holonomy groupoid up to functorial

equivalenees, a concept which· turns out to be equivalent to the
recently

nation of equivalence/considered by Skandalis-Haefliger (and

in the spe~ial case of pseudo-groups by Van Est-Haefliger ) in

a maybe less natural way.

Vladimir Oliker:

Hypersurfaces with prescribed Gaussian curvature

n+l
Let ~: E ~m be a given function. Under what conditions

there exists a closed hypersurface F with prescribed

genus and such that the Gauss curvature KF(X} = ~(X), X E F?

This question was raised by S.T. Yau in "Problem S~etionn, Seminar

on Differential Geometry, Annals of Math. St., v. 102 (1982).

a) cp(X} > 0,

The following theorem gives a partial answer to this question:

X E E n + 1 ,{0};Suppose
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c) there exist two numbers R
1

a'nd R
2

, 0 < R
1

< < R2
<co-

such that q>(X) > lxl-n
when Ixl < R

1
and

Q>(X) < Ixl-n when Ixl > R
2

;

d)
Cl

(p
n

q> (u, p) ) < 0, E [R
1

, R
2

], where (u,p)äP - p X

the spherical coordinates in
n+l

are E .

Then there exists a closed convex hypersurface F in E n + 1

such that

unit sphere

i) F is a graph of a radial function p(u) > 0 over a

n n+l
SeE ;

ii) p (u) E Cm+ 1 , Cl (Sn), Cl E (0, 1 ) , and if ~ is arialytic

theh p is analytic;

iii) the Gaussian curvature of F is given by Q>(u,p(u»,

iv) F is unique up to a homothetic transformation.

The proof is based on a study of a nonlinear elliptic ~quation

of Mo nge-Ampere type on Sn, which the function p must satisfy.

Dirk Ferus:

On a conjecture of Osserman on the volume of the generalized

Gauss map

For an immersed n-manifold in mn +p one has two natural Gauss

ma~s YI : unit normal bundle Then

for the (suitably normalized) volumes of the images of YI and

Y2' denoted T (f) (= total absol ute curva ture) and 0 (f) ,

Osserman conjectured in his lecture at th~ ehern Symposium 1979

T(f) ~. o(f)

for any n > 2. The conjecture is true.
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Udo Simon:

Minimal submanifolds of spheres

Conjecture. Let (M,g) be a closed, l-eonn., oriented 2-mani~old

with curvature K, let s ElN. Define the censtants K{S) =
2

s(s+l)

Then

be an isometrie minimal immersion.

K(s+l} < K < K(s}

implies K = K(s)

curvature K.

er K(s+l) K, and (M, p) is a 2-sphere of

Theorem. (a) The conjecture is true for s = '1 (Lawson N = 4,

Simon et al. N arbitrary). (b) The conjectur~ is true for

s = 2 (M. Kozlowski and U. Simon).

The proof extends a method from Coll. Math.· 1979 (K. Benko, U. Simon

et al.).

Theorem. Let M be closed, conn., oriented, dim M = n, let

be a I-param. family of isom. minimal immersions.

Let be the family of corr. metries and be of

constant.curvature. Let j: sN (1) N+l-+m be the cano~ical

embedding and let (t be the mean curvature vector of x
t

= jO~t
forms

with corresponding second fundamental/II(~t)' ~:= ~O. Then

Oll( ~) = 0 ( eS first variation) implies that the family i
t

of

infinitesimal deformations is trivial. The proof uses results

on deformations of Codazzi-tensors cf V. Oliker and U. Simon.

I

j
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Gxosio Stanilbv:

Decomposition of the curvature tensor in the almost 8ermitian

geometry and applications (*)

For the curvature tensor R in the almost Hermitian geometry the

decomposition
10

R = E P. (R)
j =1 )

under the action of the unitary

group holds. The classical Weyl's tensor is decomposed in the

p~ (R) + P 10 ( R) (all components'are orthogonal). It is given an

analogue of this tensor: C*(R) ~ C~(R) + C;(R) + P3(R) + P6(R) +

P7 (R) + Pa (R) + PI0(R) (all components are orthogonal). We have:

PoC(R) = 0 and ..P*oC*(R) = .0 •. C~.(R)l.02' ·C
1

(R)1.01. It is proved

a·theorem for the globality of the Kählerian defect

4 * 4KR(p,E ) - KR(p,E) in the class of QK
2
-manifolds.

46
R

(P,E )

The AHM

with constant type are characterized by Pi(R) = 0, i = 5,6,7,8,

9,10 and the AHM with conformal type by

Berichterstatter: Matthias Hamburg

p. (R) = O~ i = 6,7,8,9,10.
1. .

(*) Der Vortrag hat wegen Zeitmangel nicht stattgefunden.
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