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Tagungsbericht 22/1983
e Differentialgeometrie im GroSen

22.05. bis 28.05.1983

Die Tagung wurde von S.S. Chern (Berkeley) und W. Klingenberg (Bonn)
organisiert, und fand unter der Leitung von Herrn Prof. Klingenberg
statt. Die 44 Teilnehmer kamen aus verschiedenen Landern und vertraten

einen breiten Themenkreis der Differentialgeometrie.

Die Vortrdge prasentierten eine entsprechende Themenvielfalt. Das
Programm bestand aus 3 Vormittagsvortrdgen und 4 halbstindigen Kurz-
vortradgen am Nachmittag. Auch so konnten nicht alle Vortrédge unter-

gebracht werden.

Trotz der Vielfalt der Themen sind einige Schwerpunkte zu nennen:

Riemannsche Geometrie (D. Hulin, Chr. Croke, 2. Har'El, W. Meyer,

P. Buser, W. 2Ziller), Geometrie eingebetteter Untermannigfaltigkeiten
. (R. Walter, U. Pinkall, N. Kuiper, D. Gromoll, D. Ferus, U. Simon),

geschlossene Geoddtische (M. Hamburg, N. Hingston, V. Bangert).

Es gab einen Ergodennéchmittag (P. Eberlein, M. Brin, R. Spatzier,

W. Ballmann) und einen Blitterungsnachmittag (Ph. Tondeur, F. Kamber,

G. Andrzejczak). Aber hiermit sind bei weitem nicht alle Themen auf-

gezdhlt, und es hat auch viele Querverbindungen gegeben.

Der gréBte Teil der Ergebnisse wurde in interessanter und versténd-

licher Weise vorgetragen. Besondere Resonanz fand folgende

Definition (DeTurck): Einen Trick, den man mindestens zweimal an-

wenden kann, nennt man eine Technik.
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Vortragsauszige -

Hermann Karcher:

Relativistic solar system experiments

Experiments which are presently discussed by relativists can very
effectively be described without using local coordinates.

The Schwarzschild geometry describes the exterior of a spherically
symmetric star (or planet). Its curvature operator has an eigenbasis
of decomposable 2-forms from which all eigenvectors and eigenvalues .}
of the Jacobitensors can be obtained. Gravitational redshift is
expressed in terms of timelike variations of nullgeodesics; spacelike
Jacobifields tangent to the lightcones describe the various distance
measurements. This gives the redshift-observed size - observed lumi-
nosity relations (of each re;ativistic model) . fhere are enough Killing
fields to reduce the geodesic equation to one first order equation.
From this the deflection of light and the time delay of light which
passes close to the sun is deduced. The Jacobi equation along the
worldline of a planet on a circular orbit has constant coefficients;

it gives the pefihel advance predicted by relativity. Gyroscopes are
described by parallel vectorfields so that relativistic effects on
gyroscopes circling the sun are immediate. The rotation of the sun
(being small) is treated by linearizing the Kermmetric at zero angular
momentum which gives a symmetric 2-tensorfield solving the linearized
Einstein equations along the Schwarzschild geometry. The first derivative
of this field gives the linearized contribution to the connection, the
second derivative gives the curvature correction caused by the rotation

of the sun; this allows to discuss the influence of this rotation on

the above effects. .

Dennis DeTurck:

Diffeomorphisms with prescribed eigenvalues

Given a diffemorphism of Riemannian manifolds ¢: (M,g) —> (N,h),
one can compute the eigenvalues of the pullback of h ,yith respect
to g. These eigenvalues have physical meaning in the context of
continuum mechanics. We consider the problem, given positve Cuo

functions Al(x)...Xn(x) on M, of showing the existence of a
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diffeomorphism gq that realizes these eigenvalues. As it turns out,
this is a problem that involves a nonlinear hyperbolic system of
partial differential equations. The proof of a result (that such
diffeomorphisms exist provided xi(x) # Aj(x) for i # j and all

involes a Nash-Moser argument.

Another application of this reasoning yields the existence on any
c” three-dimensional Riemannian manifold of an atlas of C°°
coordinate chartssuch that all the coordinate systems are triply
orthogonal (i.e., the metric tensor is diagonal at all points).
Both these results had been known on the analytic categoy - our

©
contribution is the extension to C . (Joint work with Deane Yang)

Dominique Hulin:

Pinching and Betti numbers

Starting from the "sphere and rigidity theorems"” (Berger), restricti
N\

ourself to the real cohomology of the manifold, and then considering

the first nontrivial dimension, we prove the following semicontinuit

theorem:

Theorem: There exists an ¢ >0 such that if (M,g) is a four
dimensional connected and k-pinched riemannian manifold with

k > % - €,then bz(M) < 1; one can take € = 2.5-10-‘4

The main tools that are used in the proof of this theorem are the
‘Weitzenbdck formula for harmonic 2-forms and a Sobolev inequality by

Elias.

Christopher Croke:

A sharp four dimensional isoperimetric inequality

Consider the following conjecture
Conjecture:Let M be a compact subdomain of a complete simply

connected riemannian manifold of nonpositive curvature. Then

vol (am™ > o™ ! a(n-1) vol (m)™™!

x)

ng

Y
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with equality holding if and only if M is isometric to a flat

ball (a(n) represents.the volume of the unit n-sphere).

The conjecture was proved for n = 2 by Beckenbach and. Rado. in
1933. In the talk we show that the conjecture is true for n = 4.

In fact we derive the best known constants c(n) for all n such

that

vol (3M)™ > c(n) vol (m)™~?

although ¢&(n) = nn-lu(n-l) only for n = 4.

Matthias Hamburg:

Bifurcations of closed geodesics

Consider a manifold M and let G(M;I) denote the set of all

one-parmeter families gu of metrics on M, parametrized by
W €1, I € {R,R/Z}. Let €, be a given closed geodesic of 95°
Under some regularity conditions, we have a family cu of closed

geodesics of gu passing through Cq- But there are some unavoi-
dable cases, where this will not be the case. Such geodesics are
bifurcational. To claésify all the typical bifurcations, we consider
_the Po§ncaré maps Pu' which will be symplectic mappings. Then we
give a complete classification of the bifurcations of periodic
points of symplectic mappings Pu' depending on a l~-diemnsional
parameter. This classification will be only up to nondegeneracy
conditions. Next we prove a local perturbation theorem, asserting

that by a small perturbation of the metric around ¢ we can achiev

ol
that Pu satisfies the nondegeneracy conditions needed above. Final

we prove the main

- Theorem: there is a residual set G'(M;I) € G(M;I) such that for
any g, € G'(M;I) and any closed geodesic €, of a guo, ¢y lies
either on a regular family or on a bifurcation familyy which corres-
ponds to a nondegenerate bifurcation of Pu.

Thus, given a generic curve of metrics on M, we can describe all

the: unavoidable local bifurcation phenomena.

Deutsche
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Hans-Christoph Im Hof:

Discrete Reflection Groups in Hyperbolic Geometry

A discrete reflection group in hyperbolic space H® is a discrete

group of isometries generated by the reflections w.r.t.finitely many

hyperplanes pf H". such a group gives rise to a fundamental poly-
hedron in H" whose dihedralangles are natural, i.e., of the form
%, p € N, p > 2. Conversely, a'polyhedron with natural angles

generates a discrete reflection group.

Q In spherical and euclidean geometry, discrete reflection groups

oF

have been classified by Coxeter, but in hyperbolic geometry such a

classification is out of sight. In this talk, I discuss a construc-

tion which gives rise to numerous new examples of hyperbolic finite

volume polyhedra with natural angles.

We start with an orthoscheme (i.e., a simplex (Po,...,Pn)

such that span (Po,...,Pi) 1 span (Pi,...,Pn) for all 1i).

If P and Pn lie inside or on the quadric defining the hyperbolic

o]

structure, then this orthoscheme has finite volume. If Po (or Pn,

or both) lie outside the quadric, we introduce the polar hyperplane

of P_ (or Pn , or both) and so we get a truncated (or doubly truncated)

[o]

orthoscheme of finite volume. In good cases the polyhedra so obtained

have natural dihedral angles. The classification of the good cases
yields: continuous families for n = 2, infinite families for n =
finitely many cases for 4 <n < 9, nothing at all for n > 10 (the

calssification for n = 4 has not yet been completed).

The trigonometry involved is related to the pentagramma mirificum.

Zvi Har'El:

Eigenvalue expansions and volume functions

The talk is concerned with the functions Uy Vs appearing as coef-~-
ficients in Minakshisundaram-Pleijel aéymptotic expansion for the
eigenvalues of the laplacian

-2t

-1
u(g,.) = Ze : ¢i ~ (@mg)y 27 {u°+tu1+t‘2u2+...} (t} —>.0)

and on the Taylor power series representing the volume function of

geodesic balls,

Deutsche
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2. n/2 2 o4 -

e drt) o o B —t -, -
v(t,")= /) (vo 72 V1 Y i V2 R I

We explain the universality of these coefficients, and the independence
of dimension n as a result of the multiplicative properties of the
‘heat kernel U, and of a certain tranform of the surface area function

of geodesic spheres,

o 24 ) _'sﬂﬁz.

- *
§(s,-) = Se 2 %%dt = S e 2 (exp vol)€=
o EE,Mm
- n/2_-n _e—2 -4 _ -6
= (2m) s {vo s vy + s v,-s v, P

We then present a partial solution to the problem of determining .

coefficients of arbitrary order by computinga dominant part of their

expression in terms of basic curvature invariants (t = scalar curvature,
p = Ricci curvature).
1 k  k(k-1 k-
u = (t -%”olzr 2+...)
6 k!
v, = ; (rk+ 4k()5<—1)|p|21k-2+“.)
6 k!

Rolf Walter:

Hypersurfaces with a .constant higher mean curvature

The r-th mean curvature Hr of a hypersurface M in a riemannian
manifold M is (up to a constant factor) the r-th elementary -
symmetric function of the principal:curvatures k;,...K . There are given
several characterisations of complete or compact hypersurfaces in

a space of constamtsectional curvature c, M o= ﬁ(c), which have a
constant fixed H # 0 and fulfill the intrinsic nonstrict lower

bound curvature condition K > max {0,c} . The results generalize
the classical Liebmann/SGB-theorems and also recent results of (e.g.)
Cheng/Yau, Nomizu/Smyth and U. Simon. The proofs are based on certain
elliptic partial differential operatofs generalizing the Laplace/ Beltrami-

operator.
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g T, x T acts isometrically such that the induced metric on M

Jost Eschenburg:

Free Isometric Actions on Compact Lie Groups and Manifolds of

Positive Curvature

Consider the manifold Mg = T2‘\0(3)/T1 where

1 b 1
T, = {ﬁﬁ);aES},T2={(c“;bmes}.

M6 is a manifold since T1 x T2 is acting freely. We showed that

there is a left invariant metric on U(3) with respect to which

1 2 6
has positive sectional curvature. M is simply conaected and not
homotopically equivalent to any known space of positive curvature.
We indicated the proof of the following unigueness theorem:

Let G be a compact simple Lie group with left invariant metric,

which is right invariant w.r. to some maximal torus. Let U be a

compact subgroup of G x G acting .isometrically without fixed péints.

If G/U0 has K > O. and even dimension, then G/U is diffeomorphic

to a homogeneous space of positive curvature or to M6'

Ulrich Pinkall:

Compact conformélly flat hypersurfaces

E. Cartan proved in 1917 that every conformally flat hypersurface
in En+1 , n >4 1locally (i.e. in the neighborhood of each non-
umbillic point) is the envelope of a one-parameter-family of hyper-

spheres. Here we consider the corresponding global problem and study

. compact conformally flat hypersurfaces, In particular we determine

UF

the intrinsic conformal structure of such a hypersurface: Every
compact conformally flat immersed hypersurface in ‘.|En+1 , n >4 is
confomorphic to a Schottky-manifold. A Schottky-nianifold is a
conformally flat manifold constructed in the following way: Start
with a sphere s™ and cut out an eve;n numbei of spherical holes
By,...,B,,B]
9B] with 3B, by means of Moebius transformations £,4 st —> gt

yeeeB
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Patrick Eberlein/Misha Brin/Ralf Spatzier/Werner Ballmann:

Compact Manifolds of Nonpositive Curvature

Problem: To classify compact manifolds of nonpositive sectional

curvature in some reasonable sense.

Question: Given M compact with K < O and no Euclidean factor,
can one find a finite cover M' that splits as a Riemannian product
of locally symmetric spaces and spaces with "rank” = 17?

(There is much evidence that the answer to this question is yes.)

Rank of a manifold: Recall that if Y is a parallel Jacobi vector. .
field perpendicular to a geodesic Yy in any Riemannian manifold N,

then K(Y,&‘)(t) = 0. For a unit vector Vv tangent to a compact

manifold M with K <O .we define r(v) = dimension of the space of

parallel Jacobi vector fields along Yoo Then define r(M) = rank of M

= inf r(v). Moreover call Vv regular if r(v) = r(M). Note that
vE SM .
this definition of rank agrees with the usual definiton for locally

symmetric spaces. Also r(M1 x Mz) = r(M1)+r(M2). Spaces of rank 1
behave geometrically like spaces with K < O but they may look
very flat. For example, any compact surface of genus g 2 2 and any

metric with K < O is rank 1 in the sense defined above.

Results: C) Let {gt} denote the geodesic flow on SM, M compact
with K < 0. Then (g%} is mixing <=> ergodic <=> it has a

dense orbit in SM <> M has rank t. If M has these properties

and M* is homotopically equivalent, then M* also has these
properties.

(::) If M has rank k > 2, then every V € SM is tangent to at least
one k-flat in M(=isometrically immersed, totally geocdesic copy of
IRk). If v 1is regular then v is tangent to exactly one k-flat. .

Remark: These flats even have Weyl chambers. The conjecture is that

any such M must be a product manifold (or finitely covered by one)
‘or a locally symmetric space.

(::) Every immersed k-flat is a limit of immersed k-tori in the case
k > 2 (¢f. the analogous situaton in locally symmetric spaces). In

particular ﬁl(M) contains many different free abelian groups of rank k.

Corollaries: 1) Every compact M with nonpositive sectional curvature
has 'its closed geodesics dense in the space of all geodesics (no

assumption on rank).

2) If N(t) = the number of free homotopy classes of closed curves that

contain a closed geodesic of length < t, then N(t) grows exponenti-
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ally in t.

3) There exists an open{gt)-invmﬁant subset U € SM on which there
exist k-1 continuous?fﬁgegrals if k > 2. In particular A{gt} does not

have a dense orbit if k > 2 (cf. I above).

James Eells:

Twistor constructions of harmonic maps

lst

order constructions. Let N be an oriented Riemannian n<manifold
T s . . .
and Q(N) * N the Grassmannian of oriented 2-planes. The fibre is

Kédhlerian: the complex quadric We define the vector subbundle

Qn-z'
T < TQ(N) as follows: Each gq € Q(N) is anor'd Euclidean plane
in T“(q)N, and therefore a complex line ‘Lq. The space Hq is

the subspace of TqQ(N) spanned by the 1lift of Lq to the horizontal
subspace,and the vertical TZQ(N). Those components have complex
structures Jg and JZ.‘ Def%ne complex structures on II:

a% on o) % on o)

3V on 1Y) -3% on tVomm) .

Theorem (Eells-Salamon CR Paris 1983) The correspondence ¢ ~— ¢
(Gauss lift of ¢

Q(N)
6 l
M —>N )
[

is a Bijection between conformal harmonic maps and Jz—holomogphic

maés a. (Exclude ¢ constant and ¢ vertical).

3 (Lawson's examples)

Examples. N = Sn with n

]

4,6 (Bryant's examples).

wp" (Calabi examples)
N = cp” (Eells~Wood examples)

Deutsche
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Nicolaas Kuiper:

The total (absolute) curvature of knotted surfaces

The total absolute curvature of a compact smooth submanifold

imbedding £: M® » R can be defined by

T(f) = ELu(nLof) (1)

where LE is orthogonal projection into a line L, 'y is the
number of nondegenerate critical points, and EL is the expectatio‘

or mean over all lines thfough (o] e:mN.

For closed curves: t(£) = [|p ds|/=.

For closed surfaces in T : t(f) = [Ix ay|/2m.
By Morse theory T(f) > B = sum of the Betti numbers of M.
For knotted curves <t(f) > 4 (Milnor-Fary) and even T(£f)> 4
(Milnor) (by Langevin-Rosenberg-Meeks-Morton).
For knotted'sﬁéfaces t(f) > B+4, B = 2+2-genus. (2)
w? Meeks and myself examined the possibility «t(f)= g+4 for
knotted surfaces'ip 1R3. For the torus and the surface of genus 2

this is not possible, but for genus > 3 there are examples:

here is one for g = 3

Bl,Hz,H3 connecting K < O-tubes.

332,381 convex surfaces.
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Wolfgang T. Meyer:

Examples of complete manifolds with positive Ricci curvature

We study the geometry and topology of certain real algebraic
varieties and construct a series of manifolds V_ = V_(%,p,q),
Vo = 3V_(2,p,q) with the following properties: For integers

2 > 3, p>q > 0, p-q sufficiently large but bounded and p+q

sufficiently large, vo is a closed (g-1)-connected manifold with
negative Euler number x = 2(2-%) for p,q odd and positive Ricci
curvature. The interior of V_ is an open (g-1)-connected mani-

fold admitting a complete metric with positive Ricci curvature not
having the homotopy type of any closed manifold. In particular 
V_ does not admit a metric of nonnegative sectional cur&ature.
Similar exaﬁples of closed manifolds are expected, but not kndwp
to exist. Candidates are manifolds of type Vo above and certain
complete intersections as for example the cubic in. CP4 having

<y > 0 and X < d.

This is joint work with D. Gromoll .

Detlef Gromoll:

Parallel Gauss maps and rigidity aspects of minimal submanifolds

We reported on joint work with M. DAJCZER. Starting point is the
. . . t

observation that hypersurfaces in euclidean spaces (and spheres)

with constant relative nullity have a representation by the

inverse of the Gauss map on the normal bundle of its image

('Gauss parametrization'). This has many interesting applications.

A main result is: Any complete minimal hypersurface m" in :mn*l
is rigid as minimal submanifold in mF+P for any p > 1, provided
n > 4 and M"  has no euclidean factors ]Rn-2 or.l‘Rn_3. Local
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rigidity as minimal hypersurfaces can be completely described in
terms of 'associated families' of minimal immersions and 'super-
minimality' of their Gauss image, which we define in general for
certain ('circular') Kaehler manifolds in real spaces. Such
Kaehler manifolds play a surprising role also in the congruence
prob;em for isometric submanifolds with.parallel Gauss maps which
we analyze fairly completely. There are various other results in
this context. For example, all Kaehler hypersuffaces of real
euclidean space can be classified essentially in terms of super-

minimal surfaces in spheres.

Nancy Hingston:

Isometry-invariant geodesics on S

Let M be a comp#ct simply connected Riemannian manifold and

A: M > M an isometry. A géodesic c: IR * M is called isometry
invariant if c(t+1) = Ac(t). Such geodesics were firét studied
by K. Grove. We prove:

Let A: S2 > S2 be an orientation preserving diffeomorphism

of finite order # 2. Then for a generic A-invariant metric

on ,52 there will be infinitely many A-invariant geodesics.

Note that if we take the standard metric on 52 and if A 1is a
rotation, then there is only 1 nontrivial A-invariant geodesic:

the equator.

The proof consists of two steps. First the Birkhoff-Lewis fixed
point theorem implies the existence of infinitely many for a
generic metric with an elliptic A-invariant geodesic. Next we use

the equivariant Morse theory to conclude that if all A-invariant

Deutsche
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geodesics are hyperbolic, then there must be infinitely many.

William H. Meeks III:

Classification of finite group actions on compact 3-dimensional

manifolds

(Joint work with S.T. Yau, Peter Scott, Leon Simons)

The problem is related to a conjecture of Thurston which states

that every prime compact 3-manifold admits a geometric structure

and that finite group actions are conjugate to a group of isometries

of the'geometric structure. Thié is a rather loose statement
in that the manifold may break up into isopetric pieces but the
statement gives the idea. Methods of proof that deal with this
question use minimal surface theory.and hyperbolic geometry.
Particular questions which are solved are

(1) Finite group actions on :m3 are conjugate to linear

actions
(2) if M has a geometric structure and M is not based on
3 3

S or H~ ., then every finite group action is "geometric"”

Ernst Ruh:

An integrability condition for simple Lie groups

(Joint work with Min-0o)

The Maurer-Cartan equation, an+[w,w] = O, is the weil-known

integrability condition for a local Lie group structure. Pinching
theorems deal with the following question: What can be said if the
integrability condition Q = dw+[w,w] = O is satisfied only up to

a certain degree, i.e., ||R]|] is small in a suitable norm? Since

Forschungsgemeinschaft
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M on which it is defined, its assumption is rather restrictive.
Another possibility to define a Lie algebra structure in every

tangent space of M is simply to define a tensor field

T: ™M @ TM >+ TM which restricts to a Lie algebra bracket in each

tangent space. In 1965 Nomizu asked for.; the integrability |
condition for T. In case the Lie algebra A used as model is !
simple the answer is as follows: T defines a pseudo-riemannian |
metric <,>. Let D denote ist Levi-Civita connection, and define. !

ar(X,Y,z) = (DxT)(Y,z) + (DYT)(ZX) + (DZT)(X,Y). i

Theorem 1. If 4 1is simple, rank 4 2 2, then 4T = 0 if and.

only if either M is locally isometric to the Lie group G with

Lie algebra 4 ., Or M 1is flat.

The proof relies on the following version of Berger's theorem on

holonomy groups.

satisfies [x,B8(Y,z)]+ [¥,B8(2,x)] + [2,8(X,¥)] = 0 (Bianchi

equation), then B8 = Al,], where X ER and@ [,] = Lie bracket
of @4 .

In case « is compact and simple, Theorem 2 is a special case ‘

|
|
|
I
|
|
|
|
|
Theorem 2. If 4 is simple, rank 4 > 2, and B: grg >4
of Simons' result on holonomy systems.

Karsten Grove:

Group actions, Morse théory and the double mapping cyclinder

A 1l-connected manifold M is called Q-elliptic provided

dim n*(M) ® 9 < ». The following gluing construction leads to a
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new class of Q-elliptic manifolds:

Theorem (Grove~Halperin) If M ©can be written as M =

DO(A) U Dl(B), where DO(A) and DI(B) are disc bundles with

S
common sphere bundle S, then M is Q-elliptic iff S is

Q-elliptic.

Corollary All l-connected manifolds of cohomogeniety 1 are
Q-elliptic.

A proof of this can be given by applying Morse theory to the

~relative loop space f(M,S). It is possible to give a complete

Deutsche

list of the possible Q-homotopy types of §(M,S) that occur in"
the more general setting of double mapping cylinders M = st/fo,fl
with the (rational) homotopy fibers of fo: S +'A, flz S + B

being spheres (for general CW-type spaces). An amusing consequence
of the above is that the complement of a non-Q-elliptic submanifold
N of a Q-elliptic manifold M does not admit a structure of a

disc bundle, in particular it cannot admit a complete metric of

nonnegative sectional curvature.

Victor Bangert:

Closed geodesics on manifolds with nl = Z

Let M be a compact Riemannian manifold with fundamental group
nl(M) = z. We prove that the number n(R) of geometrically
distinct closed geodesics of length < & grows like the prime

numbers, so

lim inf(n(l)l—o%—z ) > o.

2>
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The proof consists in reducing the problem first to a topological

and then to an algebraic problem which finally can be solved.

This is joint work with N. Hingston.

Peter Buser:

Almost hegative curvature on S3

This is an example by Gromov of.a smooth Riemannian metric on the

3-sphere with diameter = 1 and with the positive upper curvature

bound arbitrarily close to zero. The example is obtained by

replacing small tubular neighbourhoods of great circles on

standard S3 with suitable copies of §2X51, where §2

the

is the

two-sphere with a small circular disc removed. The procedure is

uniquely restricted to three-manifolds. It is not clear,

: X n
such metrics also exist on S for n > 4.

Wolfgang Ziller:

Pinching Theorems for the Diameter

A report was given on some recent results of D. Brittain.

'Ric be the average sectional curvature. Then we have:

whether

Let

‘ n
Theorem A: There exists an €e(n, max K, vol) > O such that M '

with Ric > 1, d(M) > 7-¢ is homeomorphic to Sn.
Theorem B: There exists an €(n, max K) > O such that M*
K > 1 and d(M) > m-e is diffeomorphic to s".
These results were motivated by:
Bonnet-Myers: Ric > 1 =>d(M) < 7
‘Cheng. (75) : Ric > 1, d(M) = 7 => M isometric to S"(K =

-Forschungsgemeinschaft
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Grove-Shiohama: (75), K > 1, d4(M) > w/2 =>M homeomorphic to s?
Itokawa-Shiohama: (82), ex. ¢€(n, min K) > O s.t. Ric > 1,

vol(M") > vol(s™) (1-e)=> M homeomorphic to s".

Philippe Tondeur :

Foliations and metrics

e A foliation ¥ on a Riemannian manifold M is called harmonic.;,

if all leaves of .F are minim;l submanifolds of M. The terminology
is motivated by the fact that thié geometric property is character-
ized by the harmonicity of the projection 7w: TM +‘Q to the

normal bundle Q, viewed as a Q-valued 1-form. Riemannian foliation§
of this type on a compact and oriented manifold are further ‘
characterized as the critical points of an energy functional on the
space of foliations. In this talk we discuss examples and

geometric properties of such foliations (joint work.with F. Kamber).

Franz Kamber:

Duality theorems for Riemannian foliations

(joint work with Ph. Tondeur)

. About 25 years ago, B.L. Réinhart (AJM 1959) asserted that the

UF

basic cémplex QQ(F) of a Riemannian foliation F on a closed

manifold with oriented normal bundle satisfies Poincaré duality,

i.e., u’(nB(F)) = aq"(nB(F)), q = codim F. In 1981, J. Carriére
produced a counterexample to this assertion, namely a Riemannian
flow F transverse to the fibre of a fibration ﬂz -+ M3 hd S1

satisfying RQ(QB(F))'E:R, BZ(QB(F)) = 0, g = 2. On the other handg,

Deutsche )
Forschungsgemeinschaf C)é§> |



UF

18

the flow F in the above example is not geometrically taut, i.e.,

M3 does not admit a metric for which the leaves of F become

minimally immersed submanifolds of M3 (the flow is not geodesible).

It turns out that tautness of F is precisely the condition

needed to establish Poincaré duality for H(QB(P)).

More generally we say that a foliation F is geometrically tense

if there exists a Riemannian metric on M for which the leaves

of F Dbecome submanifolds of constant (= parallel) mean curvature,

1
i.e., K = Trw € QB(F), W the Weingarten operator. The mean

curvature form « is then a closed basic 1-form and one obtains.

B - *
two pairs of mutually adjoint operators (dB,dK ) and (dK'dB)
relative to a suitable metric on ﬂé(F) (dg = ext. diff. in Qé

’

dK = dB - KA, * = star operator in ﬂé defined by the transverse

Riemannian metric). Using the transversally elliptic operator
AB = dBd;* + d;*dB, we can then prove the following theorem(s).

Theorem: Let F 'be a Riemannian foliation with oriented normal
bundle on a closed oriented manifold M" (¢ = codim F). Then the
follbwing statements are equivalenﬁ:

(i) F is tense (resp. taut);

(ii) there exists a bundle-like metric on M for which ' .

-* q-1 : _ " od ;
dK v € QB (F) (resp. ABv = 0), where v € nB(F) is

the invariant transversal volume form of: - F;

(iii) there exists a volume form wo € PAPL(F) (p = dim F)
representing the inﬁuced orientation on F such that the
pairing ¥(a,8) = [ (aaBdaw,, o €Qp, B € 2 "  induces

M
a non-degenerate pairing

Deutsche
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r . - . -
¥, B (95,d)) ® BY I(QB,dK) +R, r =0,...,4;

i.e., the basic cohomology H(Qé,dB) is dual to the basic
twisted cohomology E'(Qé,d;) (resp. H(né,dB) satisfies
Poincaré duality).
(Observe that d; = dB in the taut case!)
Several applications of this theorem were discussed:

’ (a) Ho(.ﬂB,d;) consists of solutions of the 1St order PDE

[e] - 0 -
dBf = kf. Hence either H (QB,dK) =0 or H (QB,dK)

= {fEﬂB|K=dB log f} = mR.

For a tense R-foliation one has therefore:
q = .
(= = — = A
F taut < H (2,,d) *R & («] ° € ' (85.dp)
relative to a suitable metric on M.
(b) Foliations F with compact leaves are taut <(=> F locally
stable <=> F R-foliation (Rummler).

Thus the base-space B (= leaf space) of a locally stable compact

foliation satisfies Poincaré duality in the deRham cohomology.

(c) Fo;iation cycles of a taut R-foliation are homologically
unique up to a constant positive factor. This applies in

particular to the foliation cycles defined by compact leaves.

’ A conjecture was made concerning a transversal signature Theorem

on taut R-foliations.
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Grzegorz Andrzejczak:

Relations between transverse structure of a feoliation and its

characteristic classes

Characteristic classes of a foliation admit natural lifts to
cohomology groups of the classifying space of the cqrresponding
(transverse) holonomy groupoid. The lifts depend on the transverse
structure oé the foliations and not on the foliation itself.

This is, in short, the "philosophy"-of connectiéns between char-

acteristic classes and the transverse structure.

Theorem 1. If a codimension gq foliation F on X admits a
transverse k-field (xl;...,xk) of infinitesimal automorphisms
"such that F and the fields Span a‘codimension (g-k) foliation,
say F', then the characteristic homomorphisﬁ aF of F

admits a factorization

a
FI
*
H(WO H(WO —r H X).
(WO ) + H(WO_ ) (x)

)) .

Corollary. uF annihilates §er(a(woq) > B(woq_k

(Theorem 1 has been proved independently by Cordero and Mose ).

Theorem 2. If a foliation F admits a family of submersions on

q

R such that the transition maps have (locally) constant

Jacobians, then an annihilates ker(a(woq) - H(ﬁoq)), where

WO _:= WO _/(c,)
a q/(1
Remark. In codimension 1 such an F is simply a transversally

affine foliation; the G-V class of F is then O.

The proof of the two theorems is based on a decomposition of

Deutsche
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characteristic classes into "elementary blocks" corresponding to
the generator:e cl,...,cq and yl,y3,... of qu. In the case
of theorem 1 /have c; = O and yj =0 for i,j > gq-k, whereas

in the case of theorem 2 the condition imposed on F is simply

the solution to the equation ¢, = O.

. Remark. The equali;y y‘ =0 holdsAiff F admits (up to il)

" a transverse volume form.

Jean Pradines:

Some universal factorizations of differentiable functors

|

|

‘ Smooth groupoids and smooth functors between them occur everywhere

‘ in global Geométry, and their algebraico-differential significance
and structure are much richer than in the very special case of

Lie group morphisms.

For instance smooth functors may describe such various situations
as: a Lie group action, a maximum or globalizable local trans-
‘formation group in the sense of Palais, a one-parameter group, a

principal fibration, a cocycle, etc.

. - Those functors arising from a group (or groupoid) action will be

called "actors".

By describing algebraic properties of functors by means of suitable
diagrams, we are able to give a very natural "smooth"™ version of
‘algebraic concepts such-as faithfulness, functorial equivalence,

etc...., and we can then state: "every faithful functor factorizes

Deutsche . .
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through an equivalence and an actor", which we call its "universal
" ———

activation™.

The (purely diagrammatic fhough rather sophisticated) proof unifies
all the specific constructions (Palais globalization, homogeneous
spaces, principal bundles, Haefliger structures) and of course

covers many new situations; it avoids any local triviality

assumption. ’

This "universal activation" is an invariant of the class of the

smooth functor up to an equivalence at the source. On the other

hand, the "transverse structure" of a foliation may be described’

by the class of its smooth holonomy groupoid up to functorial

equivalences, a concept which: turns out to be equivalent to the
recently

notion of equivalence/considered by Skandalis-Haefliger (and

in the special case of pseudo-groups by Van Est-Haefliger ) in

a maybe less natural way.

Vladimir Oliker:

Hypersurfaces with prescribed Gaussian curvature

+
Let ©: e” ! + IR be a given function. Under what conditions

thefe exists a closed hypersurface F in En+1 with prescribed ‘
genus and such that the Gauss curvature KF(X) = ¢(X), X € F?
This question was raised by S.T. Yau in "Problem Section", Seminar
on Differential Geometry, Annals of Math. St., v. 102 (1982).
The following theorem gives a partial Enswer to this question:
n+1 V

Suppose a) @(X) > 0, X € E No};

b) o(x) € ™™ N(oh), m > 3;

o0&



UFG

Deutsche

23

c) there exist two numbers R and R

1 2’ 1 2
such that ©(x) > |x]™™ when |x| < r, and
Ce(X) < le—n when |x| > R,
t) n
a) 35 (P elu,p)) 20, p E [R,R,], where X = (u,p)

. . n+
are the spherical coordinates in E 1.

n+
Then there exists a closed convex hypersurface F in E !

such that

i) F is a graph of a radial function p(u) > O over a

+
unit sphere Sn c En 1;

ii) p(u) € cBH1eC

(s™), « € (0,1), and if ¢ is analytic
then p 1is analytic;

iii) the Gaussian curvature of F 1is given by o(u,p(u)),

iv) F is unique up to a homothetic transformation.

The proof is based on a study of a nonlinear elliptic equation

of Monge-Ampére type on Sn - which the function p must satisfy.

Dirk Ferus:
On a conjecture of Osserman on the volume of the generalized

Gauss map

p

i +
For an immersed n-manifold in mn one has two natural Gauss

n+p-1

maps  v,: unit normal bundle -+ S P Yyt M > GpﬂRn+p)-

Then

for the (suitably normalize§) volumes of the images of Yl and

Yo denoted 1(f) (= total absolute curvature) and o(f),

Osserman conjectured in his lecture a£ the Chern Symposium 1979
T(f) < o(f)

for any n > 2. The conjecture is true.
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Udo Simon:

Minimal submanifolds of spheres

Conjecture. Let (M,g) be a closed, l-conn., oriented 2-manifold
with curvature K, let s € IN. Define the constants K(s) =

2 - N ) L : .
T . H g -
s(s+1) Let X%: M s (1) be an isometric minimal immersion

Then

K(s+1) < K < K(s)

implies K = K(s) or K(s+1) = K, and (M,p) is a 2-sphere of

curvature K.

Theorem. (a) The conjécture is true for s = 1 (Lawson N = 4,
Simon et al. N arbitrary). (b) The conjecture is true for

s = 2 (M. Kozlowski and U. Simon).

The proof extends a method from Coll. Math.- 1979 (K. Benko, U. Simon

et al.).

Theorem. Let M be closed, conn., oriented, dim M = n, let

it: M > sN(l) be a l-param. family of isom. minimal immersions.

Let gt be the family of corr. metrics and g:= be of

%
: N N+1 ) .
constant . curvature. Let 3j: s (1) + IR be the canonical
embedding and let § be the mean curvature vector of x. = Jek
t forms

with corresponding second fundamental/II(Et), E:= & . Then

o

SINE) = 0 (8 first variation) implies that the family it of

infinitesimal deformations is trivial. The proof uses results

on deformations of Codazzi-tensors of V. Oliker and U. Simon.
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Grosio Stanilov:

Decomposition of the curvature tensor in the almost Hermitian

geometry and applications (%)

For the curvature tensor R in the almost Hermitian geometry the

10

decomposition R = [ pj(R) under the action of the unitary
j=1

group holds. The classical Weyl's tensor is decomposed in the

following way: C(R) = C(R) + C,(R) + Py(R) + pg(R) + p,(R) +
pg(R) + pio(R) (all components are orthogonal). It is given an
analogue of this tensor: C*(R) = C:(R) + C;(R) + PB(R) + pG(R) +
p7(R) + pe(R) + plo(R) (all cpmponents are orthogonal). We have:

Poc(R) = 0 ana pYec*(r) =.0.. cl(R)1o,, €, (R)10o It is proved

1"
a theorem for the globality of the Kidhlerian defect AR(p,E4) =
KR(prE4) - K;(p,E4) in the class of sz-manifolds. The AHM

with constant type are characterized by pi(R) =0, i =5,6,7,8,

9,10 and the AHM with conformal type by p; (R) = o, i =6,7,8,9,10.

Berichterstatter: Matthias Hamburg

(#) Der Vortrag hat wegen Zeitmangel nicht stattgefunden.
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