MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht25/1983

Spectral Theory of Ordinary Differential Operators

```
June 5 - June 11, 1983
```

The conference was held under the head of Professor H.D. NieBen (Essen) and Professor A. Schneider (Dortmund). The following subjects from the field of spectral theory of ordinary differential operators were primarily dealt with: expansion theorems, extensions of differential operators, asymptotic methods, criteria for the determination of the deficiency indices and the nature of the spectrum.

There has been an animated exchange of ideas not only among the partcipants of this conference, but also with those of the meeting: Special functions and differential expressions in the complex plane which took place simultaneously. Two common lectures were also organized which were of interest to both groups. Nevertheless, the separation into two meetings turned out to be very efficient. since the setting of the problems and the practical methods are developing into different directions.

Abstracts
H.E. Benzinger

Spectral Theory of Ordinary Differential Operators
Differential operators defined by Birkhoff regular boundary conditions generate eigenfunction systems with convergence properties similar to those of Fourier series. The definition of Birkhoff regularity has no intrinsic spectral theoretic content. We show that the resolvent.
operators of Birkhoff regular operators with simple spectrum are wellbounded operators. This implies the existence of a functional calculus and an integration theory with respect to a family of projections. This can be applied to the study of semigroups generated by even order differential operators.
B.L.J. Braaksma

Asymptotics and Deficiency Indices for Certain Pairs of Differential

Expressions

Let $M=\prod_{1}^{n}\left(x D-a_{j}\right)-\mu x_{1}^{\alpha} \prod_{1}^{m}\left(x D-b_{j}\right), \quad D=\frac{d}{d x}, 0 \leq m<n$.
Solutions of $M y=0$ have been studied by Meijer, Kohno and Ohkohchi who solve the connection problem in the general case except for certain exceptional cases. We give an outline of the method of Meijer and show how the restrictions can be removed. Next we consider perturbations of M with the property that their solutions have the same behavior as $x \rightarrow+\infty$ as those of M. This is used to determine deficiency indices related to $L_{1} y=\lambda L_{2} y$ where L_{1}, L_{2} are formally symmetric, one of then is positive and L_{1}, L_{2} are perturbations of operators $x^{\gamma_{M}}, x^{\varepsilon} M_{2}$ with M_{1} and M_{2} of the same type as M.

R.C. Brown

On a Von Neumann Factorization for Some Selfadjoint Differential Operators

Let L, L_{0} be the maximal and minimal operators induced in the space $L_{\omega}^{2}(a, b),-\infty<a<b \leq \infty$ by the quasiderivative expression $\omega^{-1} y^{[2 n]}$ where $\omega, p_{0}^{-1}, p_{1}, \ldots, p_{n}$ are locally integrable, $\omega>0, p_{0}, \ldots, p_{n}$ are nonnegative and additionally $p_{n} \geq \epsilon>0$ on $[a, b)$. Let H be $X_{i=0}^{n} L^{2}(a, b)$ with the usual inner product. Define $L: L_{\omega}^{2}(a, b) \rightarrow H$ by $L y=\left(p_{0}^{1 / 2} y^{(i v)} \ldots p_{n}^{1 / 2} y\right)^{t}$. Let L_{o}^{\prime} be its "preminimal" restriction. We compute $L^{x} L_{o}^{\prime x}$ and $L_{0}^{\prime x x}=I_{0}^{\prime}:=L_{0}$. We show that $L_{0}^{x} L_{0} L^{x} L$ are selfadjoint restrictions of

L defined on cores of L_{0} and L and explicitly determine their structure. For example $D\left(L_{o}^{x} L_{o}\right)=\left\{y \in D(L): y^{[i]}(a)=0\right.$ $\left.0 \leq i<n ; \int_{a}^{b} \sum_{i=0}^{n} p_{i}\left|y^{(n-i)}\right|^{2}<0 \quad D(f, \bar{y})\left(b^{-}\right)=0, \quad \forall f \in D\left(L_{0}\right)\right\}$. These operators are the Friedrich extensions representing the forms $\mathbb{U} L_{o} Y^{\mathbb{Z}}$. $L_{Y} \mathbb{}^{2}$; from them the Dirichlet inequalities follow. The apparatus is also pertinent to the Dirichlet index problem - the statement that the index is minimal (the "limit pointness" of L_{o})i.e. $\operatorname{dim} D(L) / D\left(L_{0}\right)=n$. The index can also be shown to be invariant under the class of t bounded perturbations of the form. We also obtain that the index of a class of 4 th order operators is "2" under hypothesis complementing those of T.T. Read. Finally (using a somewhat different apparatus) we sketch how the theory goes over to the negative coefficient case and discuss the "dual Dirichlet inequalities" which appear to be new - e.g. on $[1, \infty), n=1$

$$
\begin{gathered}
\int_{1}^{d}\left|-\left(p_{o}^{1 / 2} \zeta_{1}\right)^{\prime}+p_{1}^{1 / 2} \zeta_{2}\right|^{2} \geq u_{o}\left|\sup \left[\zeta_{1} p_{o}^{1 / 2} y^{\prime}+\zeta_{2} p_{1}^{1 / 2} y\right]\right|^{2} \\
\left\{y: \int p_{0}\left|y^{\prime}\right|^{2}+p_{1}|y|^{2}=1\right\} \\
p_{0} y^{\prime}(a)=0
\end{gathered}
$$

and $u_{o}=\inf \operatorname{spec}\left\{L^{x} L\right\}$
A. Dijksma and H. de Snoo

Selfadjoint Extensions of Symmetric Subspaces in Pontrjagin Spaces

Part I and II

A. Dijksma, part I: Let S be a symmetric subspace in the Hilbert space (H,(,)). Let A be a selfadioint subspace in the Hilbert space ($K,[$,$]). Then (A, K$) is called a selfadjoint extension of (S, H) if $H \subset K,\left.[]\right|_{,H \times H}=($,$) and S \subset A$. All selfadjoint extensions of (S, H) can be characterized by means of generalized resolvents of S or by socalled families of Štraus subspace-extensions of S in H. In the lecture we will discuss their properties and apply the results to ordinary differential operators. The results can be found partly in McKelvey (1965), Dijksma and de Snoo
(1974), Langer and Textorius (1977). In cooperation with Langer (Dresden) de Snoo and I are working on the case where K is replaced by Pontrjagin spaces. A report of these results will be given in the part II-lecture by H. de Snoo.
H. de Snoo, part II: Let H be a Hilbertspace with inner product $($,$) and let S \subset S^{*} \subset H^{2}$ be a symmetric subspace. Let K_{k} be a Pontrjagin space with $k(0 \leq k<\infty)$ negative squares and with inner product $[$,$] and let A=A^{+}$be a selfadjoint subspace in K_{k}^{2}. Then A is a selfadjoint extension of S if H is an orthocomplemented subspace of $K_{k},[]=,($,$) on H$ and $S \subset A$. If the resolvent set of A is non-empty, then we can characterize such extensions in terms of operators or subspaces in H^{2}. The positivity conditions which are required for the case $k=0$. now have to be replaced by conditions, that require certain associated kernels to have k negative squares. Classes of analogous kernels have been studied by M.G. Krein and H. Langer. We characterize the associated boundary conditions, when the deficiency indices of S are finite, and we show what this implies for differential operators. In part I by A. Dijksma the case $k=0$ was described. The results in part II will appear in a joint paper with A. Dijksma and H. Langer.
M.S.P. Eastham

A Property of Matrices Arising in the Asymptotic Theory of HigherOrder Quasi•Differential Equations

Suppose that a higher-order formally self-adjoint differential ex-* pression is written in quasi-differential form as $Y^{\prime}=A Y$. In the asymptotic theory (as $x \rightarrow \infty$), the first step is to diagonalise $A: A=T^{-1} \Lambda T$. Then $Y=T Z$ gives $Z^{\prime}=\left(\Lambda-T^{-1} T^{\prime}\right) Z$. In estimating the size of $T^{-1} T^{\prime}$, the expression $w^{t} v(=m)$ is encountered, where v is an eigenvector of A, w is the vector obtained from v by writing the components in reverse order, and t denotes the transpose. It is shown that an explicit form for m can be obtained for a class of matrices A which includes those arisinq in quasi-derivatives, and the significance of the expression m is discussed.

W.D. Evans

Maximal Accretive Extensions of Ordinary Differential Operators

Let $\tau u=-\left(p u^{\prime}\right)^{\prime}+q u$ on $[a, b),-\infty<a<b \leq \infty$ where the coefficients p, q are real-valued and satisfy the conditions
i) $p(x)>0,1 / p \in L_{10 c}^{1}[a, b)$,
ii) $q(x) \geq \delta>0$ and $q \in L_{l o c}^{1}(a, b)$.

The expression τ is therefore regular $a t a$ and $a t b$ is is assumed to be singular and to satisfy both the Strong-Limit-Point and the Dirichlet conditions. In other words for $\phi \in \Delta$ where

$$
\Delta:=\left\{\phi: \phi \text { and } \phi^{[1]]}:=p \phi^{\prime} \in A C_{l o c}[a, b), \phi, \tau \phi \in L^{2}(a, b)\right\}
$$

we have $\lim _{x \rightarrow b} \phi(x) \phi^{[1]}(x)=0$ and $p^{1 / 2} \phi^{\prime}, q^{1 / 2} \phi \epsilon^{2}(a, b)$. Let $T:=\tau \mid \Delta$
and $T: T l$ and $T_{0}: \stackrel{X \rightarrow b_{0}}{=} \|_{\Delta_{0}}$ where

$$
\Delta_{0}:=\left\{\psi \in \Delta: \psi(a)=\psi^{[1]}(a)=0\right\}
$$

Then T_{0} is closed and densely defined in $L^{2}(a, b)$ and furthermore $T_{o}^{*}=T$. Also, on setting

$$
\mathrm{D}[u, v]:=\int_{a}^{b} p u^{\prime} \overline{v^{\prime}}+q u \bar{v}, \quad u, v \in \Delta
$$

we get that

$$
\begin{aligned}
\left(T_{0} u, u\right) & =D[u, u] \\
& \geq \delta\|u\|^{2}
\end{aligned}
$$

and hence T_{o} is accretive. The subject of the talk is the characterization of all the maximal accretive extensions of T_{0}. This is achieved by means of the Phillips theory in which the problem is related to obtaining the maximail negative subspaces of the so-called "boundary space". The result obtained is the following
theorem 1 An operator S is a maximal accretive extension of T_{0} if and only if its adjoint S^{*} is the restriction of T to

$$
D\left(S^{*}\right):=\left\{u \in D(T)=\Delta:^{\prime} \bar{\beta} u(a)+\bar{\alpha} u^{[1]}(a)+2 D[u, \phi]=0\right\}
$$

for some $\phi \in H_{1}$, the completion of Δ with respect to $D^{1 / 2}[\cdot \cdot, \cdot]$, and $\alpha, \beta \in \mathbb{C}$ which satisfy

$$
r e(\alpha \bar{\beta})+D[\phi, \phi] \leq 0
$$

On using a result of R.C. Brown and A. Krall the operators S in Theorem 1 are given explicitly by
Theorem 2 For some $\lambda \in \mathbb{C}, S$ is the restriction of the expression σ defined by

$$
\sigma u=-\left\{(u-2 \lambda \phi)^{[1]}+2 \lambda \cdot \int_{a}^{t} q \phi\right\}^{\prime}+q u
$$

to the space

$$
\begin{aligned}
D(S)=\{u: & u-2 \lambda \phi \text { and }(u-2 \lambda \phi)^{[1]}+2 \lambda \int_{a}^{t} q \phi \in A C_{1 o c}[a, b), u, \sigma u \in L^{2}(a, b) \\
& \text { and } \left.u(a+)=\lambda \alpha,(u-2 \lambda \phi)^{[1]}(a+)=-\lambda \beta\right\}
\end{aligned}
$$

There is an analogous result when $\tau u=\sum_{i=0}^{n}(-1)^{(i)}\left[p_{n-i} u^{(i)}\right]^{(i)}$ with p_{n-j} real.
W. N. Everitt

Asymptotic Form of the Titchmarsh-Weyl m-Coefficient
For the differential equation (in general this is a quasi-differential equation in the sense of Shin-Zettl)

$$
\begin{equation*}
-\left(p y^{\prime}\right)^{\prime}+q y=\lambda w y \text { on }[a, b) \tag{*}
\end{equation*}
$$

with (i) $-\infty<a<b \leq \infty$
(ii) $p, q, w:[a, b) \rightarrow R$
(iii) $\mathrm{p}^{-1}, \mathrm{q}, \mathrm{w} \in \mathrm{L}_{\mathrm{loc}}[\mathrm{a}, \mathrm{b})$
(iv) $w \geq 0$ on $[a, b)$, and
(v) $\lambda \in C$,
let the solutions of (*) $\theta, \varphi:[a, b) \times C \rightarrow C$ be determined by the initial conditions
$\theta(a, \lambda)=0,\left(p \theta^{\prime}\right)(a, \lambda)=1 \quad \varphi(a, \lambda)=-1,\left(p \varphi^{\prime}\right)(a, \lambda)=0$.
The Titchmarsh-Weyl m-coefficient $m=\left(m_{+}, m_{-}\right)$has the properties
$m_{ \pm}: C_{ \pm} \rightarrow C_{ \pm}, m_{ \pm} \in H\left(C_{ \pm}\right)$and

$$
\int_{a}^{b} w\left|\theta+m_{ \pm} \varphi\right|^{2}=i m\left[m_{ \pm}(\lambda)\right] / i m[\lambda] \quad\left(\lambda \in c_{ \pm}\right) .
$$

The asymptotic form of the m-coefficient, for large values of $|\lambda|$, is to be considered, in the lecture, and compared with the asymptotic form of the spectral function p of m in the Herglotz-Nevanlinna-PickRiesz integral representation.
J. Fleckinger

Eigenvalues of a Non Definite Elliptic Problem
We study here the eigenvalues and eigenfunctions of

$$
\left\{\begin{array}{l}
-\Delta u+c u=\lambda g u . \text { on } \Omega \subset \mathbb{R}^{n} \quad \text { (bounded) } \\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

c may be negative (and $-\Delta+c$ is not necessarily positive)
g changes sign.

G. Freiling

On the Completeness of the System of Eigenfunctions of Irregular

```
Eigenvalue Problems in L L2 [0,1]
```

We consider several special cases of eigenvalue problems on the segment $[0,1]$ of the form

$$
\begin{align*}
& \ell(y, \lambda)=y^{(n)}+\sum_{v=1}^{n} p_{v}(x, \lambda) y^{(n-v)}=0 \tag{1}\\
& U_{j}(y, \lambda)=\sum_{v=0}^{n-1}\left[\alpha_{j v}(\lambda) y^{(\nu)}(0)+\beta_{j v}(\lambda) y^{(\nu)}(1)\right]=0,1 \leq j \leq n, \tag{2}
\end{align*}
$$

where $p_{\nu}(x, \lambda)=\sum_{k=0}^{\nu} p_{\nu k}(x) \lambda^{k}$ and the coefficients $\alpha_{j v}(\lambda)$ and $\beta_{j v}(\lambda)$ are certain polynomials in λ. Extending. results of Eberhard (Math. Z. 146), Shkalikov (Funkts. Anal. Prilosz. 10) and Vagabov (Sov. Mat. Dokl. 23) we show that the system of eigen- and associated functions of certain classes of irregular eigenvalue problems of type (1), (2) is complete in $L_{2}[0,1]$.
Examples show that the assumptions used in the proof cannot be weakened.

H. Frentzen

A Limit-Point Criterion for Symmetric and J-Symmetric Second-Order
Differential Expressions
On $I=[a, b),-\infty<a<b \leq \infty$, consider $M y=R^{-1}\left(-\left(P y^{\prime}\right)^{\prime}+Q y\right)$ and assume that $P, Q, A: I \rightarrow M_{S}$ (complex $s * s$ matrices) are measurable,
$P(t)$ is invertible, $A(t)>0$ a.e. on $I, P^{-1}, Q, A^{2} \in L_{10 c}^{1}(I), P^{+}=P$, $Q^{+}=Q, R=A^{+} A$ where either + denotes the complex conjugate transpose or the transpose. In the first case the minimal operator T_{o} associated to M in $H=\left\{y: I \rightarrow \mathbb{C}^{S} I y^{*} A^{2} y \in L^{1}(\dot{I})\right\}$ is symmetric, in the second case T_{0} is J-symmetric where $J y=A^{-1} \overline{A Y}$ is a conjugation in H.
Theorem. Assume that $K>0$ and $0 \leq c<1$ are constants, $W, B, U, Q_{j}: I \rightarrow M_{S^{\prime}}$ $s_{j}: I \rightarrow \mathbb{R}(1 \leq j \leq m), r, v: I \rightarrow[0, \infty)$ are measurable and $r, B \in L_{l o c}^{1}(I)$, $s_{j}, Q_{j}, V^{2} P * W \in A C_{l O C}(I), U>0, U^{2}=\operatorname{Re} W, B \geq 0, A B=B A, Q_{j}(t)$ are hermitian, $\left.r \in L^{1}(I), r\left|\left(A U^{+}\right)^{-1}\right| \leq K v, r v \mid A_{c}^{-1} p * W U^{-1} I \leq K(1+\}_{a}^{t} r\right)$ where $A_{C}=\left(B^{C} A^{2(1-C)}+A^{2}\right)^{1 / 2},\left|A_{C}^{-1}\left(v^{2} P^{*} W\right)^{\prime} U^{-1}\right| \leq K v, v^{2}\left|A_{C}^{-1} P^{*} W A^{+}\right| \leq K\left(1+\int_{a}^{t} r\right)$, $B-v^{2} \operatorname{Re}(P * W Q) \leq K A^{2}+\sum_{j=1}^{m} s_{j} Q_{j}^{\prime}, r\left|s_{j} A_{c}^{-1} Q_{j} A_{c}^{-1}\right| \leq K\left(1+\int_{a}^{t}\right),\left|s_{j}^{\prime} A_{c}^{-1} Q_{j} A_{c}^{-1}\right| \leq K$, $\left|s_{j} A_{C}^{-1} Q_{j} P^{-1} U^{-1}\right| \leq K v$. Then $d(\lambda) \leq s$ for every $\lambda \in \mathbb{C}$ where $d(\lambda)=\operatorname{dim}\{y \in H \mid M y=\lambda y\}$. If additionally T_{o} is symmetric, then every real polynomial in M is limit-point.
R.C. Gilbert

Auxiliary Polynomials and Asymptotic Formulas for Solutions of a

Singular Linear Ordinary Differential Equation

Consider the equation (1) $\sum_{\sum_{=0}^{n} \alpha_{n-r}(x) y^{(r)}=i^{-n}}^{n^{n}} x^{-q} y$, where q is a positive integer, $\alpha_{0}(x) \stackrel{r=0}{=1, \alpha_{n-r}(x)}$ is holomorphic for x in a sector S of the complex plane, $0<x_{0} \leq|x|<\infty$, and $\alpha_{n-r}(x) \sim \sum_{k=0}^{\infty} \alpha_{n-r^{\prime} h^{\prime}}$ as $x \rightarrow \infty$. Let $I_{h}(\mu)=\sum_{r=0}^{n} \alpha_{n-r^{\prime} h^{\mu}-i^{-n} \lambda \delta_{h q}}$. For certain symmetric operators, $I_{O}(\mu)=i^{-n_{H}}(i \mu)$, where H_{O} has real coefficients. Let $\beta=s$-it be a zero of $I_{0}(\mu)$ of multiplicity m. Let f_{1}, \ldots, f_{m} be part of a basis for (1) corresponding to B. Let $n^{+}\left(n^{-}\right)$ be the number of the f_{j} in L^{2} for $I \lambda>O(<0)$. For $q=1$ it is known that $\mathrm{n}^{+}=\mathrm{n}^{-}$if $\mathrm{s} \neq 0$ or if $\mathrm{s}=0$ and m is even, but if $\mathrm{s}=0$ and m is odd, then $n^{+}-n^{-}=-1(+1)$ for $H_{0}^{(m)}(t)>O(<0)$. The latter condition makes $n^{+}-n^{-}$switch sign over consecutive t of odd m. The following two questions will be considered for $q \geq 2$: (a) Can $n^{+}-n^{-} \neq 0$ and retain sign for consecutive t ? (b) Is $\left|n^{+}-n^{-}\right| \geq 2$ possible?
R. M. Kauffman

Powers and Roots of Ordinary Differential Operators
We study differential expressions R of order $2 N$ on $[1, \infty)$, such that $(\operatorname{Rf}, f) \geq \varepsilon(f, f)$ for all f in $C_{O}^{\infty}(1, \infty)$, where $\varepsilon>0$. We consider the problem "for every g in $L_{2}[1, \infty)$ find an f in $L_{2}[1, \infty)$ such that $R f=g$ and $f^{(i)}(1)=0$ for $0 \leq i^{(1)} n^{1 n}$ as a motivation for studying the deficiency index and other problems involving boundary conditions at infinity for R. We calculate the deficiency index of R, where R is any polynomial in a positive polynomial coefficient expression L of fairly general type. We then discuss additional boundary conditions at infinity for general R which make the above problem well-posed even when the deficiency index of R is greater than N.

I. Knowles

Differential Equations and the Riemann Zeta Function
The main aim of the lecture is to present some consequences of a recently developed algorithm (c.f. [Proc. Conf. Diff. Equ. Dundee Scotland, Springer, Lecture Notes in Mathematics Vol. 964, 388-405]) that associates uniquely, a differential equation of the form

$$
z^{\prime \prime}-s b(x) z^{\prime}(x)+s^{2} c(x) z(x)=0, \quad x \in[0, \infty)
$$

with certain Euler products

$$
R(s)=\prod_{n=1}^{\infty}\left(1+\frac{a_{n}}{p_{n}^{s}}\right) ;
$$

included here are the Euler products for $\zeta(s) / \zeta(2 s)$ and $1 / \zeta(s)$, where $\zeta(s)$ is the classical. Riemann zeta fucntion. Some consequences of this approach include new formulae for the zeta function; the possibility of a proof for the prime number theorem via ODE asymptotics, and some connections with the automorphic wave equation and the theory of Hecke operators.
M. A. Kon

Semigroups Generated by Ordinary Differential Operators
We analyze semigroups generated by ordinary differential operators through spectral theoretic techniques. The integral kernel of the semigroup is expressed explicitly as a contour integral of the resolvent kernel, which is used to prove L^{p} and pointwise continuity properties of the semigroup. In particular, the semigroup is shown to be holomorphic in the right half of the complex plane, and continuous in L^{P} and pointwise at the origin. Smoothing properties of the semigroup operator are also considered, and the results are interpreted in terms of temporal smoothing in generalized heat equations. Results are presended in the general context of analytic functions of differential operators.

H. Kurss

Estimates of μ, the Least Limit Point of the Spectrum
Two theorems of Hinton and Lewis (1975) on sufficient conditions for $\mu=\infty$ for a real symmetric differential operator of order $2 N$ are shown to remain valid when the pointwise constraints $p_{j}(x) / x^{2 j} \geq-C$ are weakened, a la Brinck (1959), to average constraints $\int_{J}\left(p_{j}(t) / t^{2 j}\right) d t$ for all intervals J of length ≤ 1. A similar replacement is expected to be valid in $\mu=\infty$ criteria of Müller-Pfeiffer (1977) and Read (1982). The above two theorems are also strengthened to give upper and lower bounds $\mu \leq \mu_{E}$ or $\mu \geq \mu_{E}$ where, as in Eastham (1970), μ_{E} is the least limit point of a corresponding Euler operator.
S. J. Lee

Constructive Methods for Least-Squares Solutions
Orthogonal operator parts of linear manifolds play an important role in numerical problems. We will consider (and discuss) several applications of orthogonal operator parts:
(i) Constructive methods of operator parts
(ii) Steepest descent method for the least-squares solutions for a multi-valued operator equation.
(iii) Steepest descent method for a nondensely defined differential operator equation.
Tikhonov's method of regularization for a nondensely defined differential operator having a nonclosed range.

R. Mennicken

The Structure of Green's Function: A Simple Proof of a Theorem of

M.V. Keldyš

Let E, F be $B-s p a c e s, U$ an open subset of $\mathbb{C}, T \in H(U, L(E, F))$ and $\mu \in U . Y \in H(U, E)$ is called a root function (RF) of T in μ if $Y(\mu) \neq 0$ and $(T Y)(\mu)=0$; let $v(Y)$ denote the order of the zero of TY in $\mu . A$ set of root functions Y_{1}, \ldots, Y_{r} of T in μ is called a canonical system (CSRF) if $\left\{Y_{1}(\mu), \ldots, Y_{r}(\mu)\right\}$ is a basis of $N(T(\mu))$ and

$$
\nu\left(Y_{j}\right)=\max \left\{\nu(Y): \begin{array}{l}
Y R F \text { of } T \text { in } \mu, \\
Y(\mu) \& \operatorname{span}\left\{Y_{1}(\mu), \ldots, Y_{j-1}(\mu)\right\}
\end{array}\right\}
$$

Theorem. Assume that $T^{-1} \in H(U \backslash\{\mu\}, L(F, E))$, having a pole in μ. Let $\left\{Y_{1}, \ldots, Y_{r}\right\}$ be a CSRF of T in μ and set $m_{j}:=v\left(Y_{j}\right)$. Then the following assertions hold:

1) There exist uniquely polynomials $V_{j}: \mathbb{C} \rightarrow F^{\prime}$ of degree less than m_{j} such that

$$
T^{-1}-\sum_{j=1}^{r}(.-\mu)^{-m_{j}} Y_{j} \otimes V_{j}
$$

is holomorphic in μ.
2) The set $\left\{V_{1}, \ldots, V_{r}\right\}$ is a CSRF of T^{*} in μ and $v\left(V_{j}\right)=m_{j}$.
3) The biorthogonality relationships

$$
\frac{1}{1!} \frac{d^{1}}{d \lambda^{1}}<(.-\mu)^{-h} T Y_{i}, V_{j}>(\mu)=\delta_{i j} \delta_{m_{i}}-h, 1
$$

hold for $h=1,2, \ldots, m_{i} ; 1=0,1, \ldots, m_{j}-1 ; i, j=1,2, \ldots, r$:
This theorem is due to Keldys (1951,1971) Gohberg and Sigal (1970).

Recently Mennicken and Möller proved this in a simple and direct way which is presented at this meeting. An application of the theorem to boundary eigenvalue problems yields the representation of the singular parts of Green's functions in terms of eigenvectors and associated vectors of T and T^{*}. The coefficients of the differential equations as well as those of the boundary conditions are allowed to depend holomorphically on λ; for special results cf. e.g. Langer (1939), Cole (1964) and Krall (1975).
B. Mergler

A Limit-Point-Criterion for Even Order Symmetric Differential Expressions
We consider the general $2 n-t h$ order symmetric differential expression

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\left(p_{j} y^{(j)}\right)^{(j)}+i \sum_{j=0}^{n-1}(-1)^{j}\left\{\left(q_{j} y^{(j)}\right)^{(j+1)}+\left(q_{j} y^{(j+1)} j^{(j)}\right\}\right. \tag{1}
\end{equation*}
$$

on $I=[1, \infty)$. For expressions of type (1) we derive a limit-point-criterion by using the theory of relatively bounded perturbations. The obtained criterion generalizes a result of Schultze (1981, Proc. Roy. Soc. Edinb.). The method used here is a generalization of the method developed by Schultze in the above-mentioned article. The key feature is to obtain a positive lower estimate for $\mathbb{M}_{0} f \mathbb{l}_{2}^{2}$ where $f \in C_{o}^{\infty}(\mathbb{I})$ and $M_{0} y=(-1)^{n}\left(t^{\alpha_{n}} y^{(n)}\right)(n)+(-1)^{\ell}\left(c^{\alpha_{l}} y^{(\ell)}\right)^{(\ell)}, n, \ell \in N_{0}, n \geq 2, n>\ell$, $\alpha_{n}, \alpha_{l} \in \mathbb{R}, \alpha_{n}-2(n-l)<\alpha_{l}$ and $c>0$ on using the identity $\left\|_{M_{0}} f\right\|_{2}^{2}=\left(M_{0}^{2} f, f\right) \cdot M_{0}$ is in the limit-point-case by a criterion of Kauf man (1977, Proc. Lond. Math. Soc.). Finally we use the following Theorem. Let M, N ODE of type 1 with $M, M+N$ regular (i.e. the leading coefficient is positive) and order (M) \geq order (N). Furthermore there
 $\operatorname{def}\left(T_{0}(M+N)\right) \leq \operatorname{def}\left(T_{0}(M)\right)$.
Thus we obtain the desired result.
D. Race

A Simplified Characterization of the Boundary Conditions which Determine
J-Selfadjoint Extensions of J-Symmetric (Differential) Operators
Various authors, including N.A. Zhikhar and I.W. Knowles, have looked at the problem of characterizing the boundary conditions which determine J-selfadjoint extensions of J-symmetric operators such as the minimal operator generated by

$$
\tau y=\sum_{i=0}^{n}(-1)^{n-i}\left(p_{i} y^{(n-i)}\right)(n-i)
$$

where each p_{i} is a complex-valued function. All the work to date has required the regularity field of this J-symmetric operator to be nonempty, a difficult condition to check in applications. We give here a more general but shorter and simpler method of proof, which yields the same results, but requires no such assumption. This answers several open questions concerning an example of J.B. McLeod (1962), namely

$$
-y^{\prime \prime}-2 i e^{2(1+i) x} y=\lambda y
$$

T.T. Read

Bounds for the Essential Spectrum of Some Differential Operators
It is known, both for the ordinary differential expression $\tau{ }_{j} y=-\left(p y^{\prime}\right)^{\prime}+q y$ on $[a, \infty)$ and for the partial differential expression $\tau_{2} y=-\Delta y+q y$ on R^{n}, that if there exist $g(x)$ and $r>0$ such that $\tau g=0$ and $g(x)>0$ for $|x| \geq r$, then inf $\sigma_{\text {ess }}(T) \geq 0$, where T is the Friedrichs extension of the minimal operator. Moreover, if no such g and r exist, then inf oess ${ }^{(T)} \leq 0$. Thus we can obtain bounds on the essential spectrum by investigating the existence. of positive solutions. We do this by using the following characterization to obtain several results on the existence or nonexistence of positive solutions.

Theorem. (a) $\tau_{1} y=0$ has a positive solution iff $q=u+Q^{\prime}$ with $u \geq Q^{2} / p$.
(b) $\tau_{2} y=O$ has a positive solution ff $q=u+\operatorname{div} Q$ with $u \geq|Q|^{2}$.

B. Schultze

Odd Order Selfadjoint Differential Expressions with Positive Real Powers
as Supporting Coefficients
We consider the odd order differential expression $M y=\frac{i}{2} \sum_{K=0}^{m}(-1)^{\rho_{K}}\left\{\left(\tilde{q}_{\rho_{K}} y^{\left(\rho_{K}+1\right)}\right){ }^{\left(\rho_{K}\right)}+\left(\tilde{q}_{\rho_{K}} y^{\left(\rho_{K}\right)}\right)^{\left(\rho_{K}+1\right)}\right\}$ on $[1, \infty)$, where $m \in \mathbf{N}_{0}, 0 \leq \rho_{0}<\ldots<\rho_{m}=n, \tilde{q}_{\rho_{k}}=a_{k} t^{\alpha_{k}}$ with $a_{k}>0, a_{m}=1$ and $\alpha_{k} \in \mathbb{R}(k=0, \ldots, m)$ subject to the conditions if $m>0$:

$$
2>\frac{\alpha_{K}-\alpha_{K-1}}{\rho_{K}-\rho_{K-1}}>\frac{\alpha_{K+1}-\alpha_{K}}{\rho_{K+1}-\rho_{K}} \quad(K=1, \ldots, m-1) \text { if } m>1 \text { resp. } 2>\frac{\alpha_{1}-\alpha_{0}}{\rho_{1}-\rho_{0}} \text { if } m=1 .
$$

This expression can be perturbed by

$$
N y=\frac{i}{2} \sum_{j=0}^{n}(-1)^{j}\left\{\left(q_{j} y^{(j+1)}\right)^{(j)}+\left(q_{j} y^{(j)}\right)^{(j+1)}\right\}+\sum_{j=0}^{n}(-1)^{j}\left(p_{j} y^{(j)}\right)(j)
$$

where:
such that

$$
\begin{aligned}
& 2 \rho_{k-1}+2 \leq 2 i+1-k \leq 2 \rho_{k}+1 \quad \text { and } k=0, \ldots, j+1 \\
& q_{j}{ }^{(k)}=o\left(t^{\alpha_{0}-2 \rho_{o}+2 j-k}\right) \text { for } 2 j+1-k=0, \ldots, 2 \rho_{o}+1 \quad \text { and } k=0, \ldots, j+1 \\
& p_{j}{ }^{(k)}=o\left(t^{\left.\frac{1}{\rho_{k}-\rho_{k-1}}\left\{\left(\rho_{k}-j+\frac{1}{2}\right) \alpha_{k-1}+\left(j-\frac{1}{2} \rho_{k-1}\right) \alpha_{k}\right\}-\frac{k}{2} \frac{\alpha_{k}-\alpha_{k-1}}{\rho_{k}-\rho_{k-1}}\right)}\right. \\
& \quad \text { for } k \in\{1, \ldots, m\}
\end{aligned}
$$

such that $2 \rho_{k}+2 \leq 2 j-k \leq 2 \rho_{K}+1$ and $k=0, \ldots, j$.
$p_{j}^{(k)}=o\left(t^{\alpha} 0^{-2 \rho_{0}-1+2 j-k}\right)$ for $2 j-k=0, \ldots, 2 \rho_{o}+1$ and $k=0, \ldots, j$.
For $M+N$ the following result is obtained:
If $\alpha_{0}<2 \rho_{0}+1$, then $M+N$ is in the limit-point case and $\sigma_{e}\left(T_{o}(M+N)\right)=\mathbb{R}$.
If $\alpha_{0}>2 \rho_{0}+1$, then $M+N$ has equal deficiency indices with
$n+1 \leq \operatorname{def}(M+N) \leq 2 n+1-\rho_{0}$ and $\sigma_{e}\left(T_{0}(M+N)\right)=\varnothing$.
A. Zettl

Spektraltheorie abgeschlossener gewöhnlicher Differentialoperatoren
Wir untersuchen das Spektrum von nichtselbsadjungierten gewöhnlichen Differentialoperatoren. Wie kann man das wesentliche Spektrum bestimmen in der Abhängigkeit vom Verhalten der Koeffizienten?

Referees: Dr. H. Frentzen
Dr. B. Schultze

Prof. H.E. Benzinger Department of Mathematics 273 Altgeldhall University of lllinois Urbana, lllinois 61801 U S A

Prof. Dr. B.L.J. Braaksma Department of Mathematics University of Groningen P.O. Box 800 9700 AV Groningen

Niederlande

Prof. R.C. B R O WN Department of Mathematics University of Alabama Alabama 35486

US A

Prof. Dr. A. Dijksma Department of Mathematics University of Groningen P.O. Box 800

9700 AV Groningen
Niederlande

Prof. Dr. M.S.P. Eastham
Mathematics Department
Chelsea College,
Manresa Road,
London, SW3 6LX
GroBbritannien

Prof. Dr. W. Eberhard Fachbereich Mathematik Universität Duisburg Lotharstr. 65

4100 Duisburg

Prof. Dr. W.D. Evans
Department of Pure Mathematics
University College
Cardiff, CF1 1 XL
GroBbritannien

Prof. W.N. Everitt Mathematics Department
University of Dundee
Dundee, DD1 4HN
Großbritannien

Mme. J. Fleckinger
U.E.R. de Mathématiques,

Université Paul Sabatier
118, Route de Narbonne
31062 Toulouse Cédex
Frankreich

Dr. G. Freiling
Fachbereich Mathematik
Universität Duisburg
Lotharstr. 65
4100 Duisburg

Dr. H. Frentzen
Fachbereich Mathematik
Universität Essen
Universitätsstr. 3 .
4300 Essen 1

Prof. R.C. Gilbert Mathematics Department
California State University Fullerton, California 92634

US A


```
6 1 0 0 ~ D a ̀ r \mp@code { m ̌ s € a ̂ đ c }
P̄rôf: R:M: Käuq̄fmãan
Dèpàrtmênt of Máthemàtićs
Wéseêrñ Wàshiñogeon Uñiversity
Be\iliñghàm; WA`98%225
ij S A
Prōf: l:W. Knoowlès
Deapàrtmèñt of Matheomatics
Univêrsitiy off Alabbamã iñ Birmingh.
Bír\mp@code{minğhiàm, Aliàbañáa 35 294}
U S̄ À
```



```
A\mp@code{Uêlóhi Uñiversitiy}
Gardeñ Ēity
L:I:, New̌u Yôfk il 530
U| ṡ À
Prof: s.d: Lee
```



```
Pañ Amemericañ Unilversity
Eảin\mp@code{uF%}
```



```
U S A
```

P̄rof：Òr：R：Meñ̃ickeñ Fachiberéich Mathematik Universituat Regensburg

8400 Regensburg

B．Mergher


```
Prof. Dr. H.-D. NieBen
Fachbereich Mathematik
Universität Essen
Universitätsstr. 3
```

4300 Essen 1
D. Race
Department of Mathematics
University of Birmingham
P.O. Box 363
Birmingham B15 2TT
Grobbritannien

Prof．T．T．Read
Department of Mathematics
Western Washington University
Bellingham
Washington 98225

USA

Prof．Dr．A．Schneider
Abteilung Mathematik
Universität Dortmund
Postfach 500500
4600 Dortmund 50

Dr．B．Schultze
Fachbereich Mathematik
Universität Essen
Universitätsstr． 3
4300 Essen 1

Or．H．S．V．de Snoo
Department of Mathematics
University of Groningen
Groningen，P．O．Box 800
9700 AV Groningen
Nuederlande

Prof．A，Zetid．
Department of Nathematical Sciences

划 $\$ \mathbb{A}$
4300 臣与解

